Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM2 - A.A. 2006/2007

Docente: Prof. G. Mancini

Tutore: Dott. Andrea Agnesse & Filippo Cavallari http://andynaz.altervista.org/

Tutorato 1 del 25.9.2006

NOTAZIONE: $\chi_A(\cdot)$ è la funzione caratteristica dell'insieme A.

- 1. Calcolare (se esiste) il limite delle seguenti successioni:
 - $\bullet \ a_n = \frac{a^{n-1}}{(n+1)^n}$
 - $\bullet \ b_n = \frac{(2n)!}{n^n}$
 - $c_n = \left(\frac{n + \log n}{n}\right)^{\log n}$
 - $d_n = \frac{n!}{2^n} \sin \frac{n\pi}{2}$
 - $\bullet \ e_n = \frac{\log(1+n+n^3) 3\log n}{n(1-\cos\frac{1}{n^2})}$
- 2. Sia $f_n(x) = k_n \chi_{[0,1]}(x)$, $x \in \mathbb{R}$, con k_n una successione dell'esercizio 1 che ammette limite (a scelta); calcolare $\lim_{n \to +\infty} f_n(x)$.
- 3. Rispondere alle seguenti domande $(A \subseteq \mathbb{R})$:
 - (a) esiste f_n successione di funzioni tale che $f_n \in C(A) \ \forall n \in \mathbb{N}$, $f_n(x) \to f(x) \ \forall x \in A \ \text{ma} \ f \notin C(A)$?
 - (b) esiste f_n successione di funzioni tale che $f_n(x) \to f(x) \ \forall x \in A$ con $f \in C(A)$ ma $f_n \notin C(A) \ \forall n \in \mathbb{N}$?
 - (c) esiste f_n successione di funzioni tale che $f_n \to f$ uniformemente in $A, f_n \notin C(A) \ \forall n \in \mathbb{N} \ \text{ma} \ f \in C(A)$?
- 4. Dire se le seguenti successioni di funzioni convergono puntualmente:
 - (a) $f_n(x) = \chi_{[0,1]}(x-n) \operatorname{con} x \in \mathbb{R}$
 - (b) $f_n(x) = \chi_{[0,1]}(x-n) \text{ con } x \in [-a,a], a > 0$
 - (c) $f_n(x) = 1 \chi_{[-n,n]}(x)$
 - (d) $f_n(x) = x^{2n} \chi_{[0,\frac{1}{2}]}$
 - (e) $f_n(x) = x^{2n} \chi_{(\frac{1}{2},1]}$
 - (f) $f_n(x) = n \cdot g(nx) \text{ con } g(x) = \sin(\pi x) \chi_{[0,1]}$
 - (g) $f_n(x) = \frac{n}{n-1} \chi_{[0,1]}(\frac{x}{n})$
- 5. Dire se le successioni dell'esercizio 4 convergono uniformemente.