AC1 Primo esonero

7 aprile 2004

1. Calcolare, per a > 0,

$$\int_{-\infty}^{+\infty} \frac{dx}{x^4 + a^4} \ .$$

2. Calcolare

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x(x^2+1)} \, dx \ .$$

3. Calcolare

$$\int_0^{2\pi} \frac{\cos 3\vartheta}{5 - 4\cos \vartheta} \, d\vartheta \ .$$

4. Sia $f:\mathbb{C}\to\mathbb{C}$ olomorfa non costante. Si supponga che esistano A,B>0 e $n\in\mathbb{N}^+$ tali che

$$|f(z)| \le A + B|z|^n .$$

Mostrare che f ha al più n zeri distinti.

- **5.** Sia $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ definita da $f(z) := \exp(-\frac{1}{z^2})$. Mostrare che:
 - (i) f è olomorfa su $\mathbb{C} \setminus \{0\}$ e discutere la natura della singolarità in 0;
 - (ii) se $\tilde{f}: \mathbb{R} \to \mathbb{R}$ è definita come $\tilde{f}(x) := \exp(-\frac{1}{x^2})$ per $x \neq 0$ e $\tilde{f}(0) := 0$, allora \tilde{f} è limitata, $C^{\infty}(\mathbb{R})$ e analitica su $\mathbb{R} \setminus \{0\}$ ma non su tutto \mathbb{R} ;
- (iii) per ogni $\varepsilon > 0$ si ha $f(D'_{\varepsilon}) = \mathbb{C} \setminus \{0\}$, dove $D'_{\varepsilon} := \{z \in \mathbb{C} \mid 0 < |z| < \varepsilon\}$.
- **6.** Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione razionale con poli $a_1, \ldots a_m$, tali che $a_j \notin \mathbb{Z}$ per $j = 1, \ldots, m$. Si supponga anche che f abbia uno zero di ordine almeno 2 all'infinito. Allora vale la formula

(*)
$$\sum_{n=-\infty}^{+\infty} f(n) = -\pi \sum_{j=1}^{m} \operatorname{Res}(g; a_j) ,$$

dove $g(z) := f(z) \cdot \cot g(\pi z)$.

(i) Calcolare, usando (*), la somma delle seguenti serie:

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1} , \qquad \sum_{n=0}^{\infty} \frac{1}{n^4 + 1} , \qquad \sum_{n=2}^{\infty} \frac{1}{n^4 - 1} .$$

(ii) Dimostrare (*).