Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2002/2003

ALGEBRA 1 Prof. M. Fontana Tutorato 9 - Andrea Cova (4 dicembre 2002)

1. Se $x \in R$, denotiamo con $\langle \langle x \rangle \rangle$ la *parte intera* di x, cioè $\langle \langle x \rangle \rangle \in Z$ è quell'intero tale che $x = \langle \langle x \rangle \rangle + r$ con 0 $\leq r < 1$.

Consideriamo l'applicazione: $f : R \rightarrow Z$

$$X \to \langle\langle X \rangle\rangle$$

Se ρ_f è la relazione di equivalenza associata a f, cioè x $\rho_f y \Leftrightarrow f(x) = f(y)$

- a) Determinare la classe di equivalenza di ogni elemento di R;
- b) Determinare l'insieme quoziente R/ ρ_f ;
- c) Descrivere esplicitamente la biiezione canonica R/ $\rho_f \leftrightarrow \text{Im}(f)$.
- **2.** Sia S un insieme e (G,) un gruppo. Nell'insieme $X = G^S$ di tutte le funzioni di dominio S e codominio G si definisca l'operazione: $X \times X \to X$,

 $(f,g) \to f * g$, dove $f * g : S \to G$ è definita da (f * g) (s) = f(s) g(s). Mostrare che, rispetto a questa operazione, $X = G^S$ è un gruppo.

- **3.** Sia G un gruppo. Mostrare che:
 - (a) Se G è abeliano, allora $(ab)^n = a^n b^n$ presi comunque a, $b \in G$ ed $n \ge 1$;
 - (b) Se $(ab)^2 = a^2b^2$ per ogni a, $b \in G$, allora G è abeliano;
 - (c) Se ogni elemento di G (diverso dall'elemento neutro) ha ordine 2, allora G è abeliano;
 - (d) Se G è finito (non banale) di ordine pari, allora G ha un elemento di ordine 2.
- **4.** Siano a, b \in R e a \neq 0. Sia $t_{a,b}$: R \rightarrow R l'applicazione definita da $t_{a,b}(x) = ax + b$.
 - (a) Verificare che l'insieme T: = $\{t_{a,b}: (a, b) \in R^* \times R\}$ è un gruppo rispetto alla composizione di applicazioni.
 - (b) Mostrare che T non è commutativo.
- **5.** Sia (G,) un gruppo. Determinare quali tra le seguenti proposizioni sono *vere*:
 - (a) Se H è un sottogruppo di G, allora H H = H.
 - (b) Se X è un sottoinsieme non vuoto di G e X X = X, allora X è un sottogruppo di G.
 - (c) Se X è un sottoinsieme finito (non vuoto) di G e X X = X, allora X è un sottogruppo di G.
- **6.** Sia G un gruppo ed I un sottoinsieme non vuoto di G. Definiamo: $\langle I \rangle := \{g_1^z_1...g_r^z: r \geq 1, g_i \in I, z_i \in Z \text{ per } 1 \leq i \leq r\}.$

Mostrare che:

- (a) < I > è un sottogruppo di G (che si dice il sottogruppo di G generato dal sottoinsieme I);
- (b) Se H è un sottogruppo di G e I \subset H, allora < I > \subset H (cioè < I > è il più piccolo sottogruppo di G contenente I);
- (c) < I > = \cap {H : I \subset H e H è un sottogruppo di G};
- (d) Se $P \subset (R,)$ è l'insieme dei numeri interi primi, allora $\langle P \rangle = (Q^*,)$.
- 7. Provare che l'insieme delle matrici del tipo

$$z = a b$$

 $c \ 0$, con $a, b, c \in \mathbb{R}$, è un gruppo rispetto alla somma di matrici.

8. Stabilire se l'insieme $G = \{(x, y) \in \mathbb{R}^2 \mid x \neq 0\}$ è un gruppo rispetto al prodotto così definito: (a, b)(c, d) = (ac, bc + d).