14AM120: Settimana 8

INTEGRAZIONE DI FUNZIONI REALI DI UNA VARIABILE REALE

A titolo introduttivo, consideriamo due problemi, apparentemente scollegati:

PROBLEMA 1. (esistenza di una primitiva). Data f in un intervallo aperto I, esiste P (primitiva) derivabile in I e tale che P' = f in I?

PROBLEMA 2. Data $f \geq 0$ in [a, b], come definire l'area del sottografico $\{(x, y): x \in [a, b], 0 \leq y \leq f(x)\}$?

La risposta al Problema 1 é: in generale NO. Una condizione necessaria é data dal

Teorema di Darboux

Se P' = f in I intervallo aperto, allora f ha la proprietá del valore intermedio.

PROVA. Sia $\alpha = f(a), \beta = f(b), a, b \in I$. Possiamo supporre $a < b, \alpha < \beta$. Preso $\alpha < \gamma < \beta$, sia $g(x) = P(x) - \gamma x$. Siccome P é continua, g ha minimo in [a,b]. Tale minimo non puó essere preso in a, perché $g'(a) = \beta - \gamma < 0$, né in b, perché g'(b) > 0. Dunque il punto di minimo, diciamo c, é interno e quindi $0 = g'(c) = P'(c) - \gamma = f(x) - \gamma$, ovvero $f(c) = \gamma$.

Tale proprietá peró non basta. Un esempio: $f(x)=\sin\frac{1}{x}-\frac{1}{x}\cos\frac{1}{x}$ se $x\neq 0,$ f(0)=0 e $P^{\pm}(x)=x\sin\frac{1}{x}+c^{\pm}$ sono le sue primitive in $(0,+\infty)$ e in $(-\infty,0)$. Ma f, pur godendo ovviamente della proprietá del valore intermedio, non ammette primitiva P in (-1,1). Infatti dovrebbe essere $P=x\sin\frac{1}{x}+c^{-}$ in (-1,0) e $P=x\sin\frac{1}{x}+c^{+}$ in (0,1) e quindi, per continuitá, $c^{+}=c^{-}$, ovvero $P=x\sin\frac{1}{x}+c$ per qualche c che peró non é derivabile in zero per alcun c.

Circa il problema 2, vedremo un modo molto naturale di definire, nel caso ad esempio che f sia continua, l'area del suo sottografico. Indichiamo qui come la risoluzione del problema 2 porti a risolvere anche il problema 1. Chiamiamo $A(x), x \in (a,b)$ l'area del sottografico di f ristretta ad [a,x]. Se questa funzione ha le proprietà che ci aspettiamo dall'area (additività), avremo che il rapporto incrementale $\frac{A(x+h)-A(x)}{h}$ si scrive come f(x) più l'area del triangoloide di vertici (x,f(x),(x+h,f(x)),(x+h,f(x+h)). Siccome f é limitata tale area deve andare (per la monotonia dell'area) a zero, e quindi A(x) é una primitiva di f.

Richiamiamo alcune NOTAZIONI e semplici proprietá:

$$\begin{array}{llll} x^+:=\frac{1}{2}(|x|+x)=x & \text{se} & x\geq 0, & x^+=0 \text{ se } x\leq 0, & x^-:=x^+-x & \text{e quindi} \\ x^-:=\frac{1}{2}(|x|-x)=0 & \text{se} & x\geq 0, & x^-=-x \text{ se } x\leq 0, & \text{e quindi} & x^++x^-=|x| \\ \text{Si ha:} & (-x)^+=x^-, & (-x)^-=x^+, & (x+y)^+\leq x^++y^+, & (x+y)^-\leq x^-+y^- \end{array}$$

Se
$$A \subset \mathbf{R}$$
, $\inf_A f := \inf\{f(x) : x \in A\}$, $\sup_A f := \sup\{f(x) : x \in A\}$.

1.
$$\inf_{A \cup B} f \le \inf_{A} f \le \sup_{A} f \le \sup_{A \cup B} f$$

2.
$$\inf_{A} f + \inf_{A} g \le \inf_{A} (f+g) \le \sup_{A} (f+g) \le \sup_{A} f + \sup_{A} g$$

3.
$$\sup_{A}(-f) = -\inf_{A}f, \qquad \inf_{A}(-f) = -\sup_{A}f \text{ e quindi}$$

4.
$$\inf_{A} f - \sup_{A} g \le \inf_{A} (f - g) \le \sup_{A} (f - g) \le \sup_{A} f - \inf_{A} g$$

- 5. $\chi_A \equiv 1$ in A, $\chi_A \equiv 0$ fuori di A é la funzione caratteristica di A.
- 6. Il supporto di f é la chiusura di $\{x: f(x) \neq 0\}$.

$$\begin{array}{lll} f^+(x) := (f(x))^+ \ {\rm e} \ {\rm quindi} \ f^+ := f\chi_{\{x:f(x)\geq 0\}}, \ {\rm quad} \ f^-(x) := (f(x))^- \ {\rm e} \ {\rm quindi} \\ f^- := -f\chi_{\{x:f(x)\leq 0\}} & {\rm Chiaramente}, \quad f = f^+ - f^-, \quad |f| = f^+ + f^- \\ (-f)^+ = f^-, \quad (-f)^- = f^+, \quad (f+g)^+ \leq f^+ + g^+, \quad (f+g)^- \leq f^- + g^-. \end{array}$$

Se I é un intervallo di estremi $a \leq b$, l(I) := b - a indicherá la sua lunghezza. Notare che se I_j sono n intervalli e $\cup_j I_j$ é un intervallo, allora é $l(\cup_j I_j) \leq \sum_j l(I_j)$ e che, se I_j sono intervalli 'quasi disgiunti' (tali cioé che $I_j \cap I_l$ contiene al più un punto $\forall j \neq l$) e $\cup_j I_j$ é un intervallo, allora $l(I) = \sum_j l(I_j)$. Più in generale, se I_j , $j = 1, \ldots, n$ sono intervalli 'quasi' disgiunti, scriveremo $l(\cup_{j=1}^n I_j) = \sum_{j=1}^n l(I_j)$.

Siano $I_j, j \in \mathbf{N}$ intervalli di estremi $a_j \leq b_j$, **limitati e quasi disgiunti**, cioé $(a_i, b_i) \cap (a_j, b_j) = \emptyset \quad \forall i \neq j$. Chiameremo I_j partizione di \mathbf{R} se

(i) $\mathbf{R} = \cup_j I_j$, (ii) $\{a_j, b_j : j \in \mathbf{N}\}$ é privo di punti di accumulazione.

Notiamo che (i) assicura che $A = \bigcup_j (I_j \cap A) \ \forall A \subset \mathbf{R}$, mentre (ii) assicura che $\{j: I_j \cap [-R, R] \neq \emptyset\}$ é finito $\forall R \geq 0$.

Se J_i é un'altra partizione di \mathbf{R} , diremo che J_i é un raffinamento della I_j se $\forall J_i, \exists I_j : J_i \subset I_j$. Se I_j, J_i sono partizioni, $I_{ij} := I_j \cap J_i$, é 'raffinamento' delle due partizioni. Notare che $I_j = \bigcup_i I_{ij}$, $J_i = \bigcup_j I_{ij}$ (unioni quasi disgiunte!)

INTEGRAZIONE DI FUNZIONI LIMITATE A SUPPORTO COMPATTO

Sia
$$b_0(\mathbf{R}) := \{ f : \mathbf{R} \to \mathbf{R} : f \text{ \'e limitata e a supporto compatto} \},$$
 ovvero

$$f \in b_0(\mathbf{R}) \quad \Leftrightarrow \quad \exists M > 0: \quad |f(x)| \le M \quad \forall x \in \mathbf{R} \quad \text{e} \quad f(x) = 0 \text{ se } |x| \ge M.$$

Somme inferiori/superiori di Riemann Integrale inferiore/superiore

Sia
$$f \in b_0(\mathbf{R})$$
. Sia I_i partizione di \mathbf{R} . Allora

$$s(f; I_j) := \sum_{i} (\inf_{I_j} f) \ l(I_j)$$
 é somma inferiore

$$S(f; I_j) := \sum_{i} (\sup_{I_j} f) \ l(I_j)$$
 é somma superiore

$$\underline{I}(f) := \sup\{s(f; I_j): \ I_j \ \text{ partizione di } [a,b]\}$$
 é l'integrale inferiore di f

$$\overline{I}(f) := \inf\{S(f; I_j): \ I_j \ \text{ partizione di } [a,b]\}$$
 é l'integrale superiore di f

LEMMA 1 Se I_j, J_i sono due partizioni e $I_{ij} := I_j \cap J_i$, allora

$$s(f; I_j) \le s(f; I_{ij}) \le S(f; I_{ij}) \le S(f; J_i)$$

e quindi $s(f; I_i) \leq S(f; J_i)$ e quindi $\underline{I}(f) \leq \overline{I}(f)$. Infatti

$$s(f; I_{ij}) = \sum_{ij} \inf_{I_{ij}} f l(I_{ij}) \ge \sum_{j} \sum_{i} \inf_{I_{j}} f l(I_{ij}) = \sum_{j} \inf_{I_{j}} f l(I_{j}) = s(f; I_{j})$$

$$S(f; I_{ij}) = \sum_{ij} \sup_{I_{ij}} f l(I_{ij}) \le \sum_{j} \sum_{i} \sup_{I_{j}} f l(I_{ij}) = \sum_{j} \sup_{I_{j}} f l(I_{j}) = S(f; I_{j})$$

NOTA. Piú in generale, raffinando la partizione le somme inferiori crescono, le somme superiori decrescono.

DEFINIZIONE $f \in b_0(\mathbf{R})$ é integrabile su \mathbf{R} se $\overline{I}(f) = \underline{I}(f)$. Si scrive

$$\int_{\mathbf{R}} f = \int_{\mathbf{R}} f(x)dx := \overline{I}(f) = \underline{I}(f)$$

ESEMPI.

- 1. Sia $-L \leq f(x) \leq M \ \forall x \in \mathbf{R}, \quad f(x) = 0 \text{ se } |x| \geq R.$ Allora $-2LR \leq \underline{I}(f) \leq \overline{I}(f) \leq 2MR.$ Infatti, se I_j é partizione con $I_1 := [-R, R]$, allora $-2LR \leq s(f, I_j) \leq S(f; I_j) = 2R \sup_{I_1} f \leq 2MR.$
- 2. Sia J un intervallo limitato, $f=\chi_{\mathbf{Q}\cap J}$. É $\overline{I}(f)=l(J), \underline{I}(f)=0$. Infatti, I_j partizione, $I_j\cap J\neq\emptyset$ \Rightarrow $\sup_{I_j}f=1, \inf_{I_j}f=0$.
- 3. Se $I_j, j \in \mathbf{N}$ sono intervalli limitati 'quasi disgiunti', $f = \chi_{\bigcup_{j=1}^n I_j}$ é integrabile per ogni n e $\int \chi_{\bigcup_{j=1}^n I_j} = \sum_{j=1}^n l(I_j)$. Infatti, f é nulla fuori di $\bigcup_{j=1}^n I_j$, e quindi, aggiumgendo altri $I_j, j \geq n+1$ in modo da ottenere una partizione di \mathbf{R} , troviamo che $s(f, I_j) = \sum_{j=1}^n l(I_j) = S(f, I_j)$.

Domanda: $\chi_{\bigcup_{j=1}^{\infty} I_j}$ é integrabile? Risposta: in generale no! ...(vedi Appendice)

LEMMA 2 $\overline{I}(f) = \underline{I}(f)$ se e solo se $\forall \epsilon > 0 \quad \exists I_i^{\epsilon}$ partizione :

$$\sum_{j} (\sup_{I_j} f - \inf_{I_j} f) \ l(I_j) = S(f; I_j^{\epsilon}) - s(f; I_j^{\epsilon}) \le \epsilon \qquad (*)$$

Infatti $0 \leq \overline{I}(f) - \underline{I}(f) \leq S(f; I_j) - s(f; I_j)$ per ogni partizione I_j . Quindi (*) implica $\overline{I}(f) = \underline{I}(f)$. Viceversa, dalla definizione di $\overline{I}(f), \underline{I}(f)$ come estremo inferiore (rispettivamente, superiore), segue che, fissato ϵ , esistono partizioni $I_j^{\epsilon}, J_i^{\epsilon}$ tali che

$$S(f; I_i^{\epsilon}) \leq \overline{I}(f) + \epsilon, \qquad s(f; J_i^{\epsilon}) \geq \underline{I}(f) - \epsilon$$

e quindi $S(f; I_i^{\epsilon} \cap J_i^{\epsilon}) - s(f; J_i^{\epsilon} \cap I_i^{\epsilon}) \leq \overline{I}(f) + \epsilon - \underline{I}(f) + \epsilon = 2\epsilon$ se $\overline{I}(f) = \underline{I}(f)$.

Teorema di Riemann (integrabilitá delle funzioni continue)

Sia $f \in C_0(\mathbf{R})$ (cioé $f \in b_0(\mathbf{R}) \cap C(\mathbf{R})$). Allora f é integrabile.

Prova. Sia f(x) = 0 se $|x| \ge R$. Per Heine-Cantor,

$$\forall \epsilon > 0, \ \exists \delta_{\epsilon} > 0: \qquad |x - y| \le \delta_{\epsilon} \quad \Rightarrow \quad |f(x) - f(y)| \le \frac{\epsilon}{2R}$$

Sia n tale che $\frac{R}{n} \leq \delta_{\epsilon}$. Siano $I_j = [-R + \frac{(j-1)R}{n}, -R + \frac{Rj}{n}]$ per $j = 1, \ldots, 2n$. Gli I_j sono quasi disgiunti, $l(I_j) = \frac{R}{n}$, $\forall j = 1, \ldots, 2n$ e la loro unione é [-R, R]. Siano $I_j, j \geq 2n + 1$ tali che $I_j, j \in \mathbf{N}$ sia partizione di \mathbf{R} . Siano $x_j, y_j \in I_j$ tali che

$$f(x_j) = \sup_{I_j} f$$
, $f(y_j) = \inf_{I_j} f$. Allora

$$S(f, I_j) - s(f, I_j) = \sum_{j=1}^{2n} [\sup_{I_j} f - \inf_{I_j} f] l(I_j) = \sum_{j=1}^{2n} [f(x_j) - f(y_j)] \frac{R}{n} \le 2n \frac{\epsilon}{2R} \frac{R}{n} = \epsilon$$

NOTA. Se f ha un punto di discontinuitá, diciamo in x_0 , modificando la partizione I_j in $I_j \cap J_i$, ove $J_1 = [-\infty, x_0 - \delta), J_2 = [x_0 - \delta, x_0 + \delta), J_3 = [x_0 + \delta, +\infty)$ e $2\delta \sup_{J_2} |f| \le \epsilon$, vediamo che $S(f; I_j) - s(f; I_j) \le 2\epsilon$, e quindi f é integrabile. Se f ha p discontinuitá x_l e $2\delta \sup_{|x-x_l| \le \delta} |f| \le \frac{\epsilon}{p}$, si trova ancora $S(f; I_j) - s(f; I_j) \le 2\epsilon$ e quindi f é integrabile.

Teorema di Lebesgue-Vitali Sia $D_f := \{x \in \mathbf{R} : f \text{ \'e discontinua in } x\}$

Allora $f \in b_0(\mathbf{R})$ é integrabile se e solo se D_f é di misura nulla.

Esempio. Sia $A \subset \mathbf{R}$ limitato; χ_A é integrabile sse ∂A ha misura nulla, perché

$$D_{\chi_A} = \partial A := \{ x \in \mathbf{R} : \quad (x - r, x + r) \cap A \neq \emptyset \neq (x - r, x + r) \cap A^c \quad \forall r > 0 \}$$

LINEARITÁ DELL'INTEGRALE. Siano $f, g \in b_0(\mathbf{R})$ integrabili. Allora

$$\alpha, \beta \in \mathbf{R} \quad \Rightarrow \quad \alpha f + \beta g \text{ \'e integrabile e} \quad I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$$

 $\begin{array}{lll} \alpha \geq 0 & \Rightarrow & \underline{I}(\alpha f) = \alpha \underline{I}(f) & \overline{I}(\alpha f) = \alpha \overline{I}(f) & \text{perch\'e} \\ \inf_{I}(\alpha f) = \alpha & \inf_{I} f & , & \sup_{I}(\alpha f) = \alpha & \sup_{I} f & \text{mentre} \\ \sup_{A}(-f) = -\inf_{A} f, & \inf_{A}(-f) = -\sup_{A} f & \Rightarrow & \overline{I}(-f) = -\underline{I}(f), & \underline{I}(-f) = \overline{I}(f). \\ \operatorname{Integrabilit\'a} & \text{(ed integrale) della somma: seguono dal fatto che} \end{array}$

(*)
$$\underline{I}(f) + \underline{I}(g) \le \underline{I}(f+g) \le \overline{I}(f+g) \le \overline{I}(f) + \overline{I}(g)$$
 Prova di (*):

$$(f+g)(x) \le \sup_{x \in I_j} f(x) + \sup_{x \in I_j} g(x) \quad \forall x \in I_j \quad \Rightarrow \quad \sup_{I_j} (f+g) \le \sup_{I_j} f + \sup_{I_j} g \quad \Rightarrow$$

$$\overline{I}(f+g) \le S(f+g, I_j) \le S(f, I_j) + S(g, I_j)$$

D'altra parte, esistono partizioni I_i^{ϵ} , J_i^{ϵ} tali che

$$S(f; I_j^{\epsilon}) + S(g; J_i^{\epsilon}) \le \overline{I}(f) + \epsilon + \overline{I}(g) + \epsilon$$

Se $I_{ij} := I_j^{\epsilon} \cap J_i^{\epsilon}$, allora $\overline{I}(f+g) \leq S(f; I_{ij}) + S(g; I_{ij}) \leq \overline{I}(f) + \overline{I}(g) + 2\epsilon \quad \forall \epsilon > 0$. Analogamente si prova la diseguaglianza a sinistra in (*).

NOTA. Notiamo che é in generale falso che $\underline{I}(f+g)=\underline{I}(f)+\underline{I}(g)$. Prendere ad esempio $f=\chi_{[0,1]\cap\mathbf{Q}},\ g=\chi_{[0,1]\setminus\mathbf{Q}}:\ \underline{I}(f+g)=1,\ \underline{I}(f)=\underline{I}(g)=0.$

Proposizione. Siano f, g integrabili. Allora

- (i) $|f|, f^+, f^-$ sono integrabili e quindi $\int_{\mathbf{R}} f = \int_{\mathbf{R}} f^+ \int_{\mathbf{R}} f^-$
- (ii) fg é integrabile.

Prova. (i) Basta mostrare che $\sup_{I} |f| - \inf_{I} |f| \le \sup_{I} f - \inf_{I} f$. Se $f \ge 0$ é ovvio. Se $f \le 0$, é $\sup_{I} |f| - \inf_{I} |f| = \sup_{I} (-f)| - \inf_{I} (-f) = -\inf_{I} f + \sup_{I} f$. Sia dunque $\inf_{I} f < 0 < \sup_{I} f$. Da $\sup_{I} |f| = \max\{\sup_{I} f, -\inf_{I} f\}$, segue

$$\sup_{I} f \geq -\inf_{I} f \quad \Rightarrow \quad \sup_{I} |f| - \inf_{I} |f| = \sup_{I} f - \inf_{I} |f| \leq \sup_{I} f \leq \sup_{I} f - \inf_{I} f$$

$$\sup_{I} f \leq -\inf_{I} f \quad \Rightarrow \quad \sup_{I} |f| - \inf_{I} |f| \leq -\inf_{I} f \leq -\inf_{I} f + \sup_{I} f$$

(ii) Proviamolo dapprima nel caso g = f. Intanto, da $|f| \ge 0$ in I segue

$$\sup_{I} f^{2} = (\sup_{I} |f|)^{2}, \quad \inf_{I} f^{2} = (\inf_{I} |f|)^{2}$$
 Infatti

$$0 \leq |f(x)| \leq \sup_{I} |f| \quad \forall x \in I \quad \Rightarrow \quad f^2(x) \leq (\sup_{I} |f|)^2 \quad \Rightarrow \quad \sup_{I} f^2 \leq (\sup_{I} |f|)^2$$

Poi, fissato ϵ piccolo, esiste $x_{\epsilon} \in I$ tale che $|f(x_{\epsilon})| \ge \sup_{I} |f| - \epsilon > 0$ e quindi $\sup_{I} |f|^2 \ge |f(x_{\epsilon})|^2 \ge (\sup_{I} |f| - \epsilon)^2 = (\sup_{I} |f|)^2 + O(\epsilon)$ e quindi, mandando ϵ a zero, $\sup_{I} |f|^2 \ge (\sup_{I} |f|)^2$. Analogamente si vede che $\inf_{I} f^2 = (\inf_{I} |f|)^2$. Ma allora, $\sup_{I} f^2 - \inf_{I} f^2 = (\sup_{I} |f|)^2 - (\inf_{I} |f|)^2 =$

$$\begin{split} [\sup_{I}|f|-\inf_{I}|f|] \times [\sup_{I}|f|+\inf_{I}|f|] &\leq 2\sup_{I}|f| \times [\sup_{I}|f|-\inf_{I}|f|] \quad \Rightarrow \\ S(f^2,I_j)-s(f^2,I_j) &\leq 2\sup_{\mathbf{R}}|f|\left[S(|f|,I_j)-s(|f|,I_j)\right] \end{split}$$

e quindi f^2 é integrabile perché lo é |f|. Infine, l'integrabilitá di fg segue da $fg = \frac{(f+g)^2 - (f-g)^2}{4}$.

NOTA. L'integrabilitá di |f| non comporta (sfortunatamente!) l'integrabilitá di f (ad esempio, $f = \chi_{[0,1] \cap (\mathbf{R} \setminus \mathbf{Q})} - \chi_{[0,1] \cap \mathbf{Q}}$. Qui f^+ ed f^- non sono integrabili!).

MONOTONIA DELL'INTEGRALE.
$$f, g \in b_0(\mathbf{R})$$
 integrabili \Rightarrow $f \leq g \Rightarrow I(f) \leq I(g)$.

Prova. $0 \le g - f \Rightarrow 0 \le I(g - f) = I(g) - I(f)$.

UNA DISEGUAGLIANZA INTEGRALE.

$$\left| \int_{\mathbf{R}} f \right| \le \int_{\mathbf{R}} |f| \qquad \forall f \in b_0(\mathbf{R})$$

Prova. $|\int_{\mathbf{R}} f| = |\int_{\mathbf{R}} f^+ - \int_{\mathbf{R}} f^-| \le \int_{\mathbf{R}} f^+ + \int_{\mathbf{R}} f^- = \int_{\mathbf{R}} |f|.$

APPENDICE: L'INSIEME DI CANTOR

Diamo qui un esempio di un insieme aperto O, unione numerabile di intervalli disgiunti, tale che χ_O non é integrabile.

Sia
$$1 > r_1 \dots \ge r_n \dots, r_n \to r \ge 0, \quad l_n = \frac{r_n}{2^n}, \quad J_{1,1} := [0,1].$$

Sia $I_{1,1}$ l'intervallo aperto, centrato nel punto medio di $J_{1,1}$ e di lunghezza $l(I_{1,1}) = 1 - 2l_1$ (intervallo centrale).

Siano $J_{2,1}, J_{2,2}$ gli intervalli ottenuti rimuovendo $I_{1,1}$ da $J_{1,1}$. Siano $I_{2,1}, I_{2,2}$ i corrispondenti intervalli centrali di lunghezza l_1-2l_2 .

Iterando, si costruiscono

$$I_{n,j}, j=1,\dots,2^{n-1}$$
 intervalli aperti di lunghezza $l_{n-1}-2l_n$

Risulta

$$\sum_{n=1}^{\infty} \sum_{i=1}^{2^{n-1}} (l_{n-1} - 2l_n) = \sum_{n=1}^{\infty} (r_{n-1} - r_n) = 1 - r$$

Notiamo anche che l'aperto

$$O := \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{n-1}} I_{n,j}$$

é denso in [0,1]. Da ció segue che le somme superiori di $\chi_{\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{n-1}} I_{n,j}}$ valgono almeno 1, mentre ogni somma inferiore vale al piú 1-r. Dunque

$$\chi_{\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{n-1}} I_{n,j}}$$
 non é integrabile

L'insieme $[0,1] \setminus O$ si chiama **insieme di Cantor** generalizzato (Cantor se $r_n = (\frac{2}{3})^n$).