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The Uneasy Relationship 
Between Mathematics and 
Cryptography
Neal Koblitz

D
uring the first six thousand years—
until the invention of public key in 
the 1970s—the mathematics used in 
cryptography was generally not very 
interesting. Well into the twentieth 

century cryptographers had little use for any 
of the concepts that were at the cutting edge of 
mathematics. Indeed, mathematicians looking at 
cryptography in those years might have found jus-
tification for Paul Halmos’ infamous title “Applied 
Mathematics Is Bad Mathematics.”

There were some exceptions. In the 1940s Alan 
Turing, the father of computer science, worked 
extensively in cryptography and, in particular, 
showed how to use sophisticated statistical tech-
niques to crack a code; and Claude Shannon, the 
father of information theory, worked on the foun-
dations of cryptography.

In the same decade G. H. Hardy wrote in A 
Mathematician’s Apology that “both Gauss and 
lesser mathematicians may be justified in rejoicing 
that there is one science [number theory] at any 
rate, and that their own, whose very remoteness 
from ordinary human activities should keep it 
gentle and clean.” In Hardy’s day most applications 
of mathematics were military, and as a pacifist 
he was pleased that number theory was studied 
not for its practical uses, but only for its intrinsic 
aesthetic appeal.

This image of number theory as “gentle and 
clean” took a big hit in 1977 when three com-

puter scientists at the Massachusetts Institute 
of Technology—Ron Rivest, Adi Shamir, and Len 
Adleman—invented a radically new cryptographic 
system. An article in Scientific American by Mar-
tin Gardner described the RSA idea, explained 
its significance, and caused a sudden upsurge in 
popular interest in both cryptography and number 
theory.

In those years RSA was the most important 
way to achieve what came to be called “public key 
cryptography”. Earlier systems for scrambling 
messages worked well in military or diplomatic 
applications, where there was a fixed hierarchy of 
people who were authorized to know the secret 
keys. But by the 1970s, with large sections of the 
economy rapidly becoming computerized, the 
limitations of classical cryptography were com-
ing to the fore. For example, suppose that a large 
network of banks wants to be able to exchange 
encrypted messages authorizing money transfers. 
In traditional cryptography any pair of banks must 
have its own secret set of keys that they agree on 
and exchange using a trusted courier. The number 
of possible pairs of banks could easily be in the 
hundreds of millions. So the earlier type of cryp-
tography, called “private key” (or “symmetric key”), 
becomes extremely unwieldy.

In public key cryptography, the key needed to 
scramble a message is public information. Each 
user of the system (for example, each bank) has 
its own public key, which is listed in a directory 
much like someone’s phone number. Anybody can 
encrypt a message using the public key. However, 
the unscrambling process requires knowledge of a 
totally different key, which the user keeps secret. 
The procedure for scrambling a message is called 
a “trapdoor one-way function”. This means that 
once we look up the bank’s public key it is com-
putationally easy (with the help of a computer) for 
us to send it an encrypted message. If, however, 
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we want to go the other way—unscramble the 
message—this is computationally infeasible un-
less we possess an additional bit of information, 
namely the secret key.

Rivest, Shamir, and Adleman devised a clever—
but also simple—way to make a trapdoor one-way 
function using elementary number theory. Their 
construction is based on multiplication of two 
large prime numbers p​ and q​ to get a composite 
number N ​= ​p​q​. One has to assume that this is a 
one-way process in the sense that factoring N​ to 
get p​ and q​ is very hard.

Thus, the security of RSA cryptography was en-
tirely dependent on the presumed difficulty of fac-
toring large integers. For this reason the invention 
of RSA gave a tremendous stimulus to the study 
of methods to factor integers, as well as methods 
to generate large random primes. During the early 
1980s the highlights of mathematical cryptogra-
phy were for the most part in this area—for ex-
ample, Carl Pomerance’s development of improved 
sieving techniques for index-calculus factorization 
algorithms, and the Adleman-Pomerance-Rumely 
deterministic nearly-polytime primality proof by 
means of Jacobi sums.

In a somewhat different vein Don Coppersmith 
devised an algorithm that could find discrete 
logarithms in the multiplicative group of F2n​ in 
time exp​


n​1/3+​


, which was much faster than 

earlier index-calculus methods. This also had 
cryptographic significance, because ElGamal had 
proposed an alternative to RSA encryption that 
was based on the presumed difficulty of inverting 
the function x ​ ​g​x​ (where g​ is fixed) in a finite 
field.

In 1984 Hendrik Lenstra distributed a one-page 
description of a new method he had developed 

for factoring large integers using elliptic curves. 
The clever and elegant algorithm was simple 
enough that I could understand it from the one-
page outline, although a detailed analysis of its 
running time took many more pages. This was the 
first time that elliptic curves had been used in cryp-
tography, and when I read the page that Lenstra 
had sent me I felt that at one stroke he had raised 
the mathematical sophistication in cryptography 
to a whole new level.

Shortly after that I left for a semester in the 
Soviet Union, where no one worked openly on 
cryptography. I continued to think about the 
subject, though, and soon it occurred to me that 
it should be possible to use elliptic curves in an 
entirely different way from what Lenstra had done, 
namely, to construct systems based on the hard 
problem of finding logarithms on the curve. Since 
I knew no one in the Soviet Union I could talk with 
about this, I wrote a letter to Andrew Odlyzko, 
then at Bell Labs, describing my idea for using the 

elliptic curve group to construct a cryptosystem. 
Odlyzko was one of the few mathematicians at 
that time who had done major work in both theo-
retical and practical areas. Nowadays it’s not so 
unusual to bridge pure and applied mathematics, 
but in the mid-1980s Odlyzko was unique in this 
respect among the mathematicians whom I knew 
personally.

Email didn’t yet exist, and letters between the 
U.S.S.R. and the U.S. took a couple of weeks in each 
direction. So it wasn’t until a month later that I re-
ceived a reply from Odlyzko. He said that my idea 
for a new type of cryptography was a good one, 
and in fact at the same time Victor Miller of IBM 
was proposing exactly the same thing. The appeal 
of elliptic curve cryptography (ECC) was that the 
elliptic curve discrete logarithm problem appeared 
(and still appears twenty-two years later) to be a 
substantially more difficult problem than integer 
factorization.

At first neither Victor nor I imagined that ECC 
would be of commercial importance; rather, we 
saw it as a nice theoretical construction to think 
about. In retrospect, what was surprising was not 
that I had no notion of commercializing the idea, 
but that Victor Miller, who worked at IBM, wasn’t 
thinking in practical terms. He didn’t even apply 
for a patent, although then as now IBM’s policy 
was to strongly encourage all its employees to get 
patents for everything they possibly could, even on 
the flimsiest of grounds. So the question of turning 
ECC into a commercial product would wait until 
other people became interested in it.

After I returned to the U.S., I started attending 
cryptography conferences. The most impor-

tant were the annual Crypto meetings held each 
August in Santa Barbara, California. In the 1980s I 
found the atmosphere at Crypto to be refreshing 
and stimulating. It was a truly multidisciplinary 
meeting, with people from industry, government, 
and academia in fields ranging from math and 
computer science to engineering and business.

There was an element of “forbidden fruit” in the 
first decade of the Crypto conferences. At the be-
ginning of the 1980s the National Security Agency 
(NSA) had made a heavy-handed (but unsuccessful) 
attempt to restrict open research in cryptography. 
Thus, the founding of the Crypto conferences in 
1981 was itself an act of defiance.

The free-spirited tone of the meetings in those 
years reflected the colorful and eccentric per-
sonalities of some of the founders of and early 
researchers in public key cryptography. One such 
person was Whit Diffie, a brilliant, offbeat, and un-
predictable libertarian who in 1976 had coauthored 
(with Martin Hellman) the most famous paper in 
the history of cryptography. Diffie used to run the 
“rump session”, where informal, irreverent, and 
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often humorous presentations were the norm. 
There was heckling, and at one point Whit had to 
impose some restrictions on what could be thrown 
at a speaker (empty beer cans were okay, but not 
full ones).

The corporate influence was much weaker then. 
There was a long lag between the invention of 
public key cryptography and its acceptance in the 
commercial world; until the late 1980s businesses 
generally had little interest in the issue of data 
security. Most researchers in cryptography had 
never signed a “nondisclosure agreement” limiting 
what they could say publicly—in fact, most of us 
had never heard of such a thing.

It was at Crypto where I met Scott Vanstone, 
a mathematician at the University of Waterloo 
who led a multidisciplinary group that had imple-
mented improved algorithms for arithmetic in 
finite fields. With that experience they were well 
equipped to work on ECC. Vanstone, along with 
two other Waterloo professors, one in math and 
one in engineering, formed a company, now called 
the Certicom Corporation, to develop and market 
ECC.

Elliptic curves are not the only kind of curves 
that can be used in cryptography. In 1989, I pro-
posed using the jacobian groups of hyperelliptic 
curves. In recent years a lot of research, especially 
in Germany, has been devoted to hyperelliptic 
curve cryptosystems.

In early September 1998, a few days before I was 
to leave for a year’s sabbatical at the University 

of Waterloo, I received an email from Joe Silver-
man, a mathematician at Brown University who 
had written an excellent two-volume graduate 
textbook on elliptic curves. His message outlined 
a new algorithm he was proposing to solve the el-
liptic curve discrete log problem—in other words, 
to break elliptic curve cryptography.

Silverman called his algorithm “xedni calculus” 
because that’s “index” spelled backwards. His 
general idea was to perform steps that are similar 
to those in index-calculus algorithms, but in the 
reverse order.

The reason Silverman thought that his algo-
rithm might possibly be efficient was based on 
a deep and difficult relationship called the Birch 
and Swinnerton-Dyer Conjecture. Ironically, in 
a book titled Algebraic Aspects of Cryptography 
that I had published just a few months before, I 
had included a discussion of this conjecture in a 
section that I called “Cultural Background”. My 
tone was apologetic to my readers for taking their 
time with mathematics that, while of great inter-
est to theoreticians, was unlikely, I said, ever to be 
applied to cryptography. Then within a year I was 
intensively studying Silverman’s attack on ECC 
that was based precisely on the idea behind that 

conjecture. This shows that it is unwise to predict 
that a certain type of mathematics will never be 
used in cryptography.

Scott Vanstone and the others at Certicom 
were extremely worried about Joe Silverman’s 
algorithm, because they feared that ECC skeptics 
and competitors—especially people at the RSA 
company—would seize upon it as an argument 
against the use of elliptic curves.

The first few months of my sabbatical year were 
devoted to a thorough analysis of the Silverman 
algorithm. In October I found a theoretical argu-
ment, using the concept of the “height” of points, 
that showed that for very, very large elliptic curve 
groups the xedni approach would be extremely 
inefficient. However, with this general line of rea-
soning I couldn’t be specific about the sizes for 
which the algorithm would be impractical. It was 
conceivable, although I thought it unlikely, that the 
algorithm would not be totally infeasible for curves 
in the size range that’s used in cryptography.

It is important to understand that an asymptotic 
result—such as my theoretical argument that es-
tablished the inefficiency of xedni in the limit as 
the size of the group increases—cannot be relied 
upon as any kind of guarantee of security. Rather, 
one must analyze the algorithm for elliptic curves 
of the size employed in cryptography. The asymp-
totic argument might be helpful as a guide—and 
certainly it made us hopeful that we would be 
able to show that xedni is impractical for the 
curves used in the real world—but it cannot serve 
as a substitute for a concrete security analysis. 
It turned out to be much harder and more time- 
consuming to carry out this analysis than it had 
been to come up with the theoretical argument for 
the asymptotic result.

In order to answer the crucial question of effi-
ciency of xedni for elliptic curves in the practical 
range, I worked with a multidisciplinary group of 
young mathematicians and computer scientists 
at the Centre for Applied Cryptographic Research 
at Waterloo, especially Edlyn Teske, Andreas 
Stein, and Michael Jacobson. We were in constant 
communication with Joe Silverman, who gave us 
suggestions on how best to test his algorithm. 
Finally, by mid-December enough computations 
were in, and Silverman agreed that his algorithm 
was impractical. In fact, that’s an understatement 
— it turned out that his algorithm was probably 
the slowest one that had ever been thought up to 
find elliptic curve discrete logarithms.

Nevertheless, it was an elegant idea, and our 
study of xedni was a stimulating project. Silver-
man’s attempted attack on elliptic curve cryptog-
raphy illustrated the increasing use of arithmetic 
algebraic geometry in public key cryptography.

In the 1990s another example of the greater 
sophistication of mathematical cryptography was 
the proposal of Gerhard Frey to use Weil descent 
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to find discrete logs on elliptic curves. Subexpo-
nential algorithms for discrete logs on high-genus 
hyperelliptic curves had already been developed 
by Adleman and Huang, and Frey’s idea was to 
transfer the discrete log problem on an elliptic 
curve to one on a high-genus hyperelliptic curve. 
Frey’s proposal was studied by Galbraith, Gaudry, 
Hess, Menezes, Smart, Teske, and others, and was 
shown to lead to a faster algorithm in a small 
number of cases.

Progress was also made in finding very quick 
methods to count the number of points on a ran-
domly generated elliptic curve. The first step in 
this direction was taken in a 1985 paper by Schoof, 
who used division polynomials. Subsequently, bet-
ter algorithms were devised using modular forms 
and p​-adic techniques.

One indication of the amount of research de-
voted to cryptographic applications of elliptic 
curves in recent years is the annual ECC confer-
ence series, which is now in its eleventh year (see 
http://www.cacr.math.uwaterloo.ca).

A whole new type of elliptic curve cryptography 
was developed starting in about 2000, following 
ideas of Antoine Joux, Dan Boneh, and Matt Frank-
lin. It turned out that the Weil and Tate pairings 
on elliptic curves could be used to achieve crypto-
graphic functionality that had not been possible 
before (or had been done inefficiently), notably, 
identity-based encryption (where one’s public key 
is, say, one’s email address) and extra-short digital 
signatures. Pairing-based cryptography has been 
an active area of research; in July 2007 the first of 
a series of conferences devoted entirely to this type 
of elliptic curve cryptography was held in Japan.

Despite these wonderful examples of applica-
tions of interesting mathematics to cryptog-

raphy, there has also been a downside—in fact, 
two downsides. That will be the subject of the 
remainder of this article.

First of all, there has been a bandwagon effect. 
Once in the 1990s the Canadian Natural Sciences 
and Engineering Research Council sent me a large 
proposal to review from a group that was led by 
a prominent mathematician who claimed that 
the proposed research would be important for 
cryptography. After reading the project descrip-
tion, it was clear to me that (1) the proposal was 
strong from a mathematical standpoint, and (2) 
they didn’t know beans about cryptography. It 
was sad that some mathematicians seemed to feel 
pressured into portraying their research as being 
somehow related to cryptography.

In the late 1980s NSA realized that it had erred 
in antagonizing the mathematical community 
several years before, and it wanted to patch up 
relations. In academia, the best way to mend fences 
is to give out money. So they set up a system of 

grants that has become a major source of funding 
in certain fields, such as number theory.

For the most part it’s good when more money 
comes into mathematics—whatever the motives of 
the donor. However, there can be subtle negative 
effects as well. Many years ago William Thurston 
and others warned us of the dangers of excessive 
reliance on military funding. And last year in the 
Notices David Eisenbud wrote what I thought was 
an eloquent rebuttal of the argument (based on the 
supposed advantages for fund-raising) in favor of 
an AMS Fellows program.

In the early 1990s I received a proposal for NSA 
funding for a conference on Drinfeld modules. 
The conference seemed like a good idea, and my 
review was generally positive. However, the tone of 
part of the proposal bothered me. In a section on 
“the effect of the conference on the competitive-
ness of American mathematics,” the writers had 
attempted to divide the field between American 
and “non-American” mathematics and argue for 
the conference on the grounds that it would in-
crease the competitive standing of the former. I 
commented:

Mathematics is perhaps the most in-
ternational of intellectual disciplines. 
Interaction and joint work easily cross 
national boundaries. Thus, it is usually 
impossible to determine—and serves 
no useful purpose to try to determine—
the proportion of credit to be attributed 
to each country. Such a chauvinistic 
tone is not in keeping with the coop-
erative and international spirit of the 
mathematical profession…[W]hether 
they wrote this section out of sincerely 
felt concern for the “competitiveness 
of American mathematics” or to cater 
to what they guessed would be the 
mindset at NSA, I really hope that in 
the future they delete such nonsense 
from project proposals.

Apparently the availability of money from NSA 
had had a corrupting effect on some mathemati-
cians, who started to think in nationalistic and 
jingoistic terms so that they could write their 
proposal in a way that they thought would appeal 
to NSA.

At the same time that mathematicians were 
trying to jump on the crypto bandwagon, 

cryptographers were discovering the power that 
an aura of mathematical certainty can have in 
competitive situations. They began to prove math-
ematical theorems that supposedly guaranteed the 
security of their system—the idea being to con-
vince outsiders that their system was 100% safe. 
This is the second “dark side” of the relationship 

http://www.cacr.math.uwaterloo.ca
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see time passing as a hummingbird does. Top 
researchers expect that practically every confer-
ence should include one or more quickie papers 
by them or their students.

In recent years Alfred Menezes and I have writ-
ten a series of papers that critique the subfield 

of cryptography known as provable security. 
(See http://eprint.iacr.org/2004/152.pdf, 
http://eprint.iacr.org/2006/229.pdf, and 
http://eprint.iacr.org/2006/230.pdf.) Al-
though the papers have been widely downloaded 
and most of the reaction has been favorable, our 
work in this area has not been welcomed by every-
one. Many specialists in theoretical cryptography 
have resented our intrusion into their field.

In the 1980s it seemed that all cryptographers 
were glad to see the influx of mathematicians. 
Twenty years later, however, I have the impres-
sion that some of them wish that we would just 
go away.

The idea of “provable security” is to give a 
mathematically rigorous proof of a type of condi-
tional guarantee of the security of a cryptographic 
protocol. It is conditional in that it typically has the 
form “our protocol is immune from an attack of 
type X provided that the mathematical problem Y 
is computationally hard.”

Here the word “protocol” means a specific 
sequence of steps that people carry out in a par-
ticular application of cryptography. From the early 
years of public key cryptography it has been tra-
ditional to call two users A and B of the system by 
the names “Alice” and “Bob.” So a description of a 
protocol might go as follows: “Alice sends Bob…, 
then Bob responds with…, then Alice responds 
with…,” and so on.

The form that proofs of security take is what 
is known as a reduction. Reductions from one 
problem to another occur implicitly throughout 
mathematics; in computer science, reductions are 
the main tool used to compare and classify prob-
lems according to their difficulty.

In provable security papers the authors try to 
prove that a mathematical problem that is widely 
believed to be computationally hard, such as 
factoring large integers or finding elliptic curve 
discrete logs, reduces to a successful attack of a 
prescribed type on their cryptographic protocol. 
This means that anyone who could break their 
cryptosystem could also, with only a little extra 
effort, solve the supposedly hard math problem. 
Since that is assumed not to be possible, the con-
clusion is that the protocol is provably secure.

For mathematicians who study the provable 
security literature, as Menezes and I did, there are 
several reasons to be uneasy. Most obviously, a 
provable security theorem applies only to attacks 
of a specified sort and says nothing about clever 

between math and cryptography that developed 
as each group was looking for ways to exploit the 
status of the other group in order to advance its 
interests. Before explaining this use (or misuse) of 
mathematics in more detail, I’d like to comment 
on a clash of research cultures between math and 
cryptography.

In 1996 I was the program chair of Crypto. To 
someone trained in mathematics this was an unset-
tling experience. About two-thirds of the submis-
sions arrived by courier mail within 48 hours of 
the final deadline. Many had obviously been rushed 
and were full of typesetting errors. One author had 
sent me only the odd-numbered pages. A few had 
violated the requirement of anonymity (there was 
a policy of double-blind reviews). Several had disre-
garded the guidelines that had been sent to them. 
And in many cases the papers had little originality; 
they were tiny improvements over something the 
same authors had published the year before or a 
minor modification of someone else’s work.

In some ways the situation has gotten even 
worse with electronic submissions. Alfred Mene-
zes, the program chair for Crypto 2007, told me 
that of the 197 submissions, 103 arrived within 
eleven hours of the deadline and 35 arrived within 
the very last hour.

Mathematical publishing works differently. In 
the first place, most articles appear in journals, 
not conference proceedings—and journals don’t 
have deadlines. In the second place, people in 
mathematics tend to have a low opinion of au-
thors who rush into print a large number of small 
articles—the derogatory term is LPU (least publish-
able unit)—rather than waiting until they are ready 
to publish a complete treatment of the subject in 
a single article.

Math departments usually believe the
Conjecture. For the development of mathemat-

ics it is better for someone to publish one excellent 
paper in n​ years than n​ nearly worthless papers 
in one year.

In certain other fields of science—including, 
unfortunately, computer science and cryptogra-
phy—the analogous conjecture, while most likely 
true, is not widely believed.

Cryptography has been heavily influenced by 
the disciplinary culture of computer science, which 
is quite different from that of mathematics. Some 
of the explanation for the divergence between the 
two fields might be a matter of time scale. Math-
ematicians, who are part of a rich tradition going 
back thousands of years, perceive the passing of 
time as an elephant does. In the grand scheme 
of things it is of little consequence whether their 
big paper appears this year or next. Computer 
science and cryptography, on the other hand, are 
influenced by the corporate world of high technol-
ogy, with its frenetic rush to be the first to bring 
some new gadget to market. Cryptographers, thus, 

http://eprint.iacr.org/2004/152.pdf
http://eprint.iacr.org/2006/229.pdf
http://eprint.iacr.org/2006/230.pdf
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attacks that might not be included in the theorem. 
Moreover, the result is conditional in a strong 
sense. Unlike in mathematics, where conditional 
theorems usually mean something like “assuming 
that the Riemann Hypothesis is true” (which it 
almost certainly is), in cryptography the condition 
is of the sort “assuming that no one finds an im-
proved algorithm for a certain math problem”—and 
that’s anyone’s guess. History has not been kind to 
the latter type of assumption. For example, in the 
late 1980s and early 1990s the development of the 
number field sieve for factoring an RSA modulus 
N​ resulted in a dramatic decrease of the running 
time of index-calculus factoring algorithms from 
exp​


(log​N​)1/2+​


 to exp​


(log​N​)1/3+​


.

Provable security results are often used to im-
press outsiders who have little understanding of 
their true meaning. Suppose that some people are 
using public key cryptography to protect credit 
card numbers in e-commerce, maintain confiden-
tiality of medical records, or create digital signa-
tures. How can they be certain that the system 
is secure? To nonspecialists “provable security” 
means that there’s a guarantee that’s every bit as 
ironclad as a proof of the Pythagorean Theorem. 
In our view this is very misleading.

There’s also a difficulty that comes from the 
disciplinary culture of cryptography that I com-
mented on before. People usually write papers 
under deadline pressure—more the way a journal-
ist writes than the way a mathematician does. And 
they rarely read other authors’ papers carefully. 
As a result even the best researchers sometimes 
publish papers with serious errors that go unde-
tected for years.

In 1994 two of the leading specialists in the 
new area of provable security, Mihir Bellare and 
Philip Rogaway, proposed an RSA-based encryp-
tion method that they called OAEP (the O stands 
for “optimal,” a much overused word in the over-
hyped high-tech world). They held the view that 
security proofs should be sufficiently detailed so 
that one can get concrete guarantees for speci-
fied key sizes and choices of parameters. Partly 
because of the security proof that accompanied 
OAEP, it was adopted for use in a new standard of 
Visa and MasterCard. It turned out, however, that 
the proof was fallacious, as Victor Shoup discov-
ered seven years later. This was a bit of a scandal 
and caused many people to wonder about quality 
control in provable security papers.

If a careful and astute reader is watching 
closely—and Alfred Menezes is such a reader—
then errors in proofs are discovered much more 
quickly. A case that in many ways is even more 
striking than that of OAEP is the recent flap over 
an “improved” set of key agreement protocols de-
signed by Hugo Krawczyk. In February 2005 Kraw-
czyk, who works for IBM and is a top researcher 
in provable security, submitted a paper to Crypto 

2005 in which he claimed to have found flaws in 
the Menezes-Qu-Vanstone (MQV) key agreement 
system. He replaced it with a modified version 
(HMQV) that he claimed was both more efficient 
and provably secure. If his claims had been valid, 
this would have been a major embarrassment not 
only to Menezes and his coauthors, but also to 
NSA, which had licensed MQV from Certicom and 
whose experts had studied it carefully.

Krawczyk did not send his paper to Menezes 
or the other designers of MQV before submitting 
it, although to do so would be considered a stan-
dard courtesy in the scientific world. But what to 
me seemed more scandalous was that neither did 
anyone on the Crypto 2005 program committee. 
They apparently rushed to accept the paper after 
only a superficial reading. When Menezes finally 
got a copy of the paper—after it had been accepted 
by the program committee—he immediately saw 
that the so-called flaws in MQV that Krawczyk 
listed either were based on misunderstandings or 
else were picayune theoretical points that had no 
practical significance.

More importantly, Menezes found that the 
paper’s main argument was fallacious. Krawczyk 
claimed that in his modified key agreement sys-
tem he could increase efficiency by discarding a 
certain security check (called a “public key valida-
tion”) that had been put into MQV so as to prevent 
known attacks. It was his security “proof” that 
gave him the confidence to do this. But Menezes 
quickly found that certain of the HMQV protocols 
succumb to the same attacks that MQV would have 
if those security checks had not been put in. After 
seeing that some of the conclusions of Krawczyk’s 
theorems were false, Menezes started reading the 
“proof” carefully until he came upon a blatant gap 
in the argument.

Both Krawczyk and the referees on the pro-
gram committee had been so mesmerized by the 
“proof” that they failed to use common sense. 
Anyone working in cryptography should think 
very carefully before dropping a validation step 
that had been put in to prevent security problems. 
Certainly someone with Krawczyk’s experience and 
expertise would never have made such a blunder 
if he hadn’t been over-confident because of his 
“proof” of security. As with many other over-hyped 
ideas—fallout shelters in the 1950s, missile shields 
in the 1980s—“proofs” of the security of a crypto-
graphic protocol often give a false confidence that 
blinds people to the true dangers.

In our first paper on provable security, Menezes 
and I objected to the terminology:

There are two unfortunate connota-
tions of “proof” that come from math-
ematics and make the word inappro-
priate in discussions of the security of 
cryptographic systems. The first is the 
notion of 100% certainty. Most people 
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theorem, and sometimes the conclusions are not 
what one would hope for. In the case of the pseudo-
random bit generator the analysis (if one assumes 
that log2​(log2​N​) bits are taken in each iteration, as 
recommended) leads to an absurd lower bound on 
the amount of time that an adversary would need 
in order to successfully attack the generator.

The story of our first paper on “provable secu-
rity” has an amusing postscript. Just before it 

was due to appear in J. Cryptology—and almost 
two years after it was accepted for publication—a 
member of the editorial board objected strongly 
to its acceptance by the journal. Although it was 
too late for him to block publication, the editor-
in-chief was sufficiently worried that he wrote an 
unprecedented Editor’s Note at the beginning of 
the January 2007 issue in which he justified his 
decision to go ahead with publication.

The editorial board member who objected to 
our article was Oded Goldreich of the Weizmann 
Institute, who is one of Israel’s leading computer 
scientists and a top name (some would say the 
top name) in theoretical cryptography. When he 
was unable to prevent our article from appearing 
in J. Cryptology, he posted on the cryptography 
eprint server a 12-page essay titled “On Post- 
Modern Cryptography” that lashed out at us on 
philosophical grounds. (See http://eprint.
iacr.org/2006/461.) He accused Menezes and 
me of being “post-modern” and “reactionary” be-
cause our criticisms of provable security “play to 
the hands of the opponents of progress.”

The part of our paper that seems to have in-
censed Goldreich the most was our explanation of 
why we were not persuaded by certain arguments 
that he and others had made in order to under-
mine the so-called “random oracle” assumption. 
The random oracle assumption relates to what are 
called “hash functions” (short strings of symbols 
that act as a sort of “fingerprint” of a message). 
This assumption essentially says that the finger-
print that a well-constructed hash function gives 
is in practice indistinguishable from a random 
string of symbols. This is an intuitively reasonable 
assumption, and in our paper we argued that all 
attempts to undermine it—even ones that the au-
thors claimed to be of practical relevance—in fact 
use constructions that violate basic cryptographic 
principles and so have no relation to real-world 
cryptography. We concluded our discussion by 
saying that “our confidence in the random oracle 
assumption is unshaken.”

Goldreich responded to this by bringing down 
the wrath of the Old Testament upon us. Accusing 
us of turning the random oracle into a “fetish”, he 
recounted a story from the Bible that our paper 
reminded him of (in what follows I’ve preserved 

not working in a given specialty regard 
a “theorem” that is “proved” as some-
thing that they should accept without 
question. The second connotation is of 
an intricate, highly technical sequence 
of steps. From a psychological and 
sociological point of view, a “proof of 
a theorem” is an intimidating notion: 
it is something that no one outside an 
elite of narrow specialists is likely to 
understand in detail or raise doubts 
about. That is, a “proof” is something 
that a non-specialist does not expect to 
really have to read and think about.

The word “argument”, which we pre-
fer here, has very different connota-
tions. An “argument” is something that 
should be broadly accessible. And even 
a reasonably convincing argument is 
not assumed to be 100% definitive. In 
contrast to a “proof of a theorem”, an 
“argument supporting a claim” sug-
gests something that any well-educated 
person can try to understand and per-
haps question.

Menezes and I also investigated some subtler 
problems of interpretation of provable security 
results. Even when the proofs are correct, they 
often mask a big “tightness” gap. This means that 
in the reduction argument the attack on the pro-
tocol must be repeated millions of times in order 
to solve the hard computational problem. In this 
case the practical guarantee that one gets is very 
weak. Menezes found some extreme examples of 
this “nontightness” problem in a few well-known 
papers on random number generators. In one 
paper it turned out that, if you carefully follow the 
authors’ argument with recommended parameter 
values, all they’ve really proven is that an attacker 
would need time at least 10−40​ nanoseconds to 
break the system. That’s much less time than it 
takes light to travel a micron.

What had happened was that people had made 
recommendations for parameter values that were 
based on an asymptotic theorem. That theorem 
said that in the limit as N​ approaches infinity, you 
can securely generate O (log​log​N​) pseudorandom 
bits each time you perform a squaring modulo 
the composite number N​. (Here “securely” means, 
roughly speaking, that no one can distinguish be-
tween the sequence and a truly random one by an 
algorithm that runs in reasonable time.) However, 
as I mentioned when discussing Joe Silverman’s 
xedni calculus, it is fallacious to use an asymptotic 
result as a practical guarantee of security. Rather, 
one needs to perform a detailed analysis using 
realistic ranges for the parameters. It is often a 
lot harder (as it was for xedni) to carry out this 
concrete analysis than to prove the asymptotic 

http://eprint. iacr.org/2006/461
http://eprint. iacr.org/2006/461
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the emphasis, capitalization, and spelling of the 
original):

Indeed, what happened with the Ran-
dom Oracle Model reminds us of the 
biblical story of the Bronze Serpent, 
reproduced next. (See Numbers (21:4-8) 
and 2 Kings (18:4).) During the journey 
of the People of Israel in the dessert, the 
prophet-leader Moses was instructed 
by the Lord to make a “fiery serpent” 
as a symbolic mean for curing people 
that have been bitten by snakes (which 
were previously sent by the Lord as a 
punishment for some prior sin). Several 
hundred years later, the bronze serpent 
made by Moses has become an object 
of idol worship. This led the righteous 
King Hezekiah (son of Ahaz) to issue an 
order for breaking this bronze serpent 
to pieces. Let us stress that the king’s 
order was to destroy an object that was 
constructed by direct instruction of the 
Lord, because this object has become 
a fetish. Furthermore, this object no 
longer served the purpose for which it 
was constructed. This story illustrates 
the process by which a good thing may 
become a fetish, and what to do in 
such a case…. [G]iven the sour state of 
affairs, it seems good to us to abolish 
the Random Oracle Model.

Goldreich sees himself as a twenty-first-century 
righteous King Hezekiah defending the provable 
security researchers against infidels and post-
modern fetishists such as Menezes and me. It is 
clear from his essay that he had not read our paper 
carefully before writing his response; nor does he 
seem to have been aware of our other two posted 
papers criticizing provable security. But of course 
it was not necessary to actually read the technical 
details in our three articles in order to denounce 
us on religious and philosophical grounds.

The angry reactions of a few researchers who 
seem to perceive our work as a threat to their 
interests are not the type of thing one normally 
encounters in theoretical mathematics, where 
usually the only issues that could cause someone 
to object to a paper would be an error or omitted 
acknowledgment of earlier work (neither of which 
has been found in any of our three papers on 
“provable security”). But far from being bothered 
by the accusations made by Goldreich and others, 
I am encouraged by them, because they at least 
show that people are paying attention.

Cryptography has the excitement of being more 
than just an academic field. Once I heard a 

speaker from NSA complain about university 

researchers who are cavalier about proposing 
untested cryptosystems. He pointed out that in 
the real world if your cryptography fails, you lose 
a million dollars or your secret agent gets killed. 
In academia, if you write about a cryptosystem 
and then a few months later find a way to break 
it, you’ve got two new papers to add to your ré-
sumé!

Drama and conflict are inherent in cryptogra-
phy, which, in fact, can be defined as the science 
of transmitting and managing information in the 
presence of an adversary. The “spy vs. spy” mental-
ity of constant competition and rivalry extends to 
the disciplinary culture of the field. This can get 
to be excessive—and even childish at times—but 
it also explains in part why it can be so much fun 
to do research in cryptography.
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