AM2: Tracce delle lezioni- V Settimana

FUNZIONI DI PIÚ VARIABILI

Sia $n \in \mathbb{N}$. Una funzione reale di n variabili reali é una funzione definita in un sottoinsieme di $\mathbf{R}^n = \mathbf{R} \times \ldots \times \mathbf{R}$ n volte (insieme delle n-uple ordinate di numeri reali $v = (x_1, \ldots, x_n)$; v si dice **punto o vettore** di \mathbf{R}^n) e a valori in \mathbf{R} .

Ad esempio, $f(x_1, \ldots, x_n) = a_1 x_1 + \ldots + a_n x_n$ (funzione lineare).

STRUTTURA ALGEBRICA in \mathbb{R}^n : Sia $u = (x_1, \dots, x_n)$.

(addizione) Se
$$v = (y_1, ..., y_n)$$
 $u + v := (x_1 + y_1, ..., x_n + y_n)$

(moltiplicazione per uno scalare) Se
$$t \in \mathbf{R}$$
 $tu := (tx_1, \dots, tx_n)$

Interpretazione geometrica. Come noto, \mathbb{R}^2 si rappresenta mediante i punti di un piano cartesiano Oxy.

In tale piano, dato v, l'insieme $\mathbf{R} v := \{tv: t \in \mathbf{R}\}$ é l'insieme dei punti della retta uscente dall'origine O := (0,0) e passante per v; $\{tv + u: t \in \mathbf{R}\}$ é la (rappresentazione parametrica della) retta passante per u e parallela alla retta $\mathbf{R} v$.

In particolare, u + v é il punto comune alle rette $\{tu + v : t \in \mathbf{R}\}$ e $\{u + tv : t \in \mathbf{R}\}$ e si chiama traslazione di u lungo v. Tale interpretazione geometrica si estende al caso generale n > 2.

PRODOTTO SCALARE Siano
$$u = (x_1, ..., x_n), v = (y_1, ..., y_n).$$

 $\langle u, v \rangle := x_1 y_1 + \ldots + x_n y_n$ é il prodotto scalare tra $u \in v$. Proprietá

positivitá $0 \le \langle u, u \rangle \ \forall u \in \mathbf{R}^n$

 $\mathbf{simmetria} \quad < u,v> = < v,u> \quad \forall u,v \in \mathbf{R}^n$

bilinearitá $\langle au + bv, h \rangle = a \langle u, h \rangle + b \langle v, h \rangle \quad \forall a, b \in \mathbf{R}$

STRUTTURA METRICA in \mathbb{R}^n : Sia $u = (x_1, \dots, x_n)$.

$$||u|| := \sqrt{x_1^2 + \ldots + x_n^2} = \sqrt{\langle u, u \rangle}$$
 (norma di *u*)

Se $u, v \in \mathbb{R}^n$ é d(u, v) := ||u - v|| (distanza tra u, v.)

Interpretazione geometrica. In \mathbb{R}^2 , $||u|| := \sqrt{x^2 + y^2}$ é la lunghezza del segmento (o lunghezza del vettore u) che unisce il punto u = (x, y) all'origine, e d(u, v) é la distanza tra i punti $u \in v$. Analoga interpretazione geometrica in \mathbb{R}^n .

CAUCHY-SCHWARTZ | < u, v > |
$$\leq$$
 ||u|| ||v|| $\forall u, v \in \mathbb{R}^n$. Infatti, $0 \leq \langle u + tv, u + tv \rangle =$ = $||u||^2 + 2t \langle u, v \rangle + t^2||v||^2 \forall t \Rightarrow \langle u, v \rangle^2 - ||u||^2 ||v||^2 \leq 0$

Proprietá della norma

(i)
$$||tu|| = |t| ||u|| \quad \forall u \in \mathbb{R}^2, \ t \in \mathbb{R}$$
 (positiva omogeneitá)

(ii)
$$||u+v|| \le ||u|| + ||v|| \quad \forall u, v \in \mathbf{R}^2$$
 (diseguaglianza triangolare)

La (i) é ovvia, mentre (ii) segue dalla diseguaglianza di Cauchy-Schwartz:

$$||u+v||^2 = ||u||^2 + ||v||^2 + 2 < u, v > \le ||u||^2 + ||v||^2 + 2||u|| ||v|| = (||u|| + ||v||)^2$$

Proprietá della distanza

- (i) $0 \le d(u, v), \quad \forall u, v \in \mathbf{R}^n \qquad d(u, v) = 0 \quad \Leftrightarrow \quad u = v$ (positivitá)
- (ii) $d(u,v) = d(v,u) \quad \forall u,v \in \mathbf{R}^n$ (simmetria)
- (iii) $d(u,v) \le d(u,w) + d(w,v) \quad \forall u,v,w \in \mathbf{R}^n$ (diseguaglianza triangolare)

NOTAZIONE.
$$D := \{u : ||u|| < 1\}, e, se r > 0, v \in \mathbb{R}^n$$
:

$$D_r := rD := \{ru : u \in D\} = \{u : ||u|| < r\}, \ D_r(v) := D_r + v := \{u + v : u \in D_r\}$$

 D_r é disco di raggio r centrato in zero, $D_r(v)$ é disco di raggio r centrato in v.

DEFINIZIONE (di limite) Sia $f: A \to \mathbb{R}$, $A \subset \mathbb{R}^n$. Sia $\dot{D}_r(u) = D_r(u) \setminus \{u\}$. Sia u_0 tale che $\dot{D}_r(u_0) \cap A$ é non vuoto $\forall r > 0$. Allora

$$\lim_{u \to u_0} f = l \iff (\forall \epsilon > 0, \exists \delta_{\epsilon} > 0 : u \in A \cap \dot{D}_{\delta_{\epsilon}}(u_0) \implies |f(u) - l| \le \epsilon)$$

$$\lim_{u \to u_0} f = +\infty \iff (\forall M > 0, \exists \delta_{\epsilon} > 0 : u \in A \cap \dot{D}_{\delta_{\epsilon}}(u_0) \implies f(u) \geq M)$$

Se $D'_r \cap A$ é non vuoto per ogni r > 0, allora

$$\lim_{||u|| \to +\infty} f = l \iff (\forall \epsilon > 0, \exists \mathbf{R}_{\epsilon} > 0 : u \in A, ||u|| \ge R_{\epsilon} \Rightarrow |f(u) - l| \le \epsilon)$$

$$\lim_{||u|| \to +\infty} f = +\infty \iff (\forall M > 0, \exists R_M > 0: u \in A, ||u|| \ge R_M \Rightarrow f(u) \ge M)$$

SUCCESSIONI CONVERGENTI in \mathbb{R}^n $u_k \to_k u \Leftrightarrow ||u_k - u|| \to_k 0$

NOTA. (i) Se
$$u_k = (x_{k,1}, \dots, x_{k,n}), \quad u = (x_1, \dots, x_n),$$
 allora $u_k \to u \Leftrightarrow x_{k,1} \to_k x_1, \dots, \quad x_{k,n} \to_k x_n.$
Infatti $||u_k - u||^2 = \sum_{j=1}^n |x_{k,j} - x_j|^2$

(ii)
$$u_k \to u \quad \Leftrightarrow \quad \forall \epsilon > 0, \exists k_\epsilon : u_k \in D_\epsilon(u) \quad \forall k \ge k_\epsilon$$

(iii)
$$u_k$$
 converge \Rightarrow $\sup_k ||u_k|| < +\infty$

NOTA. Come per le funzioni di una variabile si vede facilmente che

(i) f ha limite l per u tendente a u_0 (|u| tendente a $+\infty$) \Leftrightarrow $u_n \in A, \ u_n \neq u_0, \ u_n \to u_0 \ (|u_n| \to +\infty) \ \Rightarrow \ f(u_n) \to \ l$

(ii) (Cauchy) f ha limite l per u tendente a u_0 \Leftrightarrow

$$(\forall \epsilon > 0, \ \exists \delta_{\epsilon} > 0: \ u, v \in A \cap \dot{D}_{\delta_{\epsilon}}(u_0) \ \Rightarrow \ |f(u) - f(v)| \le \epsilon)$$

f ha limite l per |u| tendente a $+\infty$ \Leftrightarrow

$$\forall \epsilon > 0, \ \exists R_{\epsilon} > 0: \ u, v \in A, \ |u|, |v| \ge R_{\epsilon} \ \Rightarrow \ |f(u) - f(v)| \le \epsilon$$

ESEMPI. (i) Sia
$$f(x,y) = \frac{|x|^{\alpha} |y|^{\beta}}{x^2 + y^2}$$
 se $x^2 + y^2 \neq 0$.

Dalla NOTA-(i) si vede subito che $\lim_{u \to u_0} f(u) = f(u_0) \ \forall u_0 \neq 0$. Invece,

 $\lim_{x \to 0} f(u)$ esiste se e solo se $\alpha + \beta > 2$ (e in tal caso vale zero).

Infatti, se $\alpha + \beta < 2$, allora $t_n \to_n 0 \Rightarrow f(t_n x, t_n y) = |t_n|^{\alpha + \beta - 2} f(x, y) \to +\infty$ se $xy \neq 0$ mentre $f(t_n x, t_n y) \equiv 0$ se xy = 0. Se $\alpha + \beta = 2$, $f(t_n x, t_n y) \equiv f(x, y)$. Se $\alpha + \beta > 2$, $f(x, y) = \left(\frac{x^2}{x^2 + y^2}\right)^{\frac{\alpha}{2}} \left(\frac{y^2}{x^2 + y^2}\right)^{\frac{\beta}{2}} (x^2 + y^2)^{\frac{\alpha + \beta}{2} - 1} \leq (x^2 + y^2)^{\frac{\alpha + \beta}{2} - 1} \to 0$ se $x^2 + y^2 \to 0$.

Viceversa, $\lim_{|u|\to+\infty} f(u)$ esiste (ed in tal caso vale zero) se e solo se $\alpha+\beta<2$:

se $\alpha + \beta > 2$, allora, per $t_n \to +\infty$, $f(t_n x, t_n y) = t_n^{\alpha + \beta - 2} f(x, y) \to +\infty$ se $xy \neq 0$ mentre $f(t_n x, t_n y) \equiv 0$ se xy = 0. Se $\alpha + \beta = 2$, $f(t_n x, t_n y) \equiv f(x, y)$.

Se
$$\alpha + \beta < 2$$
, $f(x,y) = \left(\frac{x^2}{x^2 + y^2}\right)^{\frac{\alpha}{2}} \left(\frac{y^2}{x^2 + y^2}\right)^{\frac{\beta}{2}} (x^2 + y^2)^{\frac{\alpha + \beta}{2} - 1} \le (x^2 + y^2)^{\frac{\alpha + \beta}{2} - 1} \to 0$ se $x^2 + y^2 \to +\infty$.

(ii) Sia $f(x,y) = \frac{x^2y}{x^4+y^2}$ se $x^2+y^2 \neq 0$. Come sopra, $\lim_{u \to u_0} f(u) = f(u_0) \ \forall u_0 \neq 0$. Ed é anche $\lim_{t \to 0} f(tu) = 0 \ \forall u \neq 0$. Tuttavia, $\lim_{u\to 0} f(u)$ non esiste, perché $f(x,x^2) \equiv \frac{1}{2}$. Questo fatto, insieme, ad esempio, al fatto che $f(0,y) \equiv 0$, dice anche che $\lim_{|u| \to +\infty} f(u)$ non esiste.

DEFINIZIONE (continuitá) Sia $f: A \to \mathbb{R}$, $A \subset \mathbb{R}^n$, $u_0 \in A$.

$$f$$
 é continua in u_0 se $\lim_{u \to u_0} f$ esiste e $\lim_{u \to u_0} f = f(u_0)$, ovvero se

$$\forall \epsilon > 0, \quad \exists \delta_{\epsilon} : \quad \|u - u_0\| \le \delta_{\epsilon} \quad \Rightarrow \quad |f(u) - f(u_0)| \le \epsilon$$

f é **continua in** A se é continua in ogni punto di A. C(A)indicherá la classe delle funzioni continue in

Proposizione 1 Sia $f: A \to \mathbf{R}, u \in A$.

$$f$$
 é continua in u \Leftrightarrow $(u_n \in A, u_n \to_n u \Rightarrow f(u_n) \to f(u))$

Proposizione 2 Siano $f, g : A \to \mathbf{R}, u \in A$.

- (i) f, g continue in $u \Rightarrow \alpha f + \beta g$ é continua in $u \forall \alpha, \beta \in \mathbf{R}$
- (ii) f, g continue in $u \implies fg$ é continua in $u \in \frac{f}{g}$ é continua in $u \in g(u) \neq 0$
- (iii) se $f(A) \subset B$ e $\phi : B \to \mathbf{R}$ é continua in f(u), allora $\phi \circ f$ é continua in u.

Ad esempio, i polinomi in x_1, \ldots, x_n sono funzioni continue in \mathbb{R}^n , $exp(x^2+y^2)$ é continua in \mathbb{R}^2 , etc. Nell'esempio (ii), la funzione é prolungabile con continuitá in (0,0) (basta porre f(0,0)=0), mentre nell'esempio (i), f é prolungabile con continuitá in (0,0) se e solo se $\alpha + \beta > 2$.

DEFINIZIONE (insiemi limitati, aperti, chiusi, compatti)

- $B \subset \mathbf{R}^n$ é limitato se esiste r > 0: $B \subset D_r$ (i)
- (ii) $O \subset \mathbf{R}^n \text{ \'e aperto}$ se $\forall u \in O \ \exists r > 0 : \ D_r(u) \subset O$
- (ii) $F \subset \mathbf{R}^n \text{ \'e chiuso}$ F' é aperto se
- (iii) $K \subset \mathbf{R}^n \in \mathbf{compatto}$ é chiuso e limitato se
- (iv) $C \subset \mathbf{R}^n \in \mathbf{convesso}$ se $u, v \in C \Rightarrow tu + (1-t)v \in C \quad \forall t \in [0,1]$

PROPOSIZIONE 1

(i)
$$F \subset \mathbf{R}^n \in \mathbf{chiuso}$$
 \Leftrightarrow $(u_k \in F, u_k \to_k u \Rightarrow u \in F)$

(ii)
$$K \subset \mathbf{R}^n \in \mathbf{compatto} \Leftrightarrow (u_k \in K \Rightarrow \exists u_{k_j}, u \in K : u_{k_j} \to u).$$

Prova. (i) \Rightarrow : $u \notin F \Rightarrow \exists r > 0$: $D_r(u) \subset F'$ mentre $u_k \in F \cap D_r(u)$ definitivamente. \Leftarrow : Se $u \notin F$, deve esistere r > 0: $D_r(u) \subset F'$, altrimenti $\forall k, \; \exists \; u_k \in D_{\frac{1}{k}}(u) \cap F$. Ma $u_k \in F \cap D_{\frac{1}{k}}(u) \Rightarrow u_k \rightarrow_k u \Rightarrow u \in F$.

(ii) \Rightarrow : $u_k = (x_{k,1}, \dots, x_{k,n}) \in K \Rightarrow \sup_k |x_{k,j}| < +\infty \ \forall j = 1, \dots, n \Rightarrow \exists k_i, \ \exists \ x_1, \dots, x_n : \ x_{k_i,j} \to_i x_j \ \text{per} \ j = 1, \dots, n \Rightarrow u_{k_i} \to_i u = (x_1, \dots, x_n) \in K$ perché K é chiuso.

 \Leftarrow : Se K é non limitato, esiste $u_k \in K$ con $||u_k|| \to +\infty$. Per ogni estratta u_{k_i} é ugualmente vero che $||u_{k_i}|| \to_i +\infty$ e quindi u_{k_i} non puó convergere (sarebbe limitata!). Se K non é chiuso, esiste $u \notin K$ e $u_k \in K$ con $u_k \to u$ e quindi u_k non ha sottosuccessioni convergenti in K.

TEOREMA DI WEIERSTRASS Sia $f \in C(K)$, $K \subset \mathbb{R}^n$ compatto.

Allora,
$$\overline{u}$$
, $\overline{u} \in K$: $-\infty < \inf_{K} f = f(\underline{u})$, $f(\overline{u}) = \sup_{K} f < +\infty$

Prova. Sia $u_n \in K : f(u_n) \to_n \sup_K f$. Possiamo supporre, passando eventualmente ad una sottosuccessione, che $u_n \to u$ per un $u \in K$. Da $f(u_n) \to f(u)$ segue che $\sup_K f = f(u) < +\infty$.

UNIFORME CONTINUITÁ f é uniformemente continua in A sse

$$\forall \epsilon > 0, \exists \delta_{\epsilon} > 0: \quad (u, v \in K, ||u - v|| \le \delta_{\epsilon} \implies |f(u) - f(v)| \le \epsilon)$$

(TEOREMA DI HEINE-CANTOR) $f \in C(K)$, $K \subset \mathbb{R}^n$ compatte f é uniformemente continua in K.

Prova. Se no, $\exists \epsilon_0 > 0$, $u_n, v_n \in K$, $||u_n - v_n|| \leq \frac{1}{n}$: $|f(u_n) - f(v_n)| \geq \epsilon_0$. Passando eventualmente a sottosuccessioni, possiamo supporre che $u_n \to u$, $v_n \to v$ per certi $u, v \in K$. Per continuitá: $|f(u) - f(v)| \geq \epsilon_0$. Ma $||u - v|| \leq ||u - u_n|| + ||u_n - v_n|| + ||v_n - v|| \quad \forall n \Rightarrow u = v$, contraddizione.

Variante di Weierstrass Sia $F \subset \mathbb{R}^n$ chiuso. Sia $f \in C(F)$ tale che

- (i) (coecivitá) $u_n \in C, ||u_n|| \to_n + \infty \Rightarrow f(u_n) \to_n + \infty$
- (ii) (semicontinuitá inferiore) $u_n \in C, u_n \to u \Rightarrow \liminf_n f(u_n) \geq f(u).$ Allora $\exists \underline{u} \in C : f(\underline{u}) = \inf_C f.$

Infatti, se $u_n \in C$, $f(u_n) \to_n \inf_C f$, allora u_n é limitata in virtú della coercivitá, e quindi si puó supporre, passando eventualmente ad una sottosuccessione, che u_n converga a qualche $u \in C$ (perché C é chiuso). Da (ii) segue $\inf_C f = \lim_n f(u_n) \geq f(u)$.