AM2: Tracce delle lezioni-VIII Settimana

PRODOTTO DI CONVOLUZIONE

Siano $f, g \in C(\mathbf{R})$ tali che $\int_{-\infty}^{+\infty} |f(y)g(x-y)| dy < +\infty \quad \forall x \in \mathbf{R}.$ Allora é definita per ogni x in \mathbf{R} , la funzione :

$$(f * g)(x) := \int_{-\infty}^{+\infty} f(x - y)g(y) \, dy = \int_{-\infty}^{+\infty} f(t)g(x - t) \, dt = (g * f)(x)$$

Tale operazione tra funzioni si chiama prodotto di convoluzione e la funzione f * g é detta, semplicemente, convoluzione tra f e g.

Che (f * g) sia uguale a (g * f) si vede subito effettuando il cambio di variabile t = x - y.

NOTA. Se $f, g \in C_0$, ovvero $supp f := \overline{\{x : f(x) \neq 0\}}$ é compatto (e lo stesso vale per g), allora f * g é definita e sta in C_0 (infatti $supp(f * g) \subset supp f + supp g$).

In particolare f * g é integrabile su ${\bf R}$ e c'é invertibilitá nelle due integrazioni successive ('Fubini'):

$$\int_{-\infty}^{+\infty} (f * g)(x) dx =$$

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x - y) g(y) dy \right) dx = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x - y) g(y) dx \right) dy =$$

$$\int_{-\infty}^{+\infty} \left(g(y) \left(\int_{-\infty}^{+\infty} f(x - y) dx \right) dy = \int_{-\infty}^{+\infty} g(y) dy \times \int_{-\infty}^{+\infty} f(x - y) dx \right) dy =$$

$$\left(\int_{-\infty}^{+\infty} g(y) dy \right) \times \left(\int_{-\infty}^{+\infty} f(t) dt \right)$$

Regolaritá di f * g. Dalla teoria degli integrali dipendenti da parametro segue che, se per ogni $\xi \in \mathbf{R}$ esiste $h_{\xi} \in C(\mathbf{R})$ assolutamente integrabile in \mathbf{R} ed esiste I_{ξ} , intervallo centrato in ξ , tali che $|f(y)g(x-y)| \leq |h_{\xi}(y)| \quad \forall x \in I_{\xi}, \forall y \in \mathbf{R}$, allora $f * g \in C(\mathbf{R})$.

Ad esempio, f * g é continua se f é limitata e g assolutamente integrabile (o viceversa); f * g é continua se f (oppure g) é a supporto compatto, perché,

se f é supportata dall'intervallo [-R, R], ovvero $f(x) = 0 \quad \forall |x| \geq R$, allora

$$|x| \le M, \quad |y| \ge R + M \quad \Rightarrow \quad |x - y| \ge R \quad \Rightarrow f(x - y) = 0 \quad \Rightarrow$$

$$|f(x - y) g(y)| \le ||f||_{\infty} \chi_{[-(M + R), M + R]} \quad |g(y)| \quad \text{od anche}$$

$$|f(y) g(x - y)| \le \left(\sup_{|x| \le M + R} |g(x)|\right) \quad |f(y)|. \quad \text{In particolare}$$

$$g \in C_0^k \quad \Rightarrow \quad f * g \in C^k \quad \text{e} \quad \frac{d^j}{dx^j} (f * g)(x) = (f * \frac{d^j g}{dx^j})(x) \qquad \forall j \le k$$

$$\left| \frac{d^{j}}{dx^{j}} g(x - y) f(y) \right| \le \sup_{x \in \mathbf{R}} \left| g^{(j)}(x) \right| \chi_{[-(R+M), R+M]} f(y)$$

C'é quindi equidominatezza, ed allora si puó derivare quanto si puó sotto segno di integrale e ottenere

$$\frac{d^j}{dx^j} \int_{-\infty}^{+\infty} f(y)g(x-y)dy = \int_{-\infty}^{+\infty} f(t) \frac{d^jg}{dx^j} (x-t)dy$$

Esercizio. Provare che se $f \in C_0$ e p é un polinomio di grado n, allora f * p é un polinomio di grado n.

Scriviamo $p(x-y) = \sum_{k=0}^{n} a_k(x-y)^k = \sum_{k=0}^{n} b_k(y) x^k$ e quindi

$$(f * p)(x) = \int_{-\infty}^{+\infty} f(y)p(x - y)dy = \sum_{k=0}^{n} \left(\int_{-\infty}^{+\infty} f(y)b_k(y)dy \right) x^k$$

Diseguaglianza di Young Siano $f, g \in C(\mathbf{R})$ e tali che per ogni $n \in \mathbf{N}$ esista $h_n \in C(\mathbf{R})$ assolutamente integrabile in \mathbf{R} tale che $|f(y)g(x-y)| \leq h_n(y) \quad \forall x \in [-n, n], \forall y \in \mathbf{R}$. Allora

$$\int_{-\infty}^{+\infty} |(f * g)(x)| dx \leq \int_{-\infty}^{+\infty} |f(x)| dx \int_{-\infty}^{+\infty} |g(x)| dx$$
Da Fubini:
$$\int_{-n}^{n} \left(\int_{-k}^{k} |f(x - y)g(y)| dy \right) dx = \int_{-k}^{k} \left(\int_{-n}^{n} |f(x - y)g(y)| dx \right) dy = \int_{-k}^{k} \left(|g(y)| \int_{-n}^{n} |f(x - y)| dx \right) dy \leq \int_{-k}^{k} \left(|g(y)| \int_{-\infty}^{+\infty} |f(x - y)| dx \right) dy \leq$$

$$\leq \left(\int_{-\infty}^{+\infty} |g(y)| dy \right) \left(\int_{-\infty}^{+\infty} |f(x)| dx \right)$$

Siccome

$$\int_{-\infty}^{-k} |f(x-y)g(y)|dy + \int_{k}^{+\infty} |f(x-y)g(y)|dy \le \int_{-\infty}^{-k} h_n dy + \int_{k}^{+\infty} h_n(y)dy \to_{k \to +\infty} 0$$

ovvero $I_k(x) := \int\limits_{-k}^k |f(x-y)g(y)| dy$ converge uniformemente in [-n,n] alla funzione $\int\limits_{-\infty}^{+\infty} |f(x-y)g(y)| dy$, si puó passare al limite sotto segno di integrale e ottenere che

$$\int\limits_{-n}^{n}\left(\int\limits_{-k}^{k}|f(x-y)g(y)|dy\right)dx\rightarrow_{k\rightarrow+\infty}\int\limits_{-n}^{n}\left(\int\limits_{-\infty}^{+\infty}|f(x-y)g(y)|dy\right)dx$$

e quindi

$$\int_{-\infty}^{+\infty} |(f*g)(x)| \le \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |f(x-y)g(y)| dy \right) dx = \lim_{n \to +\infty} \lim_{k \to +\infty} \int_{-n}^{n} \left(\int_{-k}^{k} |f(x-y)g(y)| dy \right) dx$$

$$\le \left(\int_{-\infty}^{+\infty} |g(y)| dy \right) \left(\int_{-\infty}^{+\infty} |f(x)| dx \right)$$

REGOLARIZZAZIONE PER CONVOLUZIONE

Sia
$$\varphi \in C_0^{\infty}$$
, $\varphi \ge 0$, $\int_{-\infty}^{+\infty} \varphi(x) dx = 1$ (φ nucleo regolarizzante).
Sia $\varphi_{\epsilon}(x) := \frac{1}{\epsilon} \varphi(\frac{x}{\epsilon})$. (successione regolarizzante)

Sia f continua. Allora $f * \varphi_{\epsilon} \rightarrow_{\epsilon \to 0} f$ uniformemente sui limitati.

Infatti,
$$\varphi_{\epsilon}(x) = 0$$
 se $|x| \ge \epsilon$, $\int_{-\infty}^{+\infty} \varphi_{\epsilon}(x - y) \, dy = 1$, e quindi $x \in B_R \Rightarrow$

$$|f(x) - (f * \varphi_{\epsilon})(x)| = \left| \int_{-\infty}^{+\infty} f(x) \varphi_{\epsilon}(x - y) \, dy - \int_{-\infty}^{+\infty} f(y) \varphi_{\epsilon}(x - y) \, dy \right| \le \int_{-\infty}^{+\infty} |f(x) - f(y)| \varphi_{\epsilon}(x - y) \, dy \le \sup_{|x| \le R, |x - y| \le \epsilon} |f(x) - f(y)| \to_{\epsilon \to 0} 0$$

perché f é uniformemente continua in $[R-\epsilon,\ R+\epsilon].$

Un'applicazione: Il Teorema di aprossimazione di Weierstrass. Sia $f \in C(\mathbf{R})$. Allora, per ogni R > 0 esiste una successione di polinomi che converge uniformemente ad f in $\left[-\frac{R}{3}, \frac{R}{3}\right]$.

Indichiamo ancora con f un prolungamento continuo di f a tutto ${\bf R},$ tale che $f\equiv 0$ fuori di $[-\frac{2}{3}R,\frac{2}{3}R].$ Sia

$$\varphi_{n}(t) = (R^{2} - t^{2})^{n}, \qquad c_{n} := \left(\int_{-R}^{R} [R^{2} - t^{2}]^{n} dt\right)^{-1}.$$

$$\acute{E} \int_{-R}^{R} [R^{2} - t^{2}]^{n} dt = R^{2n+1} \int_{0}^{1} (1 - s^{2})^{n} ds = R^{2n+1} \left[\sqrt{\frac{\pi}{2(2n+1)}} + \circ(\frac{1}{\sqrt{n}})\right]. \quad \text{Dunque}$$

$$c_{n} \int_{-R}^{R} \varphi_{n}(t) dt = 1, \qquad c_{n} = \frac{O(\sqrt{n})}{R^{2n+1}}. \quad \text{Inoltre} \qquad \forall \delta > 0: \quad c_{n} \int_{\delta}^{R} \varphi_{n}(t) dt \to_{n} 0.$$

$$\text{Infatti} \quad \int_{\delta}^{R} (R^{2} - t^{2})^{n} dt = R^{2n+1} \int_{\frac{\delta}{R}}^{1} (1 - s^{2})^{n} ds \leq R^{2n+1} (1 - \frac{\delta^{2}}{R^{2}})^{n} = R^{2n+1} \circ (\frac{1}{\sqrt{n}}).$$

$$\text{Sia} \qquad p_{n}(x) := c_{n} \int_{-\frac{2}{3}R}^{\frac{2}{3}R} f(y) \varphi_{n}(x - y) dy, \quad |x| \leq \frac{R}{3}$$

Come osservato, i p_n sono polonomi. Resta dunque da provare la uniforme convergenza di p_n a f in $\left[-\frac{R}{3},\frac{R}{3}\right]$

Dato
$$\epsilon > 0$$
, sia $\delta = \delta_{\epsilon}$: $|t| \leq \delta_{\epsilon} \Rightarrow |f(x - t) - f(x)| \leq \epsilon$. Poi,

$$|x| \le \frac{R}{3} \quad \Rightarrow \quad |p_n(x) - f(x)| = c_n |\int_{x - \frac{2}{3}R}^{x + \frac{2}{3}R} f(x - t) \varphi_n(t) dt - \int_{-R}^{R} f(x) \varphi_n(t) dt| \le C_n |f(x)|^{\frac{2}{3}R} |f(x - t)|^{\frac{2}{3}R} |f(x$$

$$\leq c_n \int_{x-\frac{2}{3}R}^{x+\frac{2}{3}R} |f(x-t)-f(x)| \, \varphi_n(t) \, dt + c_n \, \sup |f| \left[\int_{-R}^{x-\frac{2}{3}R} \varphi_n(t) \, dt + \int_{x+\frac{2}{3}R}^{R} \varphi_n(t) \, dt \right] \leq$$

$$\leq \epsilon c_n \int_{-\delta}^{\delta} \varphi_n(t) dt + 2\sup|f| c_n [\int_{x-\frac{2}{3}R}^{-\delta} \varphi_n(t) dt + \int_{\delta}^{x+\frac{2}{3}R} \varphi_n(t) dt] + 2\sup|f| c_n \int_{\frac{1}{3}R}^{R} \varphi_n(t) dt \leq$$

$$\leq \epsilon \ c_n \ \int_{-\delta}^{\delta} \varphi_n(t) \ dt + 6 \sup |f| \ c_n \ \int_{\frac{1}{3}R}^{R} \varphi_n(t) \ dt$$

perché
$$|x| \leq \frac{R}{3} \Rightarrow -R \leq x - \frac{2}{3}R \leq -\frac{1}{3}R, \quad \frac{1}{3}R \leq x + \frac{2}{3}R \leq R.$$

Dunque
$$\sup_{|x|<\frac{1}{\alpha}} |p_n(x) - f(x)| \le \epsilon + o(1)$$
 e quindi

$$\limsup_n \left[\sup_{|x| \le \frac{1}{3}} |p_n(x) - f(x)| \right] \le \epsilon, \quad \forall \epsilon > 0.$$