AM120 2014 Settimana 6

SUCCESSIONI E SERIE DI FUNZIONI

CONVERGENZA PUNTUALE. Sia $E \subset \mathbb{R}$. Siano $f_n : E \to \mathbb{R}$.

Diremo che la 'successione di funzioni' f_n converge puntualmente in E alla funzione f se, per ogni $x \in E$, $f_n(x) \to_n f(x)$

Diremo che la serie di funzioni $\sum_{n=1}^{\infty} f_n(x)$ converge puntualmente in E se la successione delle somme parziali $S_n(x) := \sum_{j=1}^n a_n(x)$ converge puntualmente in E e scriveremo $\sum_{n=1}^{\infty} f_n(x) := \lim_{n \to \infty} \sum_{j=1}^n f_n(x)$

ESEMPI. 1. Se $f_n(x) \equiv a_n$, $x \in E \subset \mathbf{R}$, le f_n convergono se e solo se a_n converge e, in tal caso, $\lim_n f_n(x) \equiv \lim_n a_n$.

- 2. Se $f_n(x) = x^n, x \in [0, 1]$, allora f_n converge alla funzione che vale zero in [0, 1) e vale 1 in x = 1.
- 3. Ogni serie di potenze converge puntualmente dentro il proprio intervallo di convergenza.
- 4. La serie $\sum_{n=1}^{\infty} \sin(nx)$ converge se e solo se $x = m\pi$ per qualche intero m (ed in tal caso la somma é zero) giacché $\limsup |\sin(nx)| > 0$ se $x \notin \mathbf{Z}\pi$.

Infatti, sia $\limsup_{n} |\sin(nx)| = 0$ e quindi $\lim_{n} [\sin(nx)] = 0$.

Sia $x \geq 0$ e $m(n) \in \mathbb{N}$ tale che $m(n)\pi \leq nx < [m(n) + 1]\pi$. Allora $\min\{nx - m(n)\pi, (m(n) + 1)\pi - nx\} \to_n 0$, altrimenti esistono $n_k \to_k +\infty$ e $\delta > 0$ tali che $m(n_k)\pi + \delta \leq n_k x \leq (m(n_k) + 1)\pi - \delta$ e quindi $|\sin(n_k x)| \geq \sin \delta$. Dunque

$$\forall l_n \in \mathbb{N}, \exists l_n : nx = l_n \pi + \circ(1)$$
 e quindi $l_{n+1} \pi = (n+1)x + \circ(1) = x + l_n \pi + \circ(1)$

e quindi $x = (l_{n+1} - l_n)\pi + o(1)$. Da ció segue che $k_n := l_{n+1} - l_n$ é una successione limitata e quindi esiste k_{n_j} convergente a qualche intero k. Da $x = k_{n_j}\pi + o(1) \rightarrow_j k\pi$ segue appunto $x = k\pi$.

Mostriamo infine che $\lim_n(nx)$ esiste se e solo se x é multiplo intero di π . Infatti, $\lim\inf_n|\sin(nx)|=0$ per ogni x. Questo é ovvio se x é multiplo razionale di π , mentre, se $\frac{x}{\pi} \notin \mathbf{Q}$, usiamo il fatto (non banale..) che

$$\forall \xi \notin \mathbf{Q}, \ \exists n_k \in \mathbf{N}, m_k \in \mathbf{Z}: \quad |\xi - \frac{m_k}{n_k}| \le \frac{1}{n_k^2}$$

e quindi $|n_k x - m_k \pi| = o(1)$ e quindi $\sin(n_k x) = \sin(n_k x - m_k \pi) = o(1)$. In particulare, $\limsup |\cos(nx)| = 1$.

Una proprietá che deriva dal fatto che la successione $f_n(x) = \sin(nx)$ é limitata, nel senso che $\exists M > 0 : |f_n(x)| \leq M \quad \forall x \in \mathbf{R}, \forall n$ é la seguente:

per ogni x esiste una selezione di indici $n_k = n_k(x)$ tale che \exists finito $\lim_k f_{n_k}(x)$.

Di piú, usando un metodo detto 'procedimento diagonale di Cantor', é facile mostrare che

se $D := \{x_j : j \in \mathbf{N}\} \subset \mathbf{R}$ é un insieme numerabile, allora esiste una selezione di indici $n_k = n_k(D)$ tale che $\exists \lim_k f_{n_k}(x) \ \forall x \in D$.

Il metodo é il seguente:

si trova dapprima una prima selezione di indici $n(1,1),\ldots,n(1,k),\ldots$ tale che $\exists \lim_k f_{n(1,k)}(x_1);$

si trova poi, una nuova selezione di indici n(2, k), sottoselezione di n(1, k), t.c. $\exists \lim_k f_{n(2,k)}(x_2)$. Ovviamente é anche $\lim_k f_{n(2,k)}(x_1) = \lim_k f_{n(1,k)}(x_1)$. Iterando, per ogni j si trova una selezione di indici n(j, k) tale che

$$\exists \lim_{k} f_{n(j,k)}(x_1), \ldots, \exists \lim_{k} f_{n(j,k)}(x_j)$$

Tale selezione si puó prendere infatti sottoselezione di tutte le selezioni precedenti. Non é difficile convincersi che

la successione diagonale n(j,j) é tale che $\lim_j f_{n(j,j)}(x)$ esiste per ogni $x \in D$.

Ci si puó chiedere se, lavorando ancora, si possa trovare una selezione di indici n_k tale che $\lim_k f_{n_k}(x)$ esista per ogni x. Questo non é in generale possibile, e lo si puó vedere con $f_n(x) = \sin nx$. É infatti vero (ma qui non lo proviamo) che:

se n_k é una selezione di indici qualsiasi ed $E := \{x \in \mathbf{R} : \exists \lim_k \sin(n_k x)\}$, allora E ha misura nulla: $\forall \epsilon > 0$, $\exists I_j^{\epsilon}$, intervalli, tali che $E \subset \bigcup_j I_j^{\epsilon}$ e $\sum_j l(I_j^{\epsilon}) < \epsilon$.

Gli insiemi di misura nulla non possono contenere troppi punti: ad esempio, un insieme di misura nulla non puó contenere un intervallo. Tuttavia, i sottoinsiemi numerabili di **R** hanno evidentemente misura nulla, ma non tutti gli insiemi di misura nulla sono numerabili. Un esempio é dato da l'insieme di Cantor che incontreremo tra breve.

CONVERGENZA UNIFORME.

In generale, le proprietá di regolaritá delle f_n non si conservano nel limite puntuale. Se $f_n(x) = x^n$, $x \in [0,1]$ le f_n sono continue, ma il loro limite non lo é; se $f_n(x) = x \arctan(nx)$, le f_n sono derivabili, ma il loro limite, $f(x) = \frac{\pi}{2}|x|$, non lo é. E se $f_n(x) = \frac{\arctan(nx)}{n}$, il loro limite é si derivabile, ma non é la derivata del limite delle f'_n : $\chi_{\{0\}} = \lim_n f'_n \neq (\lim_n f_n)' = 0$! Occorre una nozione di convergenza piú forte: f_n si dice uniformemente convergente in E ad f se

$$\sup_{x \in E} |f_n(x) - f(x)| \to_{n \to \infty} 0$$

La $\sum_{n=1}^{\infty} a_n(x)$ é serie uniformemente convergente in E se la successione delle somme parziali $S_n(x) := \sum_{j=1}^n a_n(x)$ converge uniformemente in E.

ESEMPI. 1. La successione $f_n(x) = x^n$ converge uniformemente a zero in [0, a) se 0 < a < 1, ma la convergenza **non é uniforme** in [0, 1). Infatti

$$\sup_{x \in [0,1]} x^n = a^n \to 0 \qquad \text{mentre} \qquad \sup_{x \in [0,1)} x^n = 1$$

- 2. (**Traslazioni**). Sia f una funzione (non identicamente nulla) nulla fuori di (0,1). Siano $f_n(x) := f(x-n)$ le traslate di f. Allora $f_n(x) \to_{n\to\infty} 0$ $\forall x \in \mathbf{R}$, ma la convergenza **non é uniforme**, giacché $\sup_{\mathbf{R}} |f_n| = \sup_{\mathbf{R}} |f|$.
- 3. (Cambi di scala). Sia f una funzione (non identicamente nulla) nulla fuori di (0,1). Siano $f_n(x) := f(nx)$. Allora $f_n(x) \to_{n\to\infty} 0$, $\forall x \in \mathbf{R}$, ma la convergenza **non é uniforme**, giacché $\sup_{\mathbf{R}} |f_n| = \sup_{\mathbf{R}} |f|$.
- 4. $f_n(x) := \min\{n, \frac{1}{x}\} \to_{n \to \infty} \frac{1}{x}, \ \forall x \in (0,1], \ \text{ma la convergenza non \'e uniforme} \ \text{in } (0,1]. \ \text{Infatti} \ \sup_{(0,1]} \frac{1}{x} = +\infty \ \text{mentre vale chiaramente la seguente} \ \text{Propriet\'a}. \ \sup_{x \in E} |f_n(x)| < +\infty, \ f_n \to_{n \to \infty} f \ \text{uniformemente in E} \ \Rightarrow \sup_{x \in E} |f(x)| < +\infty$

Condizione di Cauchy uniforme. Se f_n converge uniformemente ad f in E, allora f_n é Cauchy uniforme, nel senso che

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} : \quad \sup_{x \in E} |f_n(x) - f_m(x)| \le \epsilon \quad \forall n, m \ge n_{\epsilon}$$

Il criterio di Cauchy.

 f_n é uniformemente convergente in E sse la f_n é Cauchy uniforme in E.

NECESSITÁ: $f_n \to f$ uniformemente in $E \Rightarrow \exists n_{\epsilon}: |f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| \le \epsilon \ \forall x \in E \text{ se } n, m \ge n_{\epsilon}.$

SUFFICENZA: intanto, per ogni fissato x in E, la successione $n \to f_n(x)$ é di Cauchy, e quindi $f(x) := \lim_{n \to \infty} f_n(x)$ esiste finito per ogni x in E.

Poi, dall'ipotesi, fissato $\epsilon > 0$, $\exists n_{\epsilon}$ tale che

$$|f_n(x) - f(x)| \le |f_n(x) - f_{n+p}(x)| + |f_{n+p}(x) - f(x)| \le \epsilon + |f_{n+p}(x) - f(x)| \quad \forall x \in E$$

se $n \geq n_{\epsilon}$ e quale che sia $p \in \mathbb{N}$. Fissato $n \geq n_{\epsilon}$ e mandando p all'infinito in $|f_n(x) - f(x)| \leq \epsilon + |f_{n+p}(x) - f(x)| \quad \forall x \in E$ si ottiene $|f_n(x) - f(x)| \leq \epsilon \quad \forall x \in E$ e per ogni $n \geq n_{\epsilon}$ cioé f_n converge uniformemente ad f.

Criterio di Cauchy per le serie . $\sum_{n=1}^{\infty} a_n(x)$ converge uniformemente in E sse

$$\forall \epsilon > 0, \ \exists n_{\epsilon} : \ n \ge n_{\epsilon}, p \in \mathbf{N} \ \Rightarrow \ \sup_{x \in E} \ |\sum_{j=n}^{n+p} a_j(x)| \le \epsilon$$

Teorema 1 (la convergenza uniforme conserva la continuitá).

$$f_n \in C(E), \quad f_n \to_n f \quad \text{uniformemente in} \quad E \quad \Rightarrow \quad f \in C(E)$$

Dimostrazione. Fissato $\epsilon > 0$ siano $n_{\epsilon}, \delta_{\epsilon} > 0$ tali che

 $|f_{n_{\epsilon}}(x) - f(x)| \le \epsilon, \quad \forall x \in E, \quad |f_{n_{\epsilon}}(x) - f_{n_{\epsilon}}(x_0)| \le \epsilon \quad \forall x \in E, |x - x_0| \le \delta_{\epsilon}.$ Allora

$$|f(x) - f(x_0)| \le 2\epsilon, \ \forall x \in E, |x - x_0| \le \delta_{\epsilon}$$

NOTA 1. Se la convergenza non é uniforme il limite puó non essere continuo. Esempi:

- 1. $f_n(x) = x^n$, $x \in [0,1]$ converge (puntualmente) in [0,1] a $\chi_{\{1\}}$, la funzione caratteristica dell'insieme $\{1\}$ (ovvero alla funzione che vale 1 nel punto 1 e zero altrove).
 - 2. $f_n(x) = \frac{1}{1+nx^2}$ converge puntualmente alla funzione, discontinua in zero, $\chi_{\{0\}}$.
- 3. $f_n(x) = \arctan(nx) \to \frac{\pi}{2}\chi_{(0,+\infty)} \frac{\pi}{2}\chi_{(-\infty,0)}$. Siccome la funzione limite é discontinua (in zero), la convergenza non puó essere uniforme.

Continuitá del limite, equicontinuitá e convergenza uniforme.

Funzioni equicontinue in E. La continuitá del limite si puó anche ottenere, alternativamente, nell'ipotesi di equicontinuitá: le f_n sono equicontinue in E se

$$\forall x_0 \in E, \forall \epsilon > 0, \ \exists \delta = \delta_{\epsilon}: \quad \sup_{n} |f_n(x) - f_n(x_0)| \le \epsilon \quad se \quad |x - x_0| \le \delta$$

Infatti, $f_n(x) \to f(x) \ \forall x \in E$, f_n equicontinua in $x_0 \Rightarrow f$ continua in x_0

giacché $|f_n(x) - f_n(x_0)| \le \epsilon$ se $|x - x_0| \le \delta$ implica, passando al limite per ognifissato x con $|x - x_0| \le \delta$, $|f(x) - f(x_0)| \le \epsilon$.

Un esempio importante di funzioni equicontinue é dato dalle

Funzioni equilipschitziane f_n sono equiLip in [a, b] se

$$\exists L > 0: |f_n(x) - f_n(y)| \le L|x - y| \quad \forall x, y \in [a, b]$$

Dal Teorema di Lagrange segue subito che se $f_n \in C^1([a,b])$ allora

$$\sup_{x \in [a,b]} |f'_n(x)| \le L \quad \forall n \in \mathbf{N} \quad \Rightarrow \quad f_n \quad \text{sono equiLip}$$

Cé uno stretto legame, nella classe delle funzioni continue, tra convergenza uniforme ed equicontinuitá:

Proposizione. Siano $f_n \in C([a,b]), f_n(x) \to f(x) \quad \forall x \in [a,b].$ Allora

- (i) $f_n \to f$ uniformemente in $[a,b] \Rightarrow f_n$ é equicontinua in [a,b]
- (ii) f_n equiLip \Rightarrow f_n converge uniformemente a f Prova di (i). Fissato $x_0 \in [a, b]$, si ha

$$|f_n(x) - f_n(x_0)| \le |f_n(x) - f(x)| + |f(x) - f(x_0)| + |f(x_0) - f_n(x_0)| \le 3\epsilon$$

se $|x-x_0| \le \delta$ ed $n \ge n_{\epsilon}$. Rimpicciolendo eventualmente $\delta > 0$, é anche

$$|f_n(x) - f_n(x_0)| \le \epsilon \quad \forall n = 1, \dots, n_\epsilon \quad se \quad |x - x_0| \le \delta$$

Prova di (ii). Fissato $\epsilon > 0$, siano $x_0 = a, x_1 = x_0 + \frac{b-a}{k}, \dots, x_k = x_0 + \frac{k(b-a)}{k} = b$, con k tale che $L^{\frac{b-a}{k}} \le \epsilon$. Preso $x \in [a,b]$, sará $x \in [x_j,x_{j+1})$ per qualche j. Siccome $f_n(x_j) \to f(x_j) \quad \forall j = 0,\dots,k$, si puó trovare n_{ϵ} tale che $|f_n(x_j) - f_m(x_j)| \le \epsilon$ $\forall j = 0,\dots,k$. Allora

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_n(x_j)| + |f_n(x_j) - f_m(x_j)| + |f_m(x_j) - f_m(x)| \le 3\epsilon$$

Il Teorema di Ascoli-Arzelá. Siano $f_n \in C([a,b])$ tali che

(i) $\exists M > 0$: $\sup_{x \in [a,b]} |f_n(x)| \le M$ (equilimitatezza)

(ii)
$$\exists L > 0$$
: $|f_n(x) - f_n(y)| \le L|x - y| \quad \forall x, y \in [a, b]$ (equilipschitzianitá)

Allora esistono f_{n_k} ed f tali che $f_{n_k} \to f$ uniformemente in [a, b].

Prova. Sia $D \subset [a,b]$ sottoinsieme numerabile denso. Dalla uniforme limitatezza di f_n deriviamo, usando l'argomento diagonale di Cantor, l'esistenza di una sotto-successione f_{n_k} tale che $f(x) := \lim_{k \to +\infty} f_{n_k}(x)$ esiste finito per ogni $x \in [a,b]$. Da $|f_n(x) - f_n(y)| \le L|x-y| \quad \forall x,y \in [a,b], \forall n \in \mathbb{N}$ segue, passando al limite, che $|f(x) - f(y)| \le L|x-y| \quad \forall x,y \in D \subset [a,b]$: f é uniformemente continua. Dalla uniforme continuitá di f in D, segue che f si puó prolungare ad una funzione, che continuiamo a indicare con f, Lip su tutto [a,b]. Resta da provare che f_{n_k} converge ad f su tutto [a,b] (la convergenza sará poi anche uniforme perché f_n é equiLip). Sia dunque $x \in [a,b], x_j \in D, x_j \to_j x$. Allora

$$|f_{n_k}(x) - f(x)| \le |f_{n_k}(x) - f_{n_k}(x_j)| + |f_{n_k}(x_j) - f(x_j)| + |f(x_j) - f(x)| \le$$

$$\le 2L|x - x_j| + |f_{n_k}(x_j) - f(x_j)| \implies \limsup_{k} |f_{n_k}(x) - f(x)| \le 2L|x - x_j| \quad \forall j$$
e quindi $\limsup_{k} |f_{n_k}(x) - f(x)| \le 0$ e quindi $f_{n_k}(x) \to_k f(x)$.

Teorema 2 (il limite delle derivate é la derivata del limite).

Siano
$$I$$
 intervallo aperto, $f, g: I \to \mathbf{R}$, $f_n \in C^1(I)$ tali che $f_n(x) \to_n f(x)$ e $f'_n(x) \to_n g(x)$ in I . Allora

$$f'_n \to_n g$$
 uniformemente in $I \Rightarrow f \in C^1(I)$ e $(\lim_n f_n)' \equiv \lim_n f'_n$

Prova. Fissato $x \in I$, se $h + x \in I$, $\exists t = t(n, h) \in (0, 1)$: $\left| \frac{f(x+h) - f(x)}{h} - g(x) \right| = 0$

$$= \lim_{n} \left| \frac{f_n(x+h) - f_n(x)}{h} - f'_n(x) \right| = \lim_{n} \left| f'_n(x+t(n,h)h - f'_n(x)) \right|$$

D'altra parte, f_n' converge uniformemente a g e g é continua (perché le f_n' lo sono) implicano che $\forall \epsilon > 0, \exists n_\epsilon \in \mathbf{N}, \delta_\epsilon > 0: |f_n'(x+t(n,h)h-f_n'(x))| \le$

$$\leq |f'_n(x+t(n,h)h-g(x+t(n,h)h)|+|g(x+t(n,h)h)-g(x)|+|g(x)-f'_n(x)|\leq 3\epsilon$$

NOTA. La convergenza uniforme delle f'_n é essenziale. Controesempi:

Sia $f_n(x) := |x|^{1+\frac{1}{n}}$, $x \in (-1,1)$. É $\lim_{n\to\infty} f_n(x) = |x|$ (limite uniforme!) che non é derivabile in x=0 anche se le f_n sono di classe C^1 . Notare che $f'_n(x) = (1+\frac{1}{n})\frac{x}{|x|}|x|^{\frac{1}{n}} \to_{n\to\infty} \frac{x}{|x|}$, per $x \neq 0$ e $f'_n(0) \to_n 0$ (convergenza

non uniforme!)

Sia $f_n(x) = \frac{1}{n} \arctan(nx)$, successione (uniformemente) convergente a zero in R di funzioni di classe C^1 . É $f_n'(x) = \frac{1}{1+nx^2} \to_{n\to\infty} \chi_{\{0\}}$. Dunque la derivata del limite non é (in x=0) il limite delle derivate.

Derivazione termine a termine nelle serie di funzioni.

- (i) Siano $a_n \in C([a,b])$. Se la serie $\sum_{n=1}^{\infty} a_n(x)$ é unifor vergente in [a,b], allora $S(x) := \sum_{n=1}^{\infty} a_n(x)$ é continua in [a,b]. é uniformemente con-
- Siano $a_n \in C^1(I)$. Se la serie di funzioni $\sum_{n=1}^{\infty} a_n(x)$ $\sum_{n=1}^{\infty} a'_n(x)$ converge uniformemente in I, allora converge in I e la serie

$$\frac{d}{dx}\sum_{n=1}^{\infty}a_n(x) = \sum_{n=1}^{\infty}\frac{da_n}{dx}(x)$$

SERIE TOTALMENTE CONVERGENTI

 $\sum_{n=1}^{\infty} \sup_{x \in E} |a_n(x)| < +\infty$ $\sum_{n=1}^{\infty} a_n(x)$ é totalmente convergente in E se

La totale convergenza implica l'uniforme convergenza:

$$\sum_{n=1}^{\infty} \sup_{x \in E} |a_n(x)| < +\infty \Rightarrow |\sum_{j=n}^{n+p} a_j(x)| \le \sum_{j=n}^{n+p} |a_j(x)| \le \sum_{j=n}^{n+p} \sup_{x \in E} |a_n(x)| \le \epsilon \ \forall x \in E$$

ESEMPI di serie uniformemente convergenti ma non totalmente convergenti:

- 1. Se $a_n(x) \equiv \frac{(-1)^n}{n}$, la serie $\sum_{n=1}^{\infty} a_n(x)$ converge, ovviamente in modo uniforme, ma non é totalmente convergente, perché $\sum_{n=1}^{\infty} |a_n(x)| = +\infty$.
 - 2. sia $f \in C(\mathbf{R})$, nulla fuori di (0,1), $a_n(x) := \frac{1}{n} f(x-n)$.

La serie di funzioni $\sum_{n=1}^{\infty} \frac{1}{n} f(x-n)$ converge alla funzione S(x) che vale $\frac{1}{n} f(x-n)$ in [n,n+1] e zero se $x \leq 0$. Inoltre la convergenza é uniforme in \mathbf{R} , perché $|S(x) - S_n(x)| = |\sum_{j>n} \frac{1}{j} f(x-j)| \leq \frac{1}{n+1} \sup_{\mathbf{R}} |f| \to 0$. La convergenza peró non é totale, perché $\sup_{x \in \mathbf{R}} |a_n(x)| = \frac{1}{n} \sup_{x \in \mathbf{R}} |f(x)|$.

Convergenza totale delle serie di potenze. Se $\sum_{n=0}^{\infty} a_n x^n$ ha raggio $\sum_{n=0}^{\infty} a_n x^n$ converge totalmente in $[-\delta, \delta]$, $\forall \delta < r$: di convergenza r, allora

$$\sup_{|x| \le \delta} |a_n x^n| = |a_n| \delta^n \quad \text{e} \quad \sum_{0}^{\infty} |a_n| \delta^n < +\infty$$

La somma di una serie di potenze é una funzione C^{∞} .

Le $a_n(x) := a_n x^n$ sono funzioni C^{∞} e la serie delle derivate k-esime

$$\sum_{n=k}^{\infty} n(n-1)\dots(n-k+1)a_n x^{n-k} = \sum_{j=0}^{\infty} \frac{(j+k)!}{j!} a_{j+k} x^j$$

é anch'essa serie di potenze ed il suo raggio di convergenza é

$$(\limsup_{n} |n(n-1)...(n-k+1)a_n|^{\frac{1}{n}})^{-1} = (\limsup_{n} |a_n|^{\frac{1}{n}})^{-1}$$

ESEMPIO:
$$\frac{k!}{(1-x)^{k+1}} = \frac{d^k}{dx^k} (\frac{1}{1-x}) = \sum_{j=0}^{\infty} \frac{(j+k)!}{j!} x^j, \quad \forall x \in (-1,1).$$

Criterio di Leibnitz. Se $0 \le a_{n+1}(x) \le a_n(x) \ \forall x \in E, n \in \mathbb{N}$, allora

$$\sup_{x \in E} a_n(x) \to_{n \to +\infty} 0 \implies \sum_{n=1}^{+\infty} (-1)^n a_n(x) \text{ converge uniformemente in } E$$

Intanto, la serie converge puntualmente in E per il criterio di Leibnitz per le serie numeriche. La convergenza é anche uniforme perché

$$-a_{2n-1}(x) \le \sum_{k=2n-1}^{+\infty} (-1)^k a_k(x) \le 0, \quad a_{2n}(x) \ge \sum_{k=2n}^{+\infty} (-1)^k a_k(x) \ge 0 \quad \forall x \in E \quad \Rightarrow$$

$$\left|\sum_{k=n}^{+\infty} (-1)^k a_k(x)\right| \le a_n(x) \to_{n\to+\infty} 0$$
 uniformemente in E

Teorema di Abel . Siano f_n, g_n tali che

- (i) $f_{n+1}(x) \le f_n(x) \ge 0$ (opp. $f_{n+1}(x) \le f_n(x)$) $\forall x \in E, \forall n$
- (ii) $\exists M > 0$: $|f_n(x)| \le M \quad \forall x \in E, \forall n$
- (ii) $\sum_n g_n$ é uniformemente convergente in E.

Allora $\sum_n f_n g_n$ é uniformemente convergente in E.

Corollario. Se $\sum_{n=0}^{\infty} a_n x^n$ ha raggio di convergenza r e $\sum_{n=0}^{\infty} a_n r^n$ converge allora la convergenza della serie é uniforme in [0, r]. In particolare, $f(x) := \sum_{n=0}^{\infty} a_n x^n$ é continua anche in x = r.

Deduzione del Corollario. Sia r il raggio di convergenza di $\sum_n a_n x^n$. Scrivendo $\sum_n a_n x^n = \sum_n b_n y^n$ con $b_n = a_n r^n$, $y = \frac{x}{r}$, possiamo supporre che r = 1. Cambiando eventualmente x in -x, possiamo supporre che la serie converga in x = 1. Posto $f_n = x^n$ e $g_n = a_n$, un'applicazione di Abel dá il Corollario.

Esempio. Per Leibnitz, $f(x) := \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n$ é definita in (-1,1] ed é ivi continua per Abel. Da $f(x) = \log(1+x)$ in (-1,1), segue, per continuitá, $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \log 2$.

Dimostrazione del Teorema di Abel.

Si basa sulla seguente identitá di Abel (che si prova facilmente per induzione):

$$\forall \alpha_k, \beta_k \in \mathbf{C}, p \in \mathbf{N} : \sum_{k=1}^p \alpha_k \beta_k = \alpha_p \sum_{k=1}^p \beta_k + \sum_{k=1}^{p-1} (\alpha_k - \alpha_{k+1}) \sum_{j=1}^k \beta_j$$

Osservato che la monotonia di $n \to f_n(x) \quad \forall x \in E$ implica che $\sum_{k=1}^p |f_{n+k} - f_{n+k+1}| = |f_{n+1} - f_{n+p}|$ (somma telescopica), l'identitá di Abel dá subito

$$\left|\sum_{k=1}^{p} f_{n+k} g_{n+k}\right| = \left|f_{n+p} \sum_{k=1}^{p} g_{n+k} + \sum_{k=1}^{p-1} (f_{n+k} - f_{n+k+1}) \sum_{j=1}^{k} g_{n+j}\right| \le$$

$$\le |f_{n+p}| \left|\sum_{k=1}^{p} g_{n+k}\right| + \max_{k} \left|\sum_{j=1}^{k} g_{n+j}\right| \sum_{k=1}^{p-1} |f_{n+k} - f_{n+k+1}| =$$

$$= |f_{n+p}| \left|\sum_{k=1}^{p} g_{n+k}\right| + \max_{k} \left|\sum_{j=1}^{k} g_{n+j}\right| |f_{n+1} - f_{n+p}| \le 3M\epsilon \quad \forall n \ge n_{\epsilon}$$
ove $n \ge n_{\epsilon} \quad \Rightarrow \left|\sum_{j=1}^{k} g_{n+j}\right| \le \epsilon \quad \forall k, \forall x \in E.$

Teorema di Dini 1 Siano $f_n, f \in C([a,b]), f_{n+1}(x) \ge f_n(x) \quad \forall n \in \mathbb{N}, x \in [a,b]$ (oppure $f_{n+1}(x) \le f_n(x) \quad \forall n \in \mathbb{N}, x \in [a,b]$). Allora

$$f_n(x) \to f(x) \ \forall x \in [a,b] \ \Rightarrow \ f_n$$
 converge uniformemente in $[a,b]$

Teorema di Dini 2 Siano f_n definite e monotone (crescenti o decrescenti) in $[a, b], f \in C([a, b])$. Allora

$$f_n(x) \to f(x) \ \forall x \in [a, b] \ \Rightarrow \ f_n$$
 converge uniformemente in $[a, b]$.

NOTA In entrambi i casi l'ipotesi che f sia continua é essenziale, come mostra la successione di funzioni crescenti $f_n(x) = x^n, x \in [0, 1]$, che tendono in modo monotono alla funzione (discontinua!) $f(x) = \chi_{\{1\}}$.

NOTA Le $f_n(x) = x^n, x \in [0, 1)$ sono crescenti e convergono in modo monotono alla funzione nulla, ma la convergenza non é uniforme in [0, 1).

NOTA Le $f_n(x) = e^{x-n}$ sono crescenti e convergono in modo monotono alla funzione continua f = 0 su tutto \mathbf{R} , ma la convergenza non é uniforme (su tutto \mathbf{R}).

ESEMPI, PROBLEMI E COMPLEMENTI.

1. Proprietá di $f(x) := \sum_{n=1}^{\infty} \frac{1}{n^x}, \quad x > 0$

La f é continua perché la serie converge totalmente in $[1 + \delta, +\infty)$, $\forall \delta > 0$:

$$x \ge 1 + \delta$$
 \Rightarrow $\frac{1}{n^x} \le \frac{1}{n^{1+\delta}}$ $e \sum_{n=1}^{\infty} \frac{1}{n^{1+\delta}} < +\infty$

e siccome la serie delle derivate $\sum_{n=1}^{\infty} -\frac{\log n}{n^x}$ é ugualmente totalmente convergente in $[1+\delta,+\infty),\ f'(x)=-\sum_{n=1}^{\infty} \frac{\log n}{n^x}$. In particolare, f é decrescente, e quindi esiste $\lim_{x\to 1^+} f(x)\geq \lim_{x\to 1^+} \sum_{n=1}^N \frac{1}{n^x} \ \forall N$ e quindi $\lim_{x\to 1^+} f(x)=+\infty$. Piú precisamente, come vedremo,

$$\sum_{n=1}^{\infty} \frac{1}{n^x} \ge \int_{1}^{+\infty} \frac{dt}{t^x} = \frac{1}{x-1}$$

Ció comporta, in particolare, che la convergenza non é uniforme in $(1, +\infty)$, giacché

Limitatezza del limite uniforme Se f_n sono limitate ed uniformemente convergenti ad f in A, allora f 'e limitata in A.

Infatti, $\exists n_0 : |f(x)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x)| \le 1 + \sup_{x \in A} |f_n(x)|, \ \forall x \in A$.

Che la convergenza non sia uniforme in $[0, \delta]$ segue anche dal fatto

Convergenza al bordo Se $f_n \in C([a,b])$ allora

 $\sum_{n=0}^{\infty} f_n(x) \quad \text{converge uniformemente in} \quad [a,b] \quad \Rightarrow \quad \sum_{n=0}^{\infty} f_n(a) \quad \text{converge}$

Infatti, $\forall \epsilon > 0, \exists N_{\epsilon} : \max_{x \in [a,b]} |\sum_{n=N}^{N+p} f_n(x)| \leq \epsilon, \quad \forall N \geq N_{\epsilon}, \ p \in \mathbf{N} \text{ e quindi}$ $|\sum_{n=N}^{N+p} f_n(a)| = \lim_{x \to a^+} |\sum_{n=N}^{N+p} f_n(x)| \leq \epsilon.$

Vediamo ora che $\sum_{i=2}^{\infty} \frac{1}{n^x} \to_{x \to +\infty} 0$. Questo fatto si puó derivare dalla

Comportamento asintotico Se f_n converge uniformemente ad f in $[a, +\infty)$ ed $f_n(x) \to_{x\to +\infty} 0 \ \forall n$, allora $f(x) \to_{x\to +\infty} 0$.

Infatti, $|f(x)| \leq |f_n(x) - f(x)| + |f_n(x)| \leq \epsilon + |f_n(x)|$ se $n \geq n_e$ e quindi $\limsup_{x \to +\infty} |f(x)| \leq \epsilon$, $\forall \epsilon > 0$.

Infine, $f \in C^{\infty}((1, +\infty))$: $\sum_{n=1}^{\infty} \frac{d^k}{dx^k} \frac{1}{n^x} = \sum_{n=1}^{\infty} \frac{(-1)^k (\log n)^k}{n^x} \text{ converge totalmente}$ in $[1+\delta, +\infty)$, perché $x \geq 1+\delta \Rightarrow \frac{(\log n)^k}{n^x} \leq \frac{(\log n)^k}{n^{1+\delta}} = \sum_{n=1}^{\infty} \frac{(\log n)^k}{n^{1+\delta}} < +\infty$.

 $2. \quad \sum_{n=1}^{\infty} x^r e^{-nx} = \frac{x^r}{1-e^{-x}} \quad \text{converge totalmente in } [0,+\infty) \text{ se e solo se } r > 1 : \\ (x^r e^{-nx})' = rx^{r-1} e^{-nx} - nx^r e^{-nx} = 0 \quad \Rightarrow \quad x = \frac{r}{n} \quad \Rightarrow \quad \sup_{x \geq 0} x^r e^{-nx} = (\frac{r}{n})^r e^{-r} \\ \text{Ma} \sum_{n=N}^{\infty} x^r e^{-nx} = \frac{e^{-Nx}x^r}{1-e^{-x}} \leq (\frac{2r}{N})^r \frac{e^{-2r}}{1-e^{-\frac{2r}{N}}} : \text{ la convergenza \'e uniforme in } [0,+\infty) \ \forall r > 0$

3. Sia $f(x) := \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}, |x| < 1.$ Calcolare $\frac{d}{dx}[x^2 f'(x)],$ determinare f.

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n+1} \implies x^2 f'(x) = \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1} \implies \frac{d}{dx} [x^2 f'(x)] = \sum_{n=1}^{\infty} x^n = \frac{1}{1-x} - 1$$

$$\Rightarrow f'(x) = -\frac{1}{x} - \frac{\log(1-x)}{x^2} = -\frac{1}{x} + (\frac{\log(1-x)}{x})' + \frac{1}{x(1-x)} = (\frac{\log(1-x)}{x})' + \frac{1}{1-x} \Rightarrow f(x) = \frac{\log(1-x)}{x} - \log(1-x) + 1$$

Teorema di Dini 1 Siano $f_n, f \in C([a,b]), f_{n+1}(x) \ge f_n(x) \quad \forall n \in \mathbb{N}, x \in [a,b]$ (oppure $f_{n+1}(x) \le f_n(x) \quad \forall n \in \mathbb{N}, x \in [a,b]$). Allora

$$f_n(x) \to f(x) \ \forall x \in [a, b] \ \Rightarrow \ f_n \ \text{converge uniformemente in}[a, b]$$

Prova. Siano $f_n(x_n) = \max f_n$ e supponiamo per assurdo che $f_n(x_n) \ge r > 0$ per infiniti indici. Eventualmente passando ad una sottosuccessione, posiamo supporre che $x_n \to x_0$ per un x_0 e $f_n(x_n) \ge r \ \forall n$.

Sia n_0 tale che $f_{n_0}(x_0) \leq \frac{r}{4}$ e $\delta(n_0)$ tale che $f_{n_0}(x) \leq \frac{r}{2}$ se $|x - x_0| \leq \delta(n_0)$. Ma allora $f_n(x) \leq \frac{r}{2} \ \forall n \geq n_0$ e $|x - x_0| \leq \delta(n_0)$ e quindi anche in x_n , se n é abbastanza grande, contraddizione.

Teorema di Dini 2 Siano f_n definite e monotone (crescenti o decrescenti) in $[a,b], f \in C([a,b])$. Allora

 $f_n(x) \to f(x) \ \forall x \in [a, b] \ \Rightarrow \ f_n$ converge uniformemente in [a, b].

Prova. Dato $\epsilon > 0$, $\exists \delta = \delta_{\epsilon} > 0$: $x, y \in [a, b], |x - y| \leq \delta \Rightarrow |f(x) - f(y)| \leq \epsilon$. Sia N tale che $\frac{b-a}{N} \leq \delta$. Sia $x_0 = a, \ldots, x_j = x_0 + j\frac{b-a}{N}, \ldots, x_N = x_0 + N\frac{b-a}{N} = b$ suddivisione di [a, b] in N parti uguali. Sia infine n_{ϵ} tale che

 $|f_n(x_j) - f_n(x_{j+1})| \le \epsilon \quad \forall n \ge n_{\epsilon}, \forall j = 1, \dots, N$ e, se $x \in [a, b]$, sia j tale che $x \in [x_j, x_{j+1}]$. Dalla monotonia: $-2\epsilon \le f_n(x_j) - f(x_j) + f(x_j) - f(x) \le f_n(x_j) - f(x_j) \le f_n(x_{j+1}) - f(x_{j+1}) + f(x_{j+1}) - f(x) \le 2\epsilon$.