Soluzioni II

8/10/2002Serie di Funzioni

- Esercizio 1. (1) Considero $e^{-\alpha n}|x|^n=e^{n(\log|x|-\alpha)}$. Si deduce quindi che la serie converge se $\log|x|-\alpha<0\Leftrightarrow |x|< e^\alpha\Leftrightarrow -e^\alpha< x< e^\alpha$. Studiamo la convergenza totale: $\sum_{n=0}^\infty \sup_E e^{-\alpha n}|x|^n$, questa serie converge se E=[-r,r] con $r< e^\alpha$. In E la serie convege anche uniformente. Non si possono estendere ulteriormente gli insiemi di convergenza uniforme e totale perchè per $|x|=e^\alpha$ la serie non converge puntualmente.
- (2) Definisco $A = \{-1/n^2, n \in \mathbb{N}, n > 1\}$, la funzione $u_n(x) = \frac{(x \sin n)^n}{1+n^2x}$ è definita $\forall x \in \mathbb{R} \setminus A$. Studiamo $\frac{|x|^n |\sin n|^n}{|1+n^2x|} \leqslant \frac{|x|^n}{|1+n^2x|}$ la cui serie converge $\forall x \in [-1,1] \setminus A$ infatti se |x| > 1 il termine n-esimo della sucessione non tende a 0. Per |x| = 1 la succesione va a 0 come $1/n^2$ e quindi converge. Ora sia $|x| \leqslant 1$ allora possiamo distinguere 2 casi: $|x| \in [0,1/2]$ oppure $|x| \in [1/2,1]$, nel primo caso possiamo maggiorare $|u_n(x)|$ con $(1/2)^n$ che converge. Nell'altro possiamo maggiorarla con $\frac{1}{1+n^2/2}$ che converge anch'essa. Per quanto riguarda la convergenza totale e uniforme possiamo sicuramnte affermare che converge nei compatti strettamente contenuti nell'insieme $[0,1] \cup ([-1,r] \setminus A)$ con -1 < r < 0 in modo da isolare un numero finito di punti in cui la funzione tende a ∞ .
- (3) La condizione necessaria per la convergenza della serie è che il termine n-esimo tenda a 0. Cerchiamo gli x per cui questo avviene: $u_n(x) \to_n 0 \Leftrightarrow \sum_{j=1}^n j^x \to_n \infty \Leftrightarrow x \geqslant -1$. Ma questo non basta per la convergenza della serie, vogliamo infatti che $u_n(x) < 1/n^\alpha$ con $\alpha > 1$. Possiamo osservare che la funzione $u_n(x)$ è decrescente in x e che per $x \leqslant 0$ si ha che $u_n(x) \geqslant u_n(0) = 1/n$ che non converge. Ora possiamo dimostrare che $u_n(x) \approx n^{x+1}$. Infatti $\int_0^n j^x dj < \sum_{j=1}^n j^x < \int_1^{n+1} j^x dj$ allora si ha che $\frac{n^{x+1}}{x+1} < \sum_{j=1}^n j^x < \frac{(n+1)^{x+1}}{x+1} \frac{1}{x+1}$. Da questa considerazione possiamo affermare che la serie converge puntualmente per x > 0 e sia convergenza uniforme e totale negli insiemi $[r, \infty)$ con r > 0 per la monotonia della funzione $u_n(x)$.
- (4) Intanto deve essere $x \geq 0$ altrimenti la successione $u_n(x)$ non è definita. Ora $x/n \to_n 0 \ \forall x$ allora $(x/n)^\alpha \to_n 0 \Leftrightarrow \alpha > 0$. Con queste condizioni possiamo applicare lo sviluppo di Mc Laurin di arctan y e di $\log 1 + z$ e studiare la serie $x^\alpha \sum_{n \geq 1} 1/n^\alpha$ che converge puntualmente $\forall x \geq 0$ se $\alpha > 1$. La convergenza uniforme e totale si ha in tutti gli insiemi del tipo [0, r] perchè

 $u_n(x)$ è crescente.

(5) Per studiare $\sum_{n\geqslant 0}\frac{e^{nx}}{1+\sin^2 nx}$ basta studiare $\sum_{n\geqslant 0}e^{nx}$ che converge puntualmente $\forall x<0$; gli insiemi di convergenza totale ed uniforme sono del tipo $(-\infty,r]$ con r<0