Universitá degli Studi di Roma Tre - Dipartimento di Matematica Corso di GE3 del Corso di Laurea in Matematica, a.a. 2002/2003 Docente: Prof. M. Pontecorvo - Esercitatore: Dott. L. Di Marco - Tutori: L. Di Biagio, P. Tranquilli

Tutorato del 9/4/2003

6.1 Siano (X_1, \mathcal{T}_1) , (X_2, \mathcal{T}_2) spazi topologici non vuoti. Dimostrare che:

$$(X_1 \times X_2, \mathcal{T}_1 \times \mathcal{T}_2)$$
 è separabile \iff (X_1, \mathcal{T}_1) e (X_2, \mathcal{T}_2) sono separabili.

6.2 Sia $(\mathbb{R}^2, j_s \times j_s)$ lo spazio topologico prodotto di (\mathbb{R}, j_s) per se stesso. Sia $F: (\mathbb{R}^2, j_s \times j_s) \to (\mathbb{R}, j_s)$ l'applicazione cosí definita:

$$F(x,y) = x + y, \ \forall (x,y) \in \mathbb{R}^2.$$

Verificare che F é continua.

- **6.3** Sia $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ un'applicazione continua e suriettiva tra spazi topologici.
 - (i) Verificare che se f è aperta o chiusa allora f è un' identificazione.
 - (ii) Dare un esempio di un' identificazione che non è ne aperta e ne chiusa.
- 6.4 Si consideri la seguente relazione di equivalenza su \mathbb{R} :

$$x \rho y \Leftrightarrow |x| = |y|.$$

Verificare che $(\mathbb{R}/\rho, \mathcal{T}_e/\rho) \cong ([0, +\infty), \mathcal{T}_e)$.

6.5 Sia $T := \{(x,y) \in \mathbb{R}^2 : x,y \ge 0\}$. Sia inoltre ρ la segunte relazione su \mathbb{R}^2 :

$$(x,y)\rho(x',y') \Leftrightarrow |x| = |x|' \text{ e } |y| = |y'|.$$

Dimostrare che $(T, \mathcal{T}_e|_T) \cong (\mathbb{R}^2/\rho, \mathcal{T}_e/\rho)$, dove T ha la topologia euclidea di sottospazio e su \mathbb{R}^2/ρ c' è la topologia quoziente.

6.6 In (\mathbb{R}, i_s) sia definita la seguente relazione di equivalenza:

$$x\rho y \Leftrightarrow y = \pm x.$$

- (i) Determinare la topologia quoziente i_s/ρ .
- (ii) Verificare che $(\mathbb{R}/\rho,i_s/\rho)$ è omeomorfo alla semiretta chiusa $[0,+\infty)$ con la topologia banale.