AL1 - Algebra 1: fondamenti - A.A. 2004/2005 Valutazione "in itinere" - II Prova

${ m Matricola} \; ({ m O} \; { m ALTRO} \; { m IDENTIFICATIVO}) ightarrow \left[$	

esercizio	1.1	1.2	2	3.1	3.2	3.3	3.4	3.5	4.1	4.2	5.1	5.2	5.3	5.4	6.1	6.2	6.3	7.1	7.2
punti max	3	3	4	2	8	5	6	2	4	6	2	3	6	3	2	4	6	5	5
punti assegnati																			
totale																			

AVVERTENZE: Svolgere gli esercizi in modo conciso, ma esauriente, nello spazio assegnato. Fino a 2 punti ulteriori potranno essere assegnati agli elaborati scritti in modo molto chiaro.

ESERCIZIO 1.

(1) Utilizzando il "metodo di sostituzione", determinare tutte le eventuali soluzioni del sistema:

$$\left\{ \begin{array}{l} X \equiv 1 \pmod{13} \\ X \equiv 2 \pmod{17} \end{array} \right..$$

(2) Determinare tutte le eventuali soluzioni della congruenza:

$$3X \equiv 94 \pmod{101}$$
.

ESERCIZIO 2. Determinare tutte le eventuali soluzioni del sistema di congruenze:

$$\begin{cases} X \equiv 16 \pmod{17} \\ X \equiv 2 \pmod{11} \\ X \equiv 10 \pmod{13} \end{cases}$$

ESERCIZIO 3. (1) Enunciare il "Piccolo" Teorema di P. Fermat.

- (2) Dimostrare il "Piccolo" Teorema di P. Fermat.
- (3) Siano $x, y, a \in \mathbb{Z}$, dimostrare che

$$x|a \wedge y|a \wedge \mathrm{MCD}(x,y) = 1 \Rightarrow xy|a$$
.

(4) Utilizzando il "Piccolo" Teorema di P. Fermat (ed il punto (3)), dimostrare che per ogni intero $a \in \mathbb{Z}$, si ha che:

$$10 \mid a^5 - a$$
.

(5) Mostrare che ogni numero naturale (scritto in base 10) ha la stessa cifra delle unità della sua quinta potenza [ad esempio, se a = 13, $a^5 = 371293$].

ESERCIZIO 4. Siano dati $f(X) := 4X^4 - 12X^3 + 13X^2 - 8X + 2$ e $g(X) := 4X^3 - 12X^2 + 11X - 3$ due polinomi in $\mathbb{Z}[X] \subset \mathbb{Q}[X]$.

- (1) Utilizzando il Teorema di Ruffini, determinare tutte le eventuali radici in \mathbb{Q} di f(X) e di g(X).
- (2) Utilizzando l'algoritmo euclideo delle divisioni successive, calcolare in $\mathbb{Q}[X]$ il polinomio \underline{monico} $d(X) := \mathrm{MCD}(f(X), g(X))$ e determinare due polinomi $\alpha(X), \ \beta(X) \in \mathbb{Q}[X]$ in modo tale che:

$$d(X) = \alpha(X) f(X) + \beta(X) g(X) \quad \text{ [Identità di Bézout in } \mathbb{Q}[X]] \,.$$

ESERCIZIO 5. Sia $A := \mathbb{Z}/\equiv_3 := \{[0]_3, [1]_3, [2]_3\}$. Si consideri l'insieme prodotto cartesiano $R := A \times A$ con le operazioni definite nella maniera seguente:

$$(a,b) + (c,d) := (a+c,b+d),$$

 $(a,b) \cdot (c,d) := (ac-bd,ad+bc),$ $\forall (a,b), (c,d) \in A \times A.$

- (1) Sapendo che l'operazione di prodotto in R è associativa e che valgono le proprietà distributive della somma rispetto al prodotto, mostrare che $(R, +, \cdot)$ è un anello.
 - (2) Stabilire se $(R, +, \cdot)$ è un anello commutativo o/e unitario.
 - (3) Determinare esplicitamente il gruppo (U(R), ·) degli elementi invertibili dell'anello $(R, +, \cdot)$.

(4) Stabilire se $(R, +, \cdot)$ è un dominio o se è un campo.

ESERCIZIO 6. Siano date le seguenti permutazioni:

$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 1 & 6 \end{pmatrix}, \quad \tau := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 5 & 6 & 1 \end{pmatrix} \in \mathbf{S}_6.$$
(1) Scrivere σ e τ come prodotto di cicli disgiunti.
(2) Determinare l'ordine di σ e di τ (dove *l'ordine di una permutazione* $\alpha \in \mathbf{S}_6$ è il più piccolo

- intero positivo n tale che α^n coincide con la permutazione identica).
 - (3) Calcolare $\sigma \circ \tau$, $\tau \circ \sigma \in (\sigma \circ \tau)^{-1}$.

ESERCIZIO 7. (1) Dare la definizione di omomorfismo da un gruppo (G,\cdot) ad un gruppo (G',\star) . (2) Dare esplicitamente un esempio di omomorfismo suriettivo (non banale) di gruppi.

SOLUZIONI

Soluzione Esercizio 1.

- (1) $x \equiv 53 \pmod{13 \cdot 17}$.
- (2) $x \equiv 65 \pmod{101}$.

Soluzione Esercizio 2. $x \equiv 101 \pmod{17 \cdot 11 \cdot 13}$.

Soluzione Esercizio 3.

- (1) , (2) e (3) sono esercizi di carattere teorico e sono completamente svolti negli appunti del corso.
 - (4) $5 \mid a^5 a$, per il "Piccolo" Teorema di Fermat.

2 | a^2-a , per il "Piccolo" Teorema di Fermat, cioè $a^2\equiv a\pmod 2$, dunque anche $a^3=a^2\cdot a\equiv a\cdot a\equiv a^2\equiv a\pmod 2$. Pertanto, $a^5\equiv a^4\equiv a^3\equiv a^2\equiv a\pmod 2$, dunque $2\mid a^5-a$.

Si conclude applicando (3) (prendendo x = 5 e y = 2).

(5) Questa è un'altra formulazione di (4), in quanto $10^k \equiv 0 \pmod{10}$, per ogni $k \geq 1$.

Soluzione Esercizio 4.

(1) L'unica radice razionale di f(X) è 1/2.

Le radici razionali di g(X) sono 1/2, 1, 3/2.

(2) Il MCD monico è d(X) = X - 1/2.

$$f = gq_1 + r_1, \ g = r_1q_2 + r_2, \ r_1 = r_2q_3 + 0$$
 dove:

$$q_2 = r_2 = 2X - 1$$
, $q_3 = X - 2$, $r_1 = 2X^2 - 5X + 2$ $q_1 = X$.

Quindi:

$$r_2 = -q_2 f + (1 + q_1 q_2) g; \quad d = -(1/2) q_2 f + (1/2) (1 + q_1 q_2) g.$$

Pertanto, per quanto riguarda l'identità di Bézout:

$$\alpha(X) = -(1/2)q_2 = -X + 1/2, \qquad \beta(X) = (1/2)(1 + q_1q_2) = X^2 - (1/2)X + (1/2).$$

Soluzione Esercizio 5.

- (1) , (2) R risulta essere un anello, commutativo, unitario (con unità $([1]_3,[0]_3)$), privo di divisori dello zero.
- $U(R) = R \setminus \{0\}$ (a questo si arriva calcolando esplicitamente l'inverso di ogni elemento non nullo di R, cioè risolvendo un semplice sistema lineare in 2 equazioni in due incognite nel campo \mathbb{Z}/\equiv_3), quindi R è un campo.

Soluzione Esercizio 6.

- (1) $\sigma = (135)(24)(6), \ \tau = (1456)(23).$
- (2) L'ordine di σ è 6, l'ordine di τ è 4.
- (3) $\sigma \circ \tau = (125634), \ \tau \circ \sigma = (125436), \ (\sigma \circ \tau)^{-1} = (143652).$

Soluzione Esercizio 7.

- (1) è un esercizio di carattere teorico (definizione): consultare gli appunti del corso.
- (2) Consultare gli appunti del corso per vari esempi del tipo richiesto.