AM120: Settimana 9

INTEGRAZIONE SU INSIEMI MISURABILI

Definizione di insieme misurabile e della sua misura Diremo che $E \subset \mathbf{R}$ é misurabile se χ_E é integrabile e scriveremo

$$\Sigma := \{ E \subset \mathbf{R} : \chi_E \text{ \'e integrabile} \}$$

$$|E| = \text{misura di E} := \int_{\mathbf{R}} \chi_E \qquad \forall E \in \Sigma$$

NOTA la caratterizzazione: detto che $N \subset \mathbf{R}$ ha misura nulla in senso stretto $\Leftrightarrow \forall \epsilon > 0, \exists p \in \mathbf{N}, \exists I_j^{\epsilon}, j = 1, \dots, p$ tali che $\mathbf{N} \subset \cup_j I_j^{\epsilon}$ e $\sum_j l(I_j^{\epsilon}) \leq \epsilon$

allora $E \in \Sigma \iff E$ é limitato e ∂E ha misura nulla in senso stretto.

Infatti, χ_E é integrabile sse E é limitato e $\forall \epsilon > 0, \exists (I_i^{\epsilon})$ partizione tale che

$$\epsilon \geq S(\chi_E, I_j^\epsilon) - s(\chi_E, I_j^\epsilon) = \sum_j [\sup_{I_j} \chi_E - \inf_{I_j} \chi_E] l(I_j) = \sum_{\{j: \sup_{I_i} \chi_E = 1, \inf_{I_i} \chi_E] l(I_i^\epsilon) = 0\}} l(I_j^\epsilon)$$

Siccome $\sup_{I_j^\epsilon} \chi_E = 1 \iff E \cap I_j^\epsilon \neq \emptyset$ e $\inf_{I_j^\epsilon} \chi_E = 0 \iff E \cap (I_j^\epsilon)^c \neq \emptyset$, vediamo che, appunto, $E \in \Sigma$ se e solo se E é limitato e la sua frontiera $\partial E := \{x: E \cap (x-\delta,x+\delta) \neq \emptyset \neq E^c \cap (x-\delta,x+\delta) \ \forall \delta > 0\}$ é di misura nulla in senso stretto.

La classe degli insiemi misurabili é un 'algebra' su cui la misura é funzione additiva:

siccome $\chi_{A \cap B} = \chi_A \chi_B$, $\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$, $\chi_{A \setminus B} = \chi_A - \chi_B$, si ha che

$$A, B \in \Sigma \implies A \cap B, A \cup B, A \setminus B \in \Sigma$$

$$A, B \in \Sigma, \quad |A \cap B| = 0 \quad \Rightarrow \quad |A \cup B| = |A| + |B|$$

NOTA. Un insieme (limitato) di misura nulla non é necessariamente misurabile (ad esempio $\mathbf{Q} \cap [0,1]$ é di misura nulla ma non é misurabile!). Invece, ogni insieme N di misura nulla in senso stretto é misurabile e |N|=0, e viceversa. Infatti un ricoprimento di N con un numero finito di intervalli di misura complessiva minore di ϵ implica che $\overline{I}(\chi_N) \leq \epsilon$. E, viceversa, $\int \chi_E = 0 \implies \forall \epsilon > 0 \exists I_j : \sum_j \sup_{I_j} l(I_j) \leq \epsilon$.

Sia $A \subset \mathbf{R}$. Diremo che $f \notin integrabile su A se <math>f\chi_A \notin integrabile$ e scriveremo

$$\int_{A} f := \int_{\mathbf{R}} f \chi_{A} \qquad \text{(integrale di } f \text{ su A)}$$

NOTA. Se f é solo definita in A, la intenderemo definita su tutto \mathbf{R} con $f \equiv 0$ in A^c .

Diremo che f é localmente integrabile se f é integrabile su [-R,R] $\forall R>0$. Scriveremo

$$\mathcal{I}_{loc} := \{ f \in b_0 : f\chi_{[-R,R]} \text{ \'e integrabile } \forall R \}$$

Siccome, se $E \in \Sigma$ ed R é tale che $E \subset [-R, R]$, risulta $\chi_{[-R,R]} \chi_E = \chi_E$, vediamo che una f localmente integrabile é integrabile su ogni insieme misurabile.

Le funzioni continue su ${\bf R}$ sono esempi di funzioni localmente integrabili. Sono localmente integrabili anche le funzioni monotone:

Integrabilitá locale delle funzioni monotone limitate.

Sia f limitata e monotona in [a,b]. Allora f \acute{e} integrabile in [a,b].

Prova. Possiamo supporre f non decrescente, cosicché

$$f(\inf I) \le \inf_{I} f, \qquad \sup_{I} f \le f(\sup I) \qquad \forall I \subset [a, b]$$

Sia $[a, b] = \bigcup_{j=1}^{n} I_j$ con $l(I_j) = \frac{b-a}{n}$, sup $I_j = \inf I_{j+1}$, e quindi

$$S(f, I_j) - s(f, I_j) = \sum_{i=1}^{n} \left[\sup_{I_j} f - \inf_{I_j} f \right] l(I_j) \le \frac{b-a}{n} \times$$

$$[f(\sup I_1) - f(\inf I_1) + f(\sup I_2) - f(\inf I_2) + \dots + f(\sup I_n) - f(\inf I_n)]$$

$$= \frac{b-a}{n} [f(b) - f(a)] \le \epsilon \quad \text{se} \quad n \quad \text{\'e grande}.$$

NOTA.

(i) E misurabile con |E| = 0 $\Rightarrow \int_{E} f = 0 \quad \forall f \in \mathcal{I}_{loc}$ perché $|\int_{\mathbf{R}} f \chi_{E}| \leq \sup_{\mathbf{R}} |f| \int_{\mathbf{R}} \chi_{E} = 0$. In particolare, se f é integrabile, e I = [a, b], a < b, J = (a, b), allora $\int_{I} f = \int_{J} f$, perché $\int_{I} f = \int_{\mathbf{R}} f \chi_{[a,b]} = \int_{\mathbf{R}} f \chi_{(a,b)} + \int_{\mathbf{R}} f \chi_{\{a,b\}} = \int_{\mathbf{R}} f \chi_{(a,b)}$. É $\int_{I} f = \int_{J} f$ anche se J = [a, b) o J = (a, b].

Piú in generale, se f, g sono integrabili su $E \in \Sigma$ é vero che

$$(ii) N := \{x \in E : f(x) \neq g(x)\} \in \Sigma e |N| = 0 \Rightarrow \int_E f = \int_E g(x) dx$$

giacché
$$\int_E f - g = \int_E (f - g) |\chi_N| = 0.$$

Riassumiamo ora le proprietá dell'applicazione

$$\Sigma \times \mathcal{I}_{loc} \ni (E, f) \to \int_E f$$

Siano $f, g \in \mathcal{I}_{loc}, \quad E, F \in \Sigma.$ Allora Teorema.

(i)
$$\int_{E} \alpha f + \beta g = \alpha \int_{E} f + \beta \int_{E} g$$
 $\forall \alpha, \beta \in \mathbf{R}$ (linearitá)

(ii)
$$|E \cap F| = 0 \implies \int_{E \cap F} f = \int_{E} f + \int_{E} g$$
 (additivitá)

(iii)
$$f(x) \ge 0 \quad \forall x \in E \quad \Rightarrow \quad \int_E f \ge 0$$
 (positivitá)

$$f(x) \ge g(x) \quad \forall x \in E \quad \Rightarrow \quad \int\limits_E f \ge \int\limits_E g$$
 (monotonia)

$$(iv) \quad |\int\limits_E f| \le \int\limits_E |f| \le |E| \times \sup\limits_E |f|$$
 (continuitá)

Prova.

(i) Segue da

(i) Segue da
$$\int (\alpha f + \beta g) \chi_E = \alpha \int f \chi_E + \beta \int g \chi_E.$$
(ii) Infatti,
$$\int_{A \cap B} f = 0 \quad \text{e quindi} \quad \int_{A \cup B} f = \int_{\mathbf{R}} f \chi_{A \cup B} =$$

$$= \int_{\mathbf{R}} f(\chi_A + \chi_B - \chi_{A \cap B}) = \int_{\mathbf{R}} f \chi_A + \int_{\mathbf{R}} f \chi_B + \int_{A \cap B} f = \int_{A} f + \int_{B} f$$

- (iii) La prima delle (iii) segue dalla definizione di integrale, mentre la seconda usa, in piú, la linearitá dell'integrale.
- (iv) La prima diseguaglianza segue da $-|f(x)| \le f(x) \le |f(x)| \, \forall \, x \in E.$

$$|f(x)|\chi_E(x) \le \sup_E |f(x)|\chi_E(x) \ \forall x \quad \Rightarrow \quad \int_E |f| \le \sup_E |f| \int \chi_E \le \sup_E |f| \times |E|$$

Teorema della media Sia I = [a, b]. Siano f, g continue in $I, g(x) \ge 0 \forall x \in I$. Allora

$$\exists \xi \in I: \ \int_I \ fg \ = \ f(\xi) \int_I \ g \qquad \text{In particolare} \quad \exists \xi \in I: \ \int_I \ f \ = \ f(\xi) l(I)$$

Prova. $f \in g$, prolungate a zero fuori di I, sono integrabili, e quindi sono integrabili su I. Per il teorema di Weierstrass, f é dotata di minimo e di massimo su I, e si $(\min_I f)g(x)\chi_I(x) \leq f(x)g(x)\chi_I(x) \leq (\max_I f)g(x)\chi_I(x) \quad \forall x \in \mathbf{R}.$ Quindi, passando agli integrali ed usando la linearitá,

$$\min_{I} f \int_{I} g \le \int_{I} f g \le \max_{I} f \int_{I} g$$

Ora, possiamo supporre $\int_I g > 0$ (altrimenti non c'e niente da dimostrare) e concludere che $\frac{\int_I fg}{\int_I g} \in [\min_I f, \max_I f]$. La tesi segue allora dal Teorema del valore intermedio.

Per la seconda parte, basta osservare che, presa $g \equiv 1$, $\int_I g = l(I)$

INTEGRALI ORIENTATI

Sia $a \leq b$, f una funzione integrabile. Scriveremo anche

$$\int_a^b f := \int_{\mathbf{R}} f \chi_{(a,b)}, \quad \int_b^a f := -\int_a^b f$$

Le proprietá viste finora per I(f) si riscrivono in modo ovvio per gli integrali orientati. Notiamo ad esempio che $f \leq g, a > b \Rightarrow \int_a^b f \geq \int_a^b g$.

Di fondamentale importanza é la seguente riformulazione della additivitá: se $f: \mathbf{R} \to \mathbf{R}$ é integrabile e $a, b, c \in \mathbf{R}$ allora

$$(\diamond) \qquad \int_a^b f + \int_b^c f + \int_c^a f = 0 \qquad (\diamond)$$

Infatti, se due tra a, b, c coincidono, tale relazione é vera per definizione. Altrimenti, uno dei tre é strettamente compreso tra gli altri due. Diciamo, per fissare le idee, che sia c ad essere compreso tra a e b. Quindi (\diamond) si riscrive

$$\int_a^b f = \int_a^c f + \int_c^b f$$

che é vera perché

$$\int_{a}^{b} f = \int_{\mathbf{R}} f \chi_{[a,b]} = \int_{\mathbf{R}} f(\chi_{[a,c)} + \chi_{[c,b]}) =$$

$$= \int_{\mathbf{R}} f \chi_{[a,c)} + \int_{\mathbf{R}} f \chi_{[c,b]} = \int_{a}^{c} f + \int_{c}^{b} f$$

IL TEOREMA FONDAMENTALE DEL CALCOLO

TFC 1.

Sia f é limitata e integrabile in $[a,b], x_0 \in [a,b]$. La funzione

$$F(x) := \int_{x_0}^{x} f(t)dt$$

- i) é definita e Lipschitziana (e quindi continua) in [a, b]
- ii) é derivabile in $x \in (a,b)$, se f é continua in x, ed in tal caso F'(x) = f(x)

Dimostrazione. Usando l'additivitá dell'integrale, si ottiene

$$|F(x) - F(y)| = |\int_{x_0}^{x} f(t)dt - \int_{x_0}^{y} f(t)dt| = |\int_{y}^{x} f(t)dt| \le \left(\sup_{[a,b]} |f|\right) |x - y|$$

$$F(x+h) = F(x) + \int_{x}^{x+h} f(t)dt + f(x)h - f(x) \int_{x}^{x+h} dt = F(x) + f(x)h + \int_{x}^{x+h} [f(t) - f(x)]dt$$

e quindi, se f é continua in x, $|\int_x^{x+h} [f(t) - f(x)] dt| \le |h| \sup_{\{t:|t-x|\le |h|} |f(t) - f(x)| = \circ(|h|)$ e quindi F é derivabile in x con F'(x) = f(x). Si puó quindi scrivere

$$\frac{d}{dx} \int_{x_0}^{x} f(t)dt = f(x)$$

in ogni punto x in cui f é continua.

Corollario. Sia f continua in [a, b]. Allora f é dotata di primitiva in (a, b).

NOTA. Se φ, ψ sono derivabili ed f é continua, allora

$$\frac{d}{dx} \int_{\psi(x)}^{\varphi(x)} f(t)dt = f(\varphi(x))\varphi'(x) - f(\psi(x))\psi'(x)$$

Infatti, se $F(x) := \int_{x_0}^x f(t)dt$, dal TFC e dalla regola della catena, segue $\frac{d}{dx} \int_{\psi(x)}^{\varphi(x)} f(t)dt = \frac{d}{dx} [F(\varphi(x)) - F(\psi(x))] = F'(\varphi(x))\varphi'(x) - F'(\psi(x))\psi'(x) = f(\varphi(x))\varphi'(x) - f(\psi(x))\psi'(x)$.