Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2003/2004 AC1 - Analisi Complessa Tutorato 1

Venerdì 27 febbraio 2004

- 1. Trovare i valori di:
 - (a) $(1+2i)^3$
 - (b) $\frac{5}{-3+4i}$
 - (c) $\left(\frac{2+i}{3-2i}\right)^2$
 - (d) $(1+i)^n + (1-i)^n$
- 2. Calcolare:
 - (a) $\sqrt[4]{i}$
 - (b) $\sqrt[4]{-i}$
- 3. Si pensi di vivere nel piano complesso. Partendo dall'origine si vada un'unità a est, poi per la stessa lunghezza a nord, poi 1/2 della precedente lunghezza a ovest, poi 1/3 della precedente lunghezza a sud, poi 1/4 della precedente lunghezza a est e cosi via. Supponendo di viaggiare alla velocità di un'unità l'ora, dopo quanto tempo e a quale punto arriveremo?
- 4. Dimostrare che nel piano complesso non esistono triangoli equilateri con i vertici tutti in $\mathbb{Z}[i]$.
- 5. Se g(w)e f(z)sono funzioni olomorfe mostrare che g(f(z))è anch'essa analitica
- 6. Dimostrare che una funzione olomorfa non costante non può:
 - (a) avere valore assoluto costante
 - (b) essere a valori reali
 - (c) essere a valori puramente immaginari
 - (d) avere argomento costante
- 7. Dimostrare rigorosamente che f(z) e $\overline{f(\overline{z})}$ sono analitiche simultaneamente.
- 8. Per ogni $z,w\in\mathbb{C}$ si ponga $e^z=\sum_{k=0}^{+\infty}\frac{z^k}{(k)!}\cos z=\sum_{k=0}^{+\infty}(-1)^k\frac{z^{2k}}{(2k)!}$ e $\sin z=\sum_{k=0}^{+\infty}(-1)^k\frac{z^{2k+1}}{(2k+1)!}$
 - (a) Verificare che il raggio di convergenza di tali serie è infinito
 - (b) Verificare che valgono le uguaglianze cos $z=\frac{e^{iz}+e^{-iz}}{2}$ e sin $z=\frac{e^{iz}-e^{-iz}}{2i}$
 - (c) Dimostrare la formula di addizione per l'esponenziale complesso: $e^{z+w}=$
 - (d) Verificare che $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
 - (e) Verificare che $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$