I ESONERO DI CP2: 8-11-2002

E. Scoppola

Esercizio 1

Sia E_n una sequenza di eventi.

- a) Definire $(E_n, i.o.)$ e (E_n, ev) .
- b) Verificare che $(E_n, ev)^c = (E_n^c, i.o.)$
- c) Usare il lemma di Fatou per dimostrare che se gli eventi E_n , non necessariamente indipendenti, sono tali che $P(E_n) \to 1$ quando $n \to \infty$, allora $P(E_n, i.o.) = 1$.

Esercizio 2

- a) Dato uno spazio di probabilità (Ω, \mathcal{F}, P) e $p \geq 1$, definire lo spazio $\mathcal{L}^p(\Omega, \mathcal{F}, P)$ e la norma $\|.\|_p$.
- b) Dimostrare che se $1 \leq p \leq r$ e $X \in \mathcal{L}^r(\Omega, \mathcal{F}, P)$, allora $X \in \mathcal{L}^p(\Omega, \mathcal{F}, P)$ e $\|X\|_p \leq \|X\|_r$.
- c) Data una sequenza di variabili aleatorie X_n in \mathcal{L}^p definire che cosa vuol dire che la sequenza X_n converge a X in \mathcal{L}^p .
- d) Sia X_n una sequenza di variabili aleatorie indipendenti con $P(X_n=1)=p_n$ e $P(X_n=0)=1-p_n$. Dimostrare che X_n converge a 0 in \mathcal{L}^p per ogni p, se e solo se $p_n\to 0$. Scegliendo $p_n=\frac{1}{n}$, mostrare che X_n converge a 0 in \mathcal{L}^p per ogni p ma X_n non converge a 0 quasi sicuramente.

Esercizio 3

Sia $\Omega=[0,1],\,\mathcal{F}=\mathcal{B}[0,1],\,P=Leb.$ e si consideri per ogni $x\in[0,1]$ la sua espansione binaria

$$x = \frac{x_1}{2} + \frac{x_2}{2^2} + \dots + \frac{x_n}{2^n} + \dots$$
 (1)

unica, se si considerano solo espansioni con un numero infinito di zeri. Si considerino le variabili aleatorie $X_n(x)=x_n$ e si definisca per ogni n

$$R_n(x) := 1 - 2X_n(x) \tag{2}$$

- a) Disegnare $R_1(x)$ e $R_2(x)$.
- b) Dimostrare che $ER_n = 0$, per ogni n.
- c) Dimostrare che le variabili R_n sono ortonormali:

$$E(R_n R_m) = \delta_{n,m} \tag{3}$$