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INTRODUCTION

A closure operation is a map f between the elements of a partial ordered
set that verifies three axioms: extension (x ≤ f(x)), order-preservation (x ≤
y =⇒ f(x) ≤ f(y)) and idempotence (f(f(x)) = f(x) for every x). The
most known closure operation is perhaps the operation of closure between
sets of a topological space; another common operation is the one that assigns
to a subset of an algebraic structure (a group, a ring, a vector space. . . ) the
smallest substructure that contains the subset. Moreover, almost every field
of mathematics has some construction that can be seen as a closure operation
between structures: algebra has integral closure of rings and ring completion
(of Noetherian local rings), topology has compactifications and completion
of metric spaces, analysis has completion of measure spaces.

This thesis is about closure operation in the partial ordered set of ideals
of a commutative unitary ring R.

Due to their generality, these closure operations does not satisfy many
ring-theoretic properties, and thus they have rarely been the subject of a
general theory: however, single closures (like integral closure or tight closure)
and smaller sets of closures (such as star operations) have been studied in
detail. The case of star operations is somewhat emblematic: many of their
basic properties are in fact valid for wider class of closures, that of semi-prime
closure operations (neither requiring different proofs), but the concept was
instead generalized to semistar operations.

Recently, some authors have found useful to consider closure operations as
an autonomous subject; new definitions has been given, pursuing generaliza-
tions of properties of previously known closures, or trying to understand the
structure of some subsets of the set of closure operations. However, the var-
ious fields of study are still very far, partly because of different assumptions
and problems, partly because of very different techniques.

The thesis is divided into four chapters, each one narrowing down the
subject: the first is dedicated to arbitrary closure operation, trying to iden-
tify some general properties; the second to a special class of closures, star
operations, and the third to closures arising from overrings of the original
ring, focusing on those induces by localizations. The last one deals with one
specific closure, integral closure, and with its links to two other operations,
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which can be seen as variants: complete integral closure and tight closure.
All rings will be assumed to be commutative and with unity; in Chapters

2 and 3, and in the most of Chapter 4, we will consider only integral domains.
We will not assume (if not for specific results) that the rings are Noetherian,
as many definitions and theorems become trivial in the Noetherian context; in
fact, Sections 1.6 and 3.5 study to what extent some properties of Noetherian
rings can be transferred to some kind of non-Noetherian ones.

Chapter 1 is dedicated to general closure operation, to their set and
to three properties that they can have: finite type, semi-primality, and c-
finiteness of ideals.

The set C(R) of closure operations is a very big set, due to the very low
requirement for a map to be a closure; it can be naturally identified as a
subset of the power set of I(R) (the set of ideals of R) by the application
that send a closure c to the set of c-closed ideals (I is said to be c-closed,
or a c-ideal, if I = Ic); the image of this map is constituted by the sets of
ideals closed by arbitrary intersections. This correspondence gives a natural
partial ordering on C(R); however, since having few closed ideals means that
the closure of an ideal I is usually big (with respect to I), we reverse the
ordering, and say that a closure c is smaller than d if the set of c-ideals
contains the set of d-ideals or, in another way, if Ic ⊆ Id for every ideal I.
On the contrary, C(R) fails to be a monoid, because the composition of two
closure operation is not always idempotent, even on very simple rings.

Finite type closure operations are closures whose behaviour is determined
by the finitely generated ideals; closures of finite type are usually much more
similar to the identity then the others, in the sense that all the information
about the closure of an ideal I can be recovered by the closures of finitely
generated ideals: there is no “jump” between finitely and non-finitely gen-
erated ideals. Every closure operation can be modified into a new closure,
which is of finite type and agree with the original one on finitely generated
ideals.

Semi-primality is probably the most general property that uses effectively
the ring structure of R: a closure c is semi-prime if x · Ic ⊆ (xI)c for every
x ∈ R and every ideal I. This property, for example, is connected to the
structure of the c-spectrum of R, that is, the set of prime ideals that are also
c-ideals: if c is also of finite type, many classical results (existence of maximal
ideals, primality of maximal ideals, representation of an ideal as intersection
of its extensions in localizations) can be expanded to c-ideals, giving existence
of c-maximal ideals (i.e., maximal elements of the set of c-ideals), primality of
c-maximal ideals, representation of an ideal as intersection of its extensions
in the localizations at c-maximal ideals.
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Semi-primality is a very natural concept: many constructions (analysed
in more detail in Chapter 3, Section 3.1) yield naturally semi-prime opera-
tions. On the other hand, semi-prime operation are a natural generalization
of star operations (which are defined by the equality x · Ic = (xI)c), and
in fact the properties cited above are usually proved in the star operation
setting, although the proofs need almost no change to adapt them to the
semi-prime case. Moreover, some closures (for example integral closure or
tight closure) happens to be star operations only in certain rings (typically
integrally closed ones), but they are always semi-prime, and thus this more
general setting permits to use some techniques also when the closure fails to
be a star operation.

c-finiteness of an ideal is a more strict form of the finite type property,
although it is local (on a single ideal) rather than global (on all ideals). An
ideal I is c-finite if its closure Ic is also the closure of a finitely generated
ideal; when this happens, for the study of c we have that I can be (almost)
considered finitely generated. The condition that all the ideals are c-finite is
a much more specific condition than c being of finite type: for example, the
identity is always of finite type, but an ideal is c-finite only if it is finitely
generated. In fact, those rings where all ideals are c-finite (or rather strictly
c-finite) are somewhat “close” to being Noetherian; the subject is more deeply
studied in Chapter 3, Section 3.5. When R is Noetherian, an analogue subject
is to understand how much elements are needed to generate an ideal J such
that Ic = J c (where I is a previously fixed ideal).

Chapter 2 discusses the main properties of star operations, whose theory
is a well-known part of multiplicative ideal theory since the works of Krull
and Gilmer.

The defining property of star operations can be seen as a form of “trans-
lation by multiplication”: for every x ∈ R and every ideal I E R, we have
that x · Ic = (xI)c. When restricted to integral domains, it naturally leads
to the idea of multiplying not only by elements of R, but also by elements
of the quotient field K; since in this way it is possible to make the ideals
no more contained in R, the concept of fractional ideal is introduced as R-
submodules of K that can be multiplied into R (i.e., J ⊆ K for which there
is a y ∈ R such that yJ ⊆ R). Every star operation can be uniquely extended
as a closure on the set of fractional ideals (if we insist that the closure verify
x · Ic = (xI)c even for x ∈ K and fractional ideals I), and moreover it is the
biggest set such that said extension is unique.

Maybe the most important star operation is the v-operation, also called
divisorial closure: it can be defined either as the intersection of all principal
fractional ideals containing I, or as the double dual (R :K (R :K I)) of I. Its
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importance relies mainly on the fact that v is the biggest star operation, thus
giving an explicit bound for the other star operations. Section 2.3 proves the
equivalence between the two definitions and gives a condition (Proposition
2.17, with a more explicit special case as Proposition 2.19) for an ideal I to
not be contained in any other divisorial ideal contained in R.

The next two sections focuses on the concepts of ?-invertibility and of
?-class group, especially in the case when ? is of finite type. For the former,
the results that can be obtained are very closely analogous to those valid for
the notion of invertibility, leading to the definition of the class of Prüfer ?-
multiplication domains as a generalization of the class of Prüfer domain; for
the class group, the picture is much less clear, especially if ? is not taken to
be equal to the identity or to t (the finite type closure associated to v). Even
in this last case, the analogy with the identity is not perfect: for example,
an homomorphisms φ : R −→ S (or even an inclusion) does not always
induce a map between the corresponding t-class groups. However, the t-class
group is relevant when considering conditions equivalent to certain properties
of factorization: for example, unique factorization domains are those Krull
domains whose t-class group vanishes.

In the end, we analyse v-invertibility. The criterion assumes a different
form with respect to other ?-invertibilities: I is v-invertible if and only if
(I :K I) = R. This leads to the notion of completely integrally closed rings,
as the rings where each ideal is v-invertible, and to the notion of complete
integral closure of a ring, as the union

⋃
{(I :K I) | I is an ideal of R}, which

can be seen as an extension of the usual notion of integral closure (where
the union ranges only among finitely generated ideals); moreover, just like
integral closure can be defined through equations of linear dependence, the
complete integral of R can be seen as the set of elements such that cxn ∈ R
for all n ∈ N and for an element c ∈ R. However, complete integral closure is
much less well-behaved than integral closure: for example, there are rings for
which the complete integral closure is not completely integrally closed, i.e.,
complete integral closure is not always idempotent.

Chapter 3 is mainly about closure operation induced by a family of rings,
that is, closures c that can be written as Ic =

⋂
IS ∩ R, where S ranges

among a (given) family of rings containing R. Although not every star oper-
ation can be constructed this way, closures of this type provides a wide set
of examples that are usually simpler and more “regular” than an arbitrary
closure operation: for example, for these closure it is always true that a c-
ideal is contained in a prime c-ideal, even if c is not of finite type. (In this
last case, however, it could be that c-maximal ideals do not exist.)

We begin by two even more general constructions: the first uses homo-
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morphisms from R (dropping the condition that R is contained in the rings)
and closure operations also on the image, while the second uses modules.
Usually, these construction yield semi-prime operations, but more rarely star
operations: for example, to have that the closure Ic =

⋂
IS ∩ R is a star

operation we must suppose that
⋂
S = R.

We proceed by giving some properties of closures induced by a family of
rings, successively shifting to the case when each of these rings is a localiza-
tion of R: these are called spectral operations. Spectral operations have been
more thoroughly studied than closures induced by a general family of rings,
mostly because of their characterization as closures that distributes over fi-
nite intersection (along with another condition: see Proposition 3.10), and
because of the possibility to assign to every star operation of finite type ? a
spectral star operation ?w, which is in many case simpler but close enough
to the original ?. The construction of ?w is detailed in Section 3.4.

We also prove (Proposition 3.13) a characterization of finite type spectral
operations (among all the spectral operations) in terms of the compactness
of the ?-spectrum in the Zariski topology inherited from Spec(R).

In the last two sections of the chapter, we continue the investigation of
two subjects: operations c that satisfies the ascending chain condition on
c-ideals (called c-Noetherian) and construction of star operation.

c-Noetherian rings are called this way because some theorems, classically
proved for Noetherian rings, can be carried over to them, although we usually
have to restrict to the set of c-ideals. However, the properties of the closure c
are important to determine how many properties we can transfer: the stronger
results are obtained when c is a spectral star operation, due to the fact that,
in this case, each localization at a c-prime ideal is Noetherian. This imply
that, as a rule of thumb, if a theorem about Noetherian rings depends only
on the local structure of the ring, then it can be transferred to c-ideals of
c-Noetherian domains: this is the case, for example, of the Principal Ideal
Theorem and of Krull Intersection Theorem.

The last section shows how to build new star operations from an old one
and from prime ideals not fixed by it: this gives, for example, a bound on the
number of non-divisorial prime ideals, in the case that R has only a finite
number of star operations. Moreover, in this way it is sometimes possible to
count the number of spectral operations on a ring.

Chapter 4 deals with integral closure of ideals and with two variations,
complete integral closure and tight closure.

Integral closure of ideals is an old concept, first considered by Krull, which
extends the notion of integral closure of rings. Just like the integral closure
of R is the set of elements of its quotient ring that verify a monic polynomial
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equation xn+a1x
n−1 + · · ·+an = 0 with coefficients in R, the integral closure

of an ideal I E R is the set of elements of R that verify an analogous equation,
but with each ai ∈ I i.

Integral closure is linked to many topics in commutative algebra: this leads
to a great number of different views on the subject, often with a new (but
equivalent) definition, and often mirroring what happens for integral closure
of rings. We prove the equivalence of the above definition with two other
different approaches: Definition 4.1 (via Proposition 4.10) and Proposition
4.34.

The latter shows that, like the integral closure of R is equal to
⋃

(J :K J),
where the union ranges among all the finitely generated ideals J E R, the
integral closure of an ideal I is equal to

⋃
(IJ :R J), with J varying in the

same set. This equivalence leads to a more general class of closures, called
∆-closures.

The former is the analogue of the fact that the integral closure of a domain
R is equal to the intersection of all valuation rings contained between R and
its field of fractions K: the integral closure of I is equal to the intersection⋂
IV ∩ R (where the V are the valuation overrings of K). However, the set

of valuation overrings is not the unique that can be used to obtain integral
closure: any suitable set is said to be a b-set. We study what are sufficient
conditions for R to have a b-set composed by discrete valuation rings: in ad-
dition to the “classical” theorem that this is true if R is Noetherian, we prove
this for domains that have an integral extension which is locally Noetherian
(Propositions 4.14 and 4.18).

Next we introduce the concept of complete integral closure of an ideal,
similarly to complete integral closure of rings: an element x is said to be in
the complete integral closure Icic of I if there is an element c ∈ R, c 6= 0
such that cxn ∈ In. This definition, although a natural generalization of both
complete integral closure of rings and integral closure of ideals, has received
little attention: perhaps the only result is the old theorem stating that, if R
is a Noetherian domain, Icic coincides with the integral closure of I, just like
it happens for the complete integral closure and the integral closure of R (as
a ring). We extend this result to every ring such that integral closure of ideals
can be obtained only by Noetherian valuation rings. However, it is not known
if complete integral closure is idempotent and, therefore, a closure operation;
since the complete integral closure of a ring is not necessarily completely
integrally closed, it can be expected that idempotence fails also in this case.

Tight closure is a more recent closure, developed in the context of Noethe-
rian rings. Unlike the other closures, it is only defined when the characteristic
of the ring is a prime number p > 0: an element x is in the tight closure of
I if there is an element c ∈ R, c 6= 0, such that cxpe ∈ I [pe] for every e ≥ 1
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(where I [n] is the ideal generated by the nth powers of the elements of I).
For Noetherian rings, there is a very deep theory of tight closure, which links
it to regular rings, regular sequences (and thus Cohen-Macaulay rings) and
homological results; if R is non-Noetherian, little is known, just like for com-
plete integral closure, and it is entirely possible that tight closure fails, in
general, to be idempotent.



1. GENERAL PROPERTIES OF CLOSURE OPERATIONS

1.1 The definition

All rings will be commutative and unitary; I (or I(R) if needed for clarity)
will denote the set of ideals of R.

Definition 1.1. A map c : I → I (I 7→ Ic) is a closure operation if, for
every I, J ∈ I,

1. I ⊆ Ic (extension);

2. I ⊆ J =⇒ Ic ⊆ J c (order-preservation);

3. (Ic)c = Ic (idempotence).

If I = Ic, we say that I is a c-closed ideal, or, briefly, a c-ideal; the set
of c-ideals is denoted by Ic.
Proposition 1.2. Let R be a ring, c a closure operation, {Iα | α ∈ A} a
nonempty set of ideals of R.

1.
Ic =

⋂
{J ∈ Ic | I ⊆ J}. (1.1)

2.

(⋂
α∈A

Icα

)c

=
⋂
α∈A

Icα. In particular, Ic is closed under intersections; that

is, if all the Iα are c-closed, then
⋂
α∈A

Iα is c-closed as well.

3.

(∑
α∈A

Icα

)c

=

(∑
α∈A

Iα

)c

.

Proof. 1. LetA be the set of c-ideals that contain I. By order-preservation,
I ⊆ J implies that Ic ⊆ J c = J for every J ∈ A; it follows that Ic is in
the intersection.
For the reverse containment, we observe that Ic is in A, because I ⊆ Ic

by the extension property. Than we have
⋂
J∈A

J ⊆ Ic.
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2. (⊇) is the extension property; for (⊆), we note that
⋂
Icα ⊆ Icβ for every

β ∈ A; by order preservation and idempotence, (
⋂
Icα)c ⊆

(
Icβ
)c

= Icβ;
intersection on all the βs,(⋂

α∈A

Icα

)c

⊆
⋂
β∈A

Icβ =
⋂
α∈A

Icα. (1.2)

Suppose that Iα = Icα for every α; then, by the above part of the
proposition, (⋂

α∈A

Iα

)c

=

(⋂
α∈A

Icα

)c

=
⋂
α∈A

Icα =
⋂
α∈A

Iα (1.3)

is c-closed.

3. The (⊇) inclusion is a consequence of the extension property: Iα ⊆ Icα
for every α, and the containment passes to the sum and to the closure.

For (⊆), Iβ ⊆
∑
Iα =⇒ Icβ ⊆ (

∑
Iα)c; summing on all the βs,

∑
β∈A

Icβ ⊆

(∑
α∈A

Iα

)c

=⇒

(∑
β∈A

Icβ

)c

⊆

((∑
α∈A

Iα

)c)c

=

(∑
α∈A

Iα

)c

(1.4)
which is the thesis.

We note that the proof of the above proposition uses nothing except the
fact that

∑
Iα and

⋂
Iβ are, respectively, the smallest ideal containing all

the Iα and the biggest contained in every Iβ; the same properties would be
fulfilled if I is replaced by any complete lattice (a partial ordered set in which
every subset has an infimum and a supremum), and a closure operation is
defined just as in our definition but replacing the set containment with the
order relation.

This explains also why it is not possible to obtain any non-trivial property
linking a generic closure operation to other ideal-theoretic notions such as
multiplication of ideals: for this, we have to restrict to a smaller class of
closure operations, namely those called semi-prime, which will be studied in
Section 1.5.
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1.1.1 The set of c-ideals

The first point of the above proposition implies that the set Ic is uniquely
determined by c: if d is another closure operation such that Ic = Id, then⋂
{J ∈ Ic | I ⊆ J} =

⋂
{J ∈ Id = Ic | I ⊆ J}, and so Ic = Id for every I,

that is, c = d.
Moreover, we can construct a closure operation c from any subset A ⊆ I

containing R just defining Ic =
⋂
{J ∈ A | I ⊆ J}, where the closed ideals

become the intersections of any subset of A; we can call this the closure
operation generated byA. If B ⊆ I is closed under intersections (and contains
R), then it is the set of closed ideals of a closure operation: this is in particular
true if B is totally ordered and contains its minimum

⋂
J∈B

J .

This shows that we have an abundance of closure operations, even on
very simple rings: if x is a non-zerodivisor, then every subset X of N∗ =
{1, 2, . . . , n, . . .} generate a different closure operation, where the closed ideals
are the (xm) for m ∈ X (plus, if needed, the intersection

⋂
n≥1

(xn)).

This point of view can also be used to transfer closure operation from R
to the quotient rings R/I and back; we will see a generalization of this, along
with other method to construct closure operations, in Section 3.1.

1.2 Examples

1.2.1 Basic examples

There are two closures which are both trivial and extremal: the first is the
identity, that fixes every ideal, while the other is the indiscrete closure, that
sends every ideal to the unit ideal R.

The simplest non-trivial closure operation is probably the radical, indi-
cated with rad(I) or

√
I. It could be defined either as rad(I) = {α ∈ R |

αn ∈ I for some n ∈ N} or

rad(I) =
⋂
{P ∈ Spec(R) | I ⊆ P} (1.5)

making it an example of the previous construction, with A = Spec(R).

1.2.2 Integral closure

Another very used closure operation is the integral closure: for every ideal I,
I− is the set of elements r for which there exist a n ∈ N and elements ai ∈ I i
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(for 1 ≤ i ≤ n) such that

rn + a1r
n−1 + · · ·+ an = 0. (1.6)

There are many different equivalent characterizations of integral closure;
for Noetherian rings, r ∈ I− if and only if there is an element c, not contained
in any minimal prime of R, such that for every n ∈ N∗ we have crn ∈ In. In
non-Noetherian context, the elements that satisfies this definition forms an
ideal, called the complete integral closure of I, but this may or may not be a
closure operation.

Integral closure is studied in more detail in Chapter 4, along with some
condition for the equality between it and complete integral closure.

1.2.3 Characteristic p closures

Some closure operations works on rings of characteristic p > 0, p being a
prime number: the main ones are Frobenius closure and tight closure. For
every ideal I and every natural number n, the bracket power I [n] of I is the
ideal generated by the nth powers of the elements of I; it is generally much
smaller then the ordinary power In.

The Frobenius closure IF of I is the set of elements such that xpe ∈ I [pe]

for some e ∈ N.
If R is a domain, an element r is in the tight closure I? of I if there exist

an element c 6= 0 such that cxpe ∈ I [pe] for every e ≥ 1. If R is not a domain,
c is required not to be in any minimal prime of R.

Frobenius closure is always a closure operation, while tight closure, in non-
Noetherian rings, suffers the same problems of complete integral closure. It
is, however, studied exclusively in the Noetherian context.

Tight closure has been studied mainly in connection with regular se-
quences and system of parameters; it is linked to regularity and to the Cohen-
Macaulay property, and also to integral closure by the alternative definition
of the latter in Noetherian rings. The “good” properties and the many uses
of tight closure in characteristic p have generated attempts to extend it in
characteristic 0, and to find new closure operations analogous to it.

Some of the properties of tight closure are described in Section 4.4.

1.2.4 The v-operation

In the context of multiplicative ideal theory, the most important closure
operation is the v-operation: if R is a domain, K its quotient field, then Iv is
defined to be the intersection of all principal R-submodules of K. From the
v-operation we can define, among others, the t and the w-operations.
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Any invertible ideal is a v-ideal, and so the v-operation coincides with the
identity on Dedekind domains and (but only for finitely-generated ideals) on
Prüfer domains. The v-operation, and operations related to it (like t and
w), can so be used to study, along various generalizations of Prüfer domains,
Krull domains and properties of factorization.

1.3 The set of closure operations

For any ring R, we define C(R) to be the set of the closure operations on R.
It has a natural structure as a partial ordered set:

Definition 1.3. Let c, d ∈ C(R). We say that c ≤ d if Ic ⊆ Id for every
ideal I E R; equivalently, if Id ⊆ Ic.

The equivalence can be proved as follows: if Ic ⊆ Id for every ideal, and
I is d-closed, then I ⊆ Ic ⊆ Id = I, and so I is c-closed; conversely, if every
d-ideal is a c-ideal, then

Ic =
⋂
{J ∈ Ic | I ⊆ J} ⊆

⋂
{J ∈ Id | I ⊆ J} = Id. (1.7)

C(R) has an infimum (the identity closure) and a supremum (the indis-
crete closure). Also, every subset of C(R) has an infimum and a supremum:
given a collection {cλ | λ ∈ Λ}, we can define inf{cλ} as the operation gen-
erated by the union

⋃
λ∈Λ Icλ , while sup{cλ} will be the operation generated

by the intersection
⋂
λ∈Λ Icλ . In the latter case,

⋂
λ∈Λ Icλ is precisely the col-

lection of closed ideals, since as every Icλ is closed under intersections, so is
their intersection.

The infimum has also a simple interpretation in term of ideals: given a
set {cλ | λ ∈ Λ} of closure operations, if we denote by c its infimum, we have

Ic =
⋂
λ∈Λ

Icλ . (1.8)

This follows because, rewriting the intersection using (1.1), we have⋂
λ∈Λ

Icλ =
⋂
λ∈Λ

⋂
J∈Icλ
J⊇I

J =
⋂
J⊇I

⋂
λ∈Λ
J∈Icλ

J =
⋂
J⊇I
J∈C

J, (1.9)

where C =
⋃
λ∈Λ Icλ ; that is, the closure operation generated by the set⋃

λ∈Λ Icλ , namely c.
For the supremum, however, there is no such simple description. Indeed,

if we put
Ic =

∑
λ∈Λ

Icλ , (1.10)
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there is no guarantee that we obtain a closure operation; if, for example, R
is a discrete valuation ring with maximal ideal M = (p), put

(pn)c1 =

{
(p2) if n ≥ 2

R if n = 1
(pn)c2 = (p) if n ≥ 1

(0)c1 = (0)c2 = (0). (1.11)

Then, in this case,

(p2)c = (p2)c1 + (p2)c2 = (p2) + (p) = (p) while
(p)c = (p)c1 + (p)c2 = R + (p) = R (1.12)

and c is not idempotent.
There is one case in which we can, however, describe the supremum:

Proposition 1.4. Let R be a Noetherian ring and {cλ} is a directed set of
closure operation (that is, for any λ1, λ2 ∈ Λ exists µ ∈ Λ such that cλ1 ≤ µ
and cλ2 ≤ cµ). Then

Ic =
∑
λ∈Λ

Icλ (1.13)

is a closure operation, the supremum of the set {cλ}.

Proof. It is clear that I ⊆ Ic (because I ⊆ Icλ for every λ) and that c is
order-preserving (because I ⊆ J implies Icλ ⊆ J cλ).

For idempotence, let J be an ideal and J c = (f1, . . . , fn). For every fi,
there exists a λi such that fi ∈ J cλi ; by directedness, we can find µ ∈ Λ such
that cλi ≤ cµ for every i; then

J c = (f1, . . . , fn) ⊆ J cλ1 + J cλ2 + · · ·+ J cλn ⊆ J cµ ⊆ J c (1.14)

so that for every J , J c = J cµ for some µ ∈ Λ.
Pick an ideal I: there are λ1, λ2 ∈ Λ such that Ic = Icλ1 , (Ic)c = (Ic)cλ2 .

For directness, we found a λ ∈ Λ bigger then λ1 and λ2; with this choice,

(Ic)c = (Ic)cλ2 = (Icλ1 )cλ2 ⊆ (Icλ)cλ = Icλ ⊆ Ic (1.15)

and thus (by the extensive property) (Ic)c = Ic.
To show that it is the supremum, it is sufficient to check that Ic =⋂

λ∈Λ Icλ . If I ∈ Ic, then

I = Ic =
∑
λ∈Λ

Icλ ⊇
∑
λ∈Λ

I = I (1.16)
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and I = Icλ for every λ. Conversely, if I ∈ Icλ for every λ, then

Ic =
∑
λ∈Λ

Icλ =
∑
λ∈Λ

I = I (1.17)

and I is c-closed.

The above proposition does not hold when R is not Noetherian, even if
we suppose that the set {cλ} is totally ordered. For example, let R be a
valuation ring with value group Q and valuation v, and let q1, . . . , qn, . . . be a
strictly decreasing sequence of rational numbers with limit 0; let In := {x ∈
R | v(x) ≥ qn}, I := {x ∈ R | v(x) > 0} the maximal ideal of R, and define
cn to be the closure operation

J cn :=


In if J ⊆ In

J if In ( J ( I

R if I ⊆ J

(1.18)

Clearly cn < cn+1 for every n, because {qn} is decreasing; let d be the map
J 7→ Jd :=

∑
n∈N I

cn . For every ideal J ( I, J ⊆ In for some n, because,
for any x ∈ I ⊆ J , v(x) > 0 and thus v(x) < qn for some n; moreover,⋃
n≥1 In = I and thus Jd = (In)d = I. But Icn = R for every cn, because

In ( I, and thus Id = R; hence d is not idempotent.

1.3.1 The composition of two closure operations

Unlike for partial ordering, the set C(R) has not a nice multiplicative struc-
ture: in general, the composition of two closure operations, although exten-
sive and order-preserving, needs not to be idempotent, and so it fails to be a
closure operation. Again the example (1.3) works: if c = c2 ◦ c1,

(p2)c = ((p2)c1)c2 = (p2)c2 = (p) while
(p)c = ((p)c1)c2 = Rc2 = R (1.19)

so that c is not idempotent.
Define cd to be the composition d ◦ c : I 7→ Icd = (Ic)d. If c ≤ d or d ≤ c,

then cd equals the bigger of the two: in the first case,

Icd = (Ic)d ⊆ (Id)d = Id (1.20)

because Ic ⊆ Id and d is idempotent; moreover,

Id ⊆ (Ic)d = Icd (1.21)



1. General properties of closure operations 18

by the extension property of c, and so Icd = Id. If d ≤ c, we have

Icd = (Ic)d ⊆ (Ic)c = Ic ⊆ (Ic)d = Icd, (1.22)

and hence Icd = Ic.
This is not a necessary condition: for example, let K1, K2 be fields and

R = K1×K2. Then R has four ideals: (0), the two maximalsM1 = K1×{0},
M2 = {0} ×K2 and the whole R. Defining

Ic =

{
M1 if I ⊆M1

R otherwise
Id =

{
M2 if I ⊆M2

R otherwise
(1.23)

neither c ≤ d nor d ≤ c, but

(0)cd = Md
1 = R

M cd
1 = Md

1 = R

M cd
2 = Rd = R (1.24)

and cd is just the indiscrete closure. However, here is a criterion:

Proposition 1.5. Let c, d be closure operations on R. cd is a closure opera-
tion if and only if d takes the set Ic of c-ideals in itself.

Proof. If cd is a closure operation, then, for every c-closed ideal I, we have
Icd = Id and (Icd)cd = Icd; but

(Id)c = Idc ⊆ (Ic)dc ⊆ ((Ic)dc)d = Icdcd = Icd = Id (1.25)

and Id is c-closed.
Suppose now that d : I −→ I restricts to a map d : Ic −→ Ic. Then Icd

is a c-ideal and a d-ideal; it follows that (Icd)cd = ((Icd)c)d = (Icd)d = Icd

and cd is idempotent, hence a closure operation.

The compositions allows to express, in the Noetherian case, the supremum
of two closure operations in terms of ideals. In the next proposition, we define
(cd)n to be the composition of cd with itself n times.

Proposition 1.6. Let R be a Noetherian ring and c, d two closure operations
on R. Then the supremum e of {c, d} is given by

Ie =
⋃
n≥1

I(cd)n . (1.26)
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Proof. The map e is clearly extensive and order-preserving; we have to show
that it is idempotent.

We observe that for every ideal J , there is an integer n = n(J) such that
Je = J (cd)n : this follows at once because J (cd)k ⊆ J (cd)l for k ≤ l and the ring
is Noetherian, so the chain stabilizes.

Let I be an ideal and n,m such that Ie = I(cd)n and (Ie)e = (Ie)(cd)m .
Then

(Ie)e = (Ie)(cd)m = (I(cd)n)(cd)m = I(cd)n+m

= I(cd)n = Ie. (1.27)

It follows from the definition that Ic and Id are contained in Ie, so c, d ≤ e
and Ie ⊆ Ic ∩ Id. But now if I is both a c-ideal and a d-ideal then Icd = I
and I(cd)n = I, so that I is e-closed and Ic ∩ Id ⊆ Ie. This shows that
e = sup{c, d}.

1.4 Closure operations of finite type

Definition 1.7. A closure operation c is of finite type if, for every ideal I,

Ic =
⋃
{J c | J ⊆ I and J is finitely generated}. (1.28)

The radical and integral closure are of finite type, just like the identity
and the indiscrete closure; on the contrary, the v-operation is not, in general,
of finite type. On a Noetherian ring, every operation is of finite type.

If c is a closure operations, we define

Icf =
⋃
{J c | J ⊆ I and J is finitely generated}. (1.29)

Proposition 1.8. Let c be a closure operation.

1. cf is a closure operation.

2. cf ≤ c and Icf = Ic for every finitely generated ideal I.

3. If c ≤ d, then cf ≤ df .

4. cf is of finite type; moreover, cf is the largest closure operation d of
finite type such that d ≤ c.

Proof. 1. Extension: if x ∈ I, (x) ⊆ I is finitely generated, hence x ∈
(x)c ⊆ Icf .

Order-preservation: if I ⊆ J , every finitely generated ideal contained
in I is contained in J , and Icf ⊆ J cf .
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Idempotence: if x ∈ (Icf )cf , there is a J ⊆ Icf finitely generated such
that x ∈ J c; suppose J = (a1, . . . , an). Then, for every i, ai ∈ Icf ,
and so ai ∈ Kc

i for finitely generated ideals Ki ⊆ I; it follows that
J ⊆ Kc

1 + · · ·+Kc
n, and

J c ⊆ (Kc
1 + · · ·+Kc

n)c = (K1 + · · ·+Kn)c (1.30)

and x ∈ (K1 + · · · + Kn)c, where K1 + · · · + Kn is contained in I and
finitely generated, which implies x ∈ Icf .

2. J c ⊆ Ic for every ideal I; so every ideal in the union is contained in Ic,
and Icf ⊆ Ic.
If I is finitely generated, Ic is in the union, and Ic ⊆ Icf .

3. If J ⊆ I and J is finitely generated, J c ⊆ Jd; taking the union among
all such J we have Icf ⊆ Idf .

4. Let c′ = (cf )f : by the definition we have

Ic
′
=
⋃
{J cf | J ⊆ I and J is finitely generated} (1.31)

but J cf = J c for finitely generated ideals J , and Ic′ = Icf .
Suppose d ≤ c and d is of finite type. Then

Id =
⋃
{Jd | J ⊆ I and J is finitely generated} ⊆

⊆
⋃
{J c | I ⊆ J and J is finitely generated} = Icf (1.32)

because Jd ⊆ J c; hence d ≤ cf .

Proposition 1.9. Let c1, . . . , cn be a finite number of closure operations of
finite type. Then the infimum c := inf{c1, . . . , cn} is of finite type.

Proof. Let I be any ideal and x ∈ Ic. By (1.8), Ic =
n⋂
i=1

Ici ; thus x ∈ Ici for

every i, and since the ci are of finite type there are finitely generated ideals
H1, . . . , Hn ⊆ I such that x ∈ Hci

i . Set H := H1 + . . .+Hn: then H is finitely
generated and contained in I, and, for every i, x ∈ Hci because Hci

i ⊆ Hci .

Then x ∈
n⋂
i=1

Hci = Hc, and c is of finite type.

On the contrary, the infimum of an infinite number of finite type closure
operations need not to be of finite type; an example is given at the end of
Section 3.3.
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1.5 Semi-prime operations

Definition 1.10. A closure operation c is semi-prime if xIc ⊆ (xI)c for
every ideal I and for every x ∈ R. The set of semi-prime closure operations
on R is denoted by S(R).

Proposition 1.11. Let c be a closure operation. The following are equivalent:

1. c is semi-prime.

2. IJ c ⊆ (IJ)c for every pair I, J of ideals.

3. (IJ)c = (IcJ c)c for every I, J .

Proof. (1 ⇐⇒ 2) If (2) is true, then c is seen to be semi-prime by taking
I = (x). Conversely, let I be an ideal; then

IJ c =
∑
i∈I

iJ c ⊆
∑
i∈I

(iJ)c ⊆

(∑
i∈I

(iJ)c

)c

. (1.33)

By Proposition 1.2, part 3, we have(∑
i∈I

(iJ)c

)c

=

(∑
i∈I

(iJ)

)c

= (IJ)c (1.34)

and IJ c ⊆ (IJ)c.
(2 ⇐⇒ 3) If c verifies (2), then (applying it with Ic and J , and subse-

quently with J and I)

(IcJ c)c ⊆ ((IcJ)c)c = (IcJ)c ⊆ (IJ)c (1.35)

while (IJ)c ⊆ (IcJ c)c by order-preservation; so (IJ)c = (IcJ c)c.
Suppose (IJ)c = (IcJ c)c. Then, by extension,

IJ c ⊆ IcJ c ⊆ (IcJ c)c = (IJ)c, (1.36)

and c is semi-prime.

The last characterization allows to define, for every semi-prime operation
c, an operation ×c which makes Ic a monoid, by putting I ×c J = (IJ)c. In
particular, the associative property follows because

(I ×c J)×c K = ((IJ)cK)c = ((IJ)K)c = (IJK)c =

= (I(JK))c = (I(JK)c)c = I ×c (J ×c K) (1.37)
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In the context of star operations, this construction permits to define a class
group associated to a given operation, in analogy to the “classical” class
group, which could be seen as arising from the identity operation. (See Section
2.4 for more details.)

Semi-primality is the first property that is ideal-theoretic in nature; it is
not in general possible to derive IJ just by the partial order on I. For the
following proposition, we introduce the ideal

(I :R J) := {x ∈ R | xJ ⊆ I}. (1.38)

Being semi-prime implies some nice properties:

Proposition 1.12. Let c be a semi-prime closure operation on R, I, J ideals
of R, W a multiplicatively closed subset of R.

1. (I :R J)c ⊆ (Ic :R J); if I is c-closed, then so is (I :R J), and (Ic :R J)
is c-closed for every I.

2. (Ic :R J
c) = (Ic :R J).

Suppose moreover that R is Noetherian and I is c-closed.

3. W−1I ∩R is c-closed.

4. The minimal primary components of I are c-closed.

5. If I has no embedded components, then it has a primary composition
by c-closed ideals.

Proof. 1. For every x ∈ (I :R J)c, we have xJ ⊆ (I :R J)cJ ⊆ (J(I :R
J))c ⊆ Ic, and x ∈ (Ic :R J).

If I = Ic, then (I :R J)c ⊆ (Ic :R J) = (I :R J) and (I :R J) is c-closed;
in particular, for every ideal I, this is true for (Ic :R J).

2. J ⊆ J c, so (Ic :R J
c) ⊆ (Ic :R J) for an arbitrary closure operation c.

If, moreover, c is semi-prime and x ∈ (Ic :R J), then xJ c ⊆ (xJ)c ⊆
(Ic)c = Ic and x ∈ (Ic :R J

c), so that (Ic :R J
c) = (Ic :R J).

3. Let J = W−1I ∩ R = (a1, . . . , an) (R is Noetherian, so J is finitely
generated); for every ai there is a wi ∈ W such that wiai ∈ I; let
w := w1 · · ·wn.
Then wJ ⊆ I and J ⊆ (I :R w), which is c-closed by part (1). But if
x ∈ (I :R w), then xw ∈ I ⊆ W−1I ∩ R = J , and (I :R w) ⊆ J . Hence
J is c-closed.
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4. Let I = Q1∩· · ·∩Qn be a primary decomposition of I, whereQ1, . . . , Qm

(m ≤ n) are the isolated components (which are unique). Now QiRPi ∩
R = Qi, because each Qi is Pi-primary; moreover, IRPi = QiRPi be-
cause Qi is the only primary component contained in Pi (by its mini-
mality). Hence Qi is c-closed.

5. If I has no embedded components, m = n, every Qi is c-closed, and so
I has a primary decomposition by c-ideals.

Semi-primality verifies some stability properties:

Proposition 1.13. Let {cλ}λ∈Λ a set of semi-prime closure operations.

1. inf{cλ} is semi-prime.

2. If Id :=
∑

λ∈Λ I
cλ is a closure operation, then it is semi-prime.

3. If c1, c2 are semi-prime and the composition c1c2 is a closure operation,
then it is semi-prime.

Proof. 1. Let c := inf{cλ}, and pick any x ∈ R and any ideal I. We have

xIc = x
⋂
λ∈Λ

J cλ =
⋂
λ∈Λ

xJ cλ ⊆
⋂
λ∈Λ

(xJ)cλ = (xJ)c (1.39)

and thus c is semi-prime.

2. In the same way,

xJ c = x
∑
λ∈Λ

J cλ =
∑
λ∈Λ

xJ cλ ⊆
∑
λ∈Λ

(xJ)cλ = (xJ)c. (1.40)

3. We have

xJ c1c2 = x(J c1)c2 ⊆ (xJ c1)c2 ⊆ (xJ)c1)c2 = (xJ)c1c2 (1.41)

and c1c2 is semi-prime.

Although the composition of two semi-prime operations, as the compo-
sition of two general closures, need not to be a closure operation, in some
simple cases it is possible to “control” the behaviour of the composition:



1. General properties of closure operations 24

Proposition 1.14. [46, Proposition 3.6] Let R be a Dedekind domain. The
set S(R) of semi-prime closure operation on R is the union of the two sub-
monoids

M0 := {c ∈ S(R) | (0)c = (0)} (1.42)

and
Mf := {c ∈ S(R) | (0)c 6= (0)}. (1.43)

Moreover, if c ∈M0 and d ∈Mf , then c ◦ d ∈Mf .

For the statement of the next proposition we need two definitions: (c is a
closure operation).

Definition 1.15. c− Spec(R) := {P ∈ Spec(R) | P c = P}; its elements are
called c-primes.

Definition 1.16. c − Max(R) is the set of maximal proper c-ideals (that
is, c-ideals M such that Ic = R for every I ) M); its elements are called
c-maximals.

In general, c− Spec(R) and c−Max(R) could be empty, and c-maximal
ideals need not to be prime. For semi-prime operations, however, some of
these properties hold.

Proposition 1.17. Let c be a semi-prime operation.

1. c-maximal ideals are prime.

2. If c is of finite type, every proper c-ideal is contained in a c-maximal
ideal.

3. If I is a c-ideal and P a minimal prime of I, P is a cf -ideal.

4. Suppose R is a domain and c is of finite type. Then, for every c-ideal
I,

I =
⋂

M∈c−Max(R)

IRM . (1.44)

Proof. 1. Suppose xy ∈ I and I is maximal among proper c-ideals. If
both x and y are not in I, we have (I, x)c = R = (I, y)c, because
(I, x) and (I, y) are bigger than I; but (I, x)(I, y) ⊆ (I, xy) = I and
((I, x)(I, y))c ⊆ I, while

((I, x)(I, y))c = ((I, x)c(I, y)c)c = Rc = R (1.45)

which is impossible. Hence I is prime.



1. General properties of closure operations 25

2. By Zorn lemma, is sufficient to proof that, if {Iα} is an ascending chain
of c-ideals, then I :=

⋃
Iα is a c-ideal.

Let J = (a1, . . . , an) ⊆ I; there are α1, . . . , αn such that ai ∈ Iαi , and
an α such that ai ∈ Iα for every i; hence J c ⊆ Icα = Iα ⊆ I, and

Ic = Icf =
⋃
{J c | J ⊆ I and J is finitely generated} ⊆ I, (1.46)

so that Ic = I.

3. Let J = (a1, . . . , am) be a finitely generated ideal contained in P . Pass-
ing to RP , we see that PRP is minimal over IRP , and rad(IRP ) =
PRP ⊇ rad(JRP ); hence there are ni such that anii ∈ IRP , and if
n := n1 + · · · + nm we have JnRP = (JRP )n ⊆ IRP . It follows that
there is a s ∈ R \P such that sJn ⊆ I, and (sJn)c ⊆ Ic = I ⊆ P . But,
by semi-primality,

(sJn)c = ((s)J · · · J)c = ((s)J c · · · J c)c = (s(J c)n)c (1.47)

and s(J c)n ⊆ (s(J c)n)c = s(Jn)c ⊆ P . Because s /∈ P and P is prime,
(J c)n ⊆ P ; hence, taking radicals, J c ⊆ P and

P cf =
⋃
{J c | J ⊆ P and J is finitely generated} ⊆ P (1.48)

so that P is a cf -ideal.

4. It is clear that I ⊆
⋂
IRM ; let x ∈

⋂
IRM . For everyM ∈ c−Max(R),

we can write x = yM
zM

, where yM ∈ I and zM ∈ R \M ; hence, for every
M , zM ∈ (I :R x), and thus (I :R x) /∈ M for every M ∈ c −Max(R).
But this implies (I :R x)c = R, while (I : x)c = (I :R x) by Proposition
1.12; hence 1 ∈ (I :R x), that is, x ∈ I.

Parts 2 and 3 of the above proposition can’t be expanded to cover closure
operations not of finite type: for example, if R is a non-Noetherian valuation
ring of Krull dimension 1, the v-operation is a semi-prime closure operation,
but the maximal ideal is not v-closed, and hence there are no v-maximal
ideals.

1.6 c-finiteness

When investigating the properties of a closure operation, it is often possible
to replace Ic by I, or to prove properties of Ic using I; for example, if c is
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semi-prime, the product (IcJ c)c is equal to (IJ)c. Hence, we can replace I
with any ideal K such that Ic = Kc; if K is somewhat “better” than I, it is
possible to obtain sharper results.

In the non-Noetherian context, finitely generated ideals are often easier
to deal with; so we give the following definition (c is a closure operation):

Definition 1.18. An ideal I is c-finite if there is a finitely generated ideal J
such that J c = Ic; it is strictly c-finite if there is a K ⊆ I such that Kc = Ic.

The two concept are really different: for example, let R be a local ring
with non-finitely generated maximal ideal M , and define Ic to be I unless
I = M , in which case M c = R. Then M is not strictly c-finite (because
Ic = I 6= R for every I ( M) but it is c-finite (because M c = R = Rc).
However, the two definitions coincide when c is of finite type:

Proposition 1.19. Let I be an ideal, c a closure operation. The following
are equivalent:

1. I is strictly c-finite;

2. I is cf -finite;

3. I is strictly cf -finite.

Proof. (1 ⇐⇒ 3) We have the following picture:

I ⊆ Icf ⊆ Ic
⊇ ⊇ ⊇

J ⊆ J cf = J c
(1.49)

If Ic = J c, then Icf ⊆ Ic = J cf ⊆ Icf and thus Icf = J cf .
If Icf = J cf , then Ic = (Icf )c = (J cf )c = J c.
(3 =⇒ 2) is obvious.
(2 =⇒ 3) Suppose Icf = J cf , and let J = (a1, . . . , an). Since ai ∈ Icf ,

there is (for every i ∈ {1, . . . , n}) a finitely generated ideal Hi ⊆ I such that
ai ∈ Hc

i = H
cf
i ; thus, if H := H1 + · · ·+Hn, then H ⊆ I and so

Icf ⊇ Hcf = (H1+· · ·+Hn)cf ⊇ ((a1)+· · ·+(an))cf = (a1, . . . , an)cf = J cf = Icf

(1.50)
that is, Icf = Hcf , and I is strictly cf -finite.

There is an analogue of the Noetherian property:

Proposition 1.20. Let R be a ring and c a closure operation. The following
are equivalent:
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1. Every ideal of R is strictly c-finite.

2. The set Ic satisfies the ascending chain condition.

3. Every subset of Ic has a maximal element.

Moreover, in this case, c = cf .

Proof. (2 ⇐⇒ 3) is a standard property of posets; see e.g. [9, Proposition
6.1].

(1 =⇒ 2) Let {Iα}α∈A be an ascending chain of c-ideals, and let I :=⋃
α∈A Iα. Then Ic is strictly c-finite, and so there are x1, . . . , xn ∈ I such

that (x1, . . . , xn)c = Ic. But every xi is contained in a Iαi , and hence there
is a Iα which contains all them. Thus Ic = (x1, . . . , xn)c ⊆ (Iα)c ⊆ Ic, and
(Iα)c = Ic.

(2 =⇒ 1) If I is not strictly c-finite, then there is sequence {xi}i∈N ⊆ I
such that xi+1 /∈ (x1, . . . , xi)

c; but then {(x1, . . . , xi)
c}i∈N is an ascending

chain of c-ideals which does not stabilizes, against the hypothesis.
If condition (1) is verified, then Ic = J c for a finitely generated J ⊆ I, and

thus Icf =
⋃
{Hc | H ⊆ I and H is finitely generated} ⊇ J c = Ic; therefore

Ic = Icf for every I and c = cf .

We will study in more detail closures that satisfy this property in Section
3.5.

For Noetherian rings, these conditions are obviously uninteresting. In this
context, an analogue problem is: given I, what is the minimal n such that
Ic = J c, where J is generated by n elements?

Define a c-minimal reduction of I as a J ⊆ I such that J c = Ic and
Kc 6= Ic for every K ( J . Minimal reductions need not to exist: for example,
if R is a Noetherian domain and c is the radical, then no nonzero ideal has a
minimal reduction, since if rad(J) = rad(I), then rad(J2) = rad(J) = rad(I)
but J2 ( J .

Suppose that (R,M) is a Noetherian local ring. A sufficient condition
for the existence of minimal reductions for every c-ideal is that, if I and J
are ideals such that J ⊆ I ⊆ (J + MI)c, it follows that Ic = J c; closures
that satisfy this condition are called Nakayama closures, because the fact
that the identity verifies it is the statement of Nakayama lemma. Nakayama
closures include integral closure, tight closure and Frobenius closure [17, 18].
With this hypothesis, moreover, every minimal generating set of a minimal
reduction extends to a minimal generating set of the ideal.

If minimal reductions of I do exist, it is natural to ask if the are generated
by the same number of elements; if this happens, and c is Nakayama, we say
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that I has c-spread, indicated with `c(I). In this case, we have also that if K
is generated by less than `c(I) elements then Kc 6= Ic [17, Theorem 2.4].

When does every ideal have spread? This is true when c is the integral
closure and the residue field R/M is infinite (in this case, the spread coincides
with the analytic spread of I) [40][34, Proposition 8.3.7], and when c has a
so-called special c-decomposition (for example when c is Frobenius closure
and R/M is perfect, as well as tight closure with certain hypothesis).

1.7 Historical and bibliographical note

Closure operations were first considered, as property of partial ordered sets,
by E.H. Moore in 1910 [39], and became part of lattice theory (see e.g. [12]); in
this context was born also the idea of the set of closure operations as a lattice
[48]. General properties in Sections 1.1 and 1.3 are present there, sometimes
as exercises, as well as in [22] (although stated only for star operations –
see next chapter). Kirby, in 1969 [36], is probably the first to have used the
general concept in ring theory, although other definitions, more ring-theoretic
(like Krull’s 8-operations [37]), were already used.

Alike, semi-prime operations were introduced no later then 1964 [41], but
they were used rarely; notably, the term was used in [43] and in [26]. Results
and proof of Section 1.5 are taken from [19].

Sections 1.4 and the first half of 1.6 have long been studied in the context
of star operations: results of the former and Proposition 1.19 dates at least
as back as [22], while Proposition 1.20 appears in [3] and [49]; the proof is
almost unchanged.

Nakayama closures were introduced in [17], along with the notion of c-
reductions and c-spread; the definition of analytic spread (for integral closure)
and the proof of its Nakayama-like property predate it by fifty years [40].



2. STAR OPERATIONS

From now on, if not specified, we will consider only integral domains R with
quotient field K.

2.1 Fractional ideals

Definition 2.1. An R-submodule I of K is a fractional ideal of R if there
is a x ∈ R, x 6= 0 such that xI ⊆ R.

Fractional ideals contained in R are precisely the ideals of R; to emphasize
this fact, they are called, among the fractional ideals, integral ideals, while
fractional ideals are simply called ideals ; the term “fractional” is sometimes
added for emphasis.

Proposition 2.2. If E ⊆ I are R-submodules of K and I is a fractional
ideal, then E is a fractional ideal.

Proof. There is a x ∈ R such that xI ⊆ R; but xE ⊆ xI =⇒ E is a
fractional ideal.

The set of fractional ideals is closed under the main ideal-theoretic oper-
ations:

Proposition 2.3. Let I, J, {Iα}α∈A be fractional ideals of R. Then
⋂
α∈A

Iα,

I + J and IJ are fractional ideals.

Proof. For every β ∈ A,
⋂
α∈A

Iα ⊆ Iβ, so
⋂
Iα is a fractional ideal by the

previous proposition.
If xI ⊆ R and yJ ⊆ R, then xy(I + J) = yxI + xyJ ⊆ yR + xR ⊆ R.
If xI ⊆ R, then IJ = (xI)(x−1J) ⊆ R(x−1J) = x−1J that is a fractional

ideal.

As any cyclic R-submodule of K is a fractional ideal, it follows that
every finitely generated R-submodule of K is a fractional ideal. Since every
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fractional ideal is isomorphic to an integral ideal (as an R-module), infinitely
generated fractional ideals exist if and only if R is not Noetherian.

We recall that, for I and J ideals of R, we defined

(I :R J) := {r ∈ R | rJ ⊆ I}. (2.1)

The same operation works if I and J are general R-submodules of K; more-
over, we introduce

(I : J) := (I :K J) := {r ∈ K | rJ ⊆ I}. (2.2)

From the definitions it is immediate to see that (I :R J) = (I :K J) ∩R.
It is clear that an R-submodule M of K is a fractional ideal if and only

if (R :R M) 6= (0); since, for every submodule N 6= (0), we have always
N ∩R 6= (0), this is also equivalent to (R : M) 6= (0). The properties of these
operations are summarized by the next proposition.

Proposition 2.4. Let I, J, L, {Hα}α∈A be R-submodules of K, x ∈ K, S a
multiplicatively closed subset of R.

1. (xI : J) = x(I : J) = (I : x−1J).

2. If I ⊆ L then (I : J) ⊆ (L : J) and (J : I) ⊇ (J : L).

3. If I is a fractional ideal and J 6= (0), then (I : J) and (I :R J) are
fractional ideals.

4. (
⋂
Hα : J) =

⋂
(Hα : J).

5. (I :
∑
Hα) =

⋂
(I : Hα).

6. ((I : J) : L) = (I : JL).

7. S−1(I : J) ⊆ (S−1I : S−1J); if J is finitely generated, S−1(I : J) =
(S−1I : S−1J).

Proof. 1. y ∈ (xI : J) ⇐⇒ yJ ⊆ xI ⇐⇒ x−1yJ ⊆ I ⇐⇒ y ∈
(I : x−1J); moreover, y ∈ x(I : J) ⇐⇒ y = xz and zJ ⊆ I, which
happens if and only if yJ = xzJ ⊆ xI ⇐⇒ y ∈ (xI : J), and the
three modules are equal.

2. If xJ ⊆ I, then xJ ⊆ L and x ∈ (L : J); the same for the other
containment.
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3. If xI ⊆ R, then (I : J) = x−1(xI : J) ⊆ (R : J); for every j ∈ J \ {0},
j(R : J) ⊆ R, so (R : J) is a fractional ideal and so is (I : J). In
addition, (I :R J) = (I : J) ∩R ⊆ (I : J) is a fractional ideal.

4. (⊆): if x ∈ (
⋂
Hα : J), then xJ ⊆

⋂
Iα ⊆ Iβ for every β ∈ A, and

hence x ∈
⋂

(Hα : J).

(⊇): if x ∈
⋂

(Hα : J), xJ ⊆ Iα for every α ∈ A and hence xJ ⊆
⋂
Iα,

that is, x ∈ (
⋂
Hα : J).

5. (⊆): if x ∈ (I :
∑
Hα), x

∑
Hα ⊆ I and hence xHβ ⊆ I for every

β ∈ A; thus x ∈
⋂

(I : Hα).

(⊇): if x ∈
⋂

(I : Hα), xHα ⊆ I for every α, so x
∑
Hα ⊆ I and

x ∈ (I :
∑
Hα).

6. (⊆) If x ∈ ((I : J) : L), then xK ⊆ (I : J) and thus xjL ⊆ I for every
j ∈ J ; that is, xJL ⊆ I and x ∈ (I : JL).

(⊇) If x ∈ (I : JL), xJL ⊆ I =⇒ xL ⊆ (I : J) =⇒ x ∈ ((I : J) : L).

7. If x ∈ S−1(I : J), x = y
s
where y ∈ (I : J) and s ∈ S; for every

j = k
t
∈ S−1J ,

xj =
y

s

k

t
=
yk

st
∈ S−1I (2.3)

because, as y ∈ (I : J) and k ∈ J , yk ∈ I.
If J = (j1, . . . , jn) is finitely generated, since localization commutes
with finite sums and intersections, we have that

(S−1I : S−1J) = (S−1I : (S−1j1R + · · ·+ S−1jnR)) =
n⋂
i=1

(S−1I : jiS
−1R) =

=
n⋂
i=1

j−1
i (S−1I : S−1R) =

n⋂
i=1

j−1
i S−1I =

n⋂
i=1

S−1(j−1
i I) =

n⋂
i=1

S−1(I : jiR) =

= S−1

n⋂
i=1

(I : jiR) = S−1(I : J). (2.4)

2.2 Star operations

Definition 2.5. Let R be an integral domain. A closure operation ? on R is
a star operation if, for every x ∈ R and every integral ideal I, xI? = (xI)?.
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Proposition 2.6. Let ? be a star operation on R.

1. Principal ideals are ?-closed.

2. If I is a ?-ideal, so is xI for every x ∈ R.

3. Every star operation is semi-prime.

4. Every height 1 prime ideal is ?f -closed.

5. If x ∈ K and xI ⊆ R, then xI? = (xI)?.

Proof. 1. Just take I = R in the definition.

2. (xI)? = xI? = xI, hence xI is ?-closed.

3. It is a direct consequence of the definition of semi-prime operation.

4. Let P be an height 1 prime ideal. For every x ∈ P , x 6= 0, P is a
minimal prime of (x), which is a ?-ideal. Hence, since ? is semi-prime,
P is ?f -closed by Proposition 1.17.

5. Let x = y/z, with y, z ∈ R; then xI = J =⇒ yI = zJ =⇒ (yI)? =
(zJ)? =⇒ yI? = zJ? =⇒ J? = (y/z)I? = xI?.

The last part of the proposition motivate the next construction, which is
analogous of that in Section 1.1.1.

Let E be an R-module containing R (that is, there is an injective R-
module map R −→ E), and letM be a set of R-submodules of E such that
I ⊆M. Suppose that A is a subset ofM and R ∈ A; then the map

I 7→ Ic =
⋂
{N ∈ A | I ⊆ N} (2.5)

(for ideals I) is a closure operation on R: the proof is the same as in Propo-
sition 1.2 and Section 1.1.1, with the only addition that the intersection is
contained in R (and hence is an ideal) because R ∈ A.

If we suppose also that M is closed under intersections, then the same
definition works to define a closure operation on M (that is, an extensive,
order-preserving, idempotent map fromM toM), which is an extension of
the closure operation on R.

Suppose now that E = K is the quotient field of R. The set of frac-
tional ideals arises naturally as the largest set of submodules where the star
operation property extends uniquely:
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Proposition 2.7. Let c be a star operation on R, F the set of fractional
ideals of R,M the set of R-submodules of K.

1. There is a unique closure operation ? which extends c on F and such
that, for every I ∈ F and x ∈ K, xI? = (xI)?.

2. Suppose that, for every two extensions ?1, ?2 of c onM such that xI?i =
(xI)?i, I?1 = I?2. Then I ∈ F .

Proof. 1. For every fractional ideal I, let x be an element of R such that
xI ⊆ R, and define I? := 1

x
(xI)c. This is the unique way to extend c

respecting the star operation property, so we must only show that ?
has the desired properties.

? is well-defined, for if xI and yI are both contained in R, then (xyI)c =
x(yIc) = y(xIc) and

1

x
(xI)c =

1

x

1

y
(xyI)c =

1

y
(yI)c. (2.6)

It is a direct consequence of the properties of c that ? is a closure
operation on F ; for the other property, suppose I ∈ F and x ∈ K, and
pick an r ∈ R such that rI, rxI ⊆ R. Then

(xI)? =
1

r
(rxI)c =

1

r
x(rI)c = xI?. (2.7)

2. Let ? be the (unique) extension of c to F . We define

I?1 :=

{
I? if I ∈ F
I otherwise

I?2 :=

{
I? if I ∈ F
K otherwise

(2.8)

They both extends c, and it is clear that they are both extensive and
idempotent (since I? ∈ F for every I ∈ F); moreover, they are order-
preserving because an R-submodule of K contained in a fractional ide-
als is itself a fractional ideal.

Take x ∈ K. If I ∈ F , xI?i = xI? = (xI)? = (xI)?i by the first part; if
I /∈ F , then xI /∈ F and

xI?1 = xI = (xI)?1

xI?2 = xK = K = (xI)?2 (2.9)

so that ?1 and ?2 are different extensions of c with the desired property.
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It is natural to give the next definition:

Definition 2.8. A map ? : F −→ F (I 7→ I?) is a star operation if

1. I ⊆ I?;

2. I ⊆ J =⇒ I? ⊆ J?;

3. (I?)? = I?;

4. R? = R;

5. for every x ∈ K, (xI)? = xI?.

Part 1 of Proposition 2.7 can thus be rephrased as follows: every star op-
eration on R admits a unique extension to a star operation on F . Moreover,
it is clear that a star operation on F , when restricted to the set of integral
ideals, becomes a star operation on R; hence there is a one-to-one correspon-
dence between star operations on R and star operations on F , and we can
drop the distinction between the two.

We define the ?-ideals to be the fractional ideals I such that I? = I, and
we denote their set by F?.

Many of the results and definitions of the previous chapter carries over
without differences replacing integral ideals with fractional ideals, and F?
with I?.

For the former case, the standard technique is to find a x such that xI is
an integral ideal, apply the result to xI and then multiplying back by x−1.
Sometimes additional care is needed: for example, for part 3 of Proposition
1.2 we must add a new hypothesis, that

∑
Iα is fractional ideal. Also, we can

expand Proposition 1.12 to cover a new case:

Proposition 2.9. Let I, J be fractional ideals of R. Then

1. (I :K J)? ⊆ (I? :K J).

2. If I is a ?-ideal, so is (I :K J), and (I? :K J) is ?-closed for every I.

3. (I? : J) = (I? : J?).

The proof is a verbatim copy of part 1 and 2 of Proposition 1.12.
Likewise, the order relation between star operation can be restated with

the set of ?-fractional ideals: ?1 ≤ ?2 if and only if F?1 ⊇ F?2 ; the construc-
tion for the infimum and the supremum requires no modification to adapt
them to fractional ideals, as do the definition of star operations of finite type
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(we will show in Proposition 2.12 that these constructions actually yield star
operations).

The next proposition shows a necessary condition for a set to be the set
of closed ideals of a star operation.

Proposition 2.10. Let ? be a closure operation on F . Then ? is a star
operation if and only if, for every I ∈ F? and x ∈ K, xI ∈ F?.

Proof. The “only if” part is obvious. Suppose xI ∈ F? for every I and x,
and let J be a fractional ideal. We have J? =

⋂
{I ∈ F? | J ⊆ I}, and thus

(xJ)? =
⋂
{I ∈ F? | xJ ⊆ I} =

⋂
{I ∈ F? | J ⊆ x−1I} =

=
⋂
{xI ∈ F? | J ⊆ I} = x

⋂
{I ∈ F? | J ⊆ I} = xJ? (2.10)

because x
⋂
Iα =

⋂
(xIα).

There is also a version of this proposition for integral ideals, although
more clumsy: ? is a star operation if and only if, for every I ∈ I? and x ∈ K
such that xI ⊆ R, xI ∈ I?.

A form of converse of this statement also holds; the proof is the same of
the above proposition.

Proposition 2.11. Suppose M is a set of fractional ideals of R such that
R ∈ M and, for every J ∈ M and x ∈ K, xJ ∈ M. Then the map I 7→⋂
{J ∈ F? | I ⊆ J} is a star operation.

Special M are (a) the set P of principal ideals, (b) the set of finitely
generated ideals, (c) the set of ideals generated by k or less elements, (d) the
set of invertible ideals.

The next proposition is an analogue of Proposition 1.13.

Proposition 2.12. Let {?λ}λ∈Λ be a set of star operation on an integral
domain R. Then inf{?λ}, sup{?λ} and (?λ)f (for any λ) are star operations.

Proof. For ? := sup{cλ}, the set of ?-ideals is
⋂
F?λ ; by Proposition 2.10,

xI ∈ F?λ for every I ∈ F?λ and x ∈ K. If I ∈ F?, then I ∈ F?λ =⇒ xI ∈ F?λ
for every λ and thus xI ∈ F?.

For ? := inf{cλ}, F? is generated by the union of the F?λ ; if I ∈ F?, then
I =

⋂
Iλ where Iλ ∈ F?λ ; for every x ∈ K,

xI = x
⋂

Iλ =
⋂

xIλ (2.11)
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and every xIλ ∈ F?λ because ?λ is a star operation. Hence xI ∈ F? and ? is
a star operation.

Let ? := ?λ.

xI?f = x
⋃
{J? | J ⊆ I and J is finitely generated} =

=
⋃
{xJ? | J ⊆ I and J is finitely generated} =

=
⋃
{(xJ)? | J ⊆ I and J is finitely generated} =

=
⋃
{(xJ)? | xJ ⊆ xI and J is finitely generated} =

=
⋃
{K? | K ⊆ xI and K is finitely generated} = (xI)?f .

(2.12)

Hence ?f is a star operation.

2.3 The v-operation

Definition 2.13. For every fractional ideal I,

Iv :=
⋂
{xR | I ⊆ xR} (2.13)

that is, v is the star operation generated by the set of principal ideals. If
I = Iv, I is also called divisorial. The t-operation is the star operation of
finite type associated to v.

Since every principal ideal is a ?-ideal for any star operation ?, I? ⊆ Iv;
that is, v is the largest star operation. To work with it, we need another
characterization:

Proposition 2.14. For any ideal I 6= (0), Iv = (R : (R : I)).

For now, we define Ic := (R : (R : I)). To prove that c = v, we need two
lemmas.

Lemma 2.15. c is extensive.

Proof. If x ∈ I, by definition xi ∈ R for each i ∈ (R : I); then x(R : I) ⊆ R
and x ∈ Ic.

Lemma 2.16. (R : Ic) = (R : I)c = (R : I)

Proof. (R : Ic) = (R : I)c because they are both equal to (R : (R : (R : I))).
By the last lemma, (R : I) ⊆ (R : I)c; but (R : I) ⊇ (R : Ic) because the
map J 7→ (R : J) reverses the inclusions. Hence (R : Ic) ⊆ (R : I) ⊆ (R :
I)c = (R : Ic) and the three ideals are equal.
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Proof of Proposition 2.14. We will show that v and c are both the largest
star operation, and thus are equal.

c is a star operation: extension is one of the lemmas, order preservation
follows from the fact that J 7→ (R : J) reverse inclusions, and we apply it
twice. For idempotence,

(Ic)c = (R : (R : Ic)) = (R : (R : I)) = Ic (2.14)

by the previous lemma. It is clear that Rc = R; if x ∈ K,

(xIc) = (R : (R : xI)) = (R : x−1(R : I)) = x(R : (R : I)) = xIc (2.15)

and hence c is a star operation.
Pick any star operation ?. For any ideal I, (R : I?) is ?-closed and equal

to (R : I) by Proposition 2.9 (R is ?-closed), and hence

(I?)c = (R : (R : I?)) = (R : (R : I)) = Ic (2.16)

and so F? ⊇ F c, that is, ? ≤ c. We have previously noted that v is the largest
star operation; thus v = c.

In the next proposition, we give some sufficient conditions to have Iv = R,
for a given ideal I. We denote by Z(A) the set of zerodivisors of a ring A.

Proposition 2.17. Let R be a domain and I an ideal; suppose that there is
a x ∈ I such that I/(x) * Z(R/(x)). Then Iv = R.

Proof. It is sufficient to show that (R : I) = R; pick x like in the hypothesis,
and suppose there is an α ∈ (R : I) \ R. Since αx ∈ R, then α = y

x
for a

y ∈ R; y is not contained in (x) because, otherwise, α ∈ R. Let z be any
element of I that is not a zerodivisor in R/(x); then zw /∈ (x) for every
w ∈ R \ (x), and thus in particular zy /∈ (x). But then zα = zy

x
/∈ R, while it

should be zα ∈ R since α ∈ (R : I); hence (R : I) = R and Iv = R.

Corollary 2.18. Suppose that I is an ideal properly containing a principal
prime. Then Iv = R.

Proof. Let (p) ⊂ I, (p) ∈ Spec(R). ThenR/(p) is a domain, henceZ(R/(p)) =
(0) and I/(p) cannot be contained in it.

When R is Noetherian, the hypothesis of Proposition 2.17 can be rewrit-
ten as “depth I > 1”; a particular case is the following:

Proposition 2.19. Let R be a Noetherian domain and P a prime ideal of
height > 1 such that RP is integrally closed. Then P v = R.
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To prove this, we need two facts:

Theorem 2.20. Let A be a Noetherian ring and E be a finitely generated
A-module; let ZA(E) := {x ∈ R | xm = 0 for some m ∈ E}, and I an ideal
contained in ZA(E). Then there is an m ∈ E, m 6= 0, such that mI = (0).

Proof. This is a standard theorem of the theory of Noetherian rings; see e.g.
[35, Theorem 82].

Lemma 2.21. Let (R,P ) be an integrally closed Noetherian local domain
and suppose that for every x ∈ P we have P/(x) ⊆ Z(R/(x)). Then P is
principal and R has dimension 1.

Proof. P (R : P ), lying between P and R, is equal to one of these two.
If P (R : P ) = P , then for every x ∈ (R : P ) we have xP ⊆ P ; since R is

Noetherian, P is also a finitely generated faithful R[x]-module, and thus x is
integral over R and x ∈ R because R is integrally closed; hence (R : P ) ⊆ R,
and (R : P ) = R. because 1 ∈ (R : P ).

However, by hypothesis, we have ZR(R/(x)) = P ; thus, by Theorem 2.20
there is a y ∈ P/(x), y 6= 0, such that y P

(x)
= 0, that is, a y ∈ P \ (x) such

that yP ⊆ (x). Thus y
x
P ⊆ R and α := y

x
∈ (R : P ). But y /∈ (x), and hence

α /∈ R, that is, R ( (R : P ). This is a contradiction, and P (R : P ) = R.
If P (R : P ) = R, then P is an invertible ideal, and thus is principal

(since R is local). Suppose dimR > 1: then there is a nonzero prime ideal
Q properly contained in P = (p). But then, for every x ∈ Q, x = px1 for a
x1 ∈ Q (since Q is prime and p /∈ Q), and by induction there is a xn ∈ Q
such that x = pnxn. Thus Q ⊆

⋂
n≥1(pn) = (0), against the hypothesis that

Q is nonzero. Hence dimR = 1.

Proof of Proposition 2.19. Suppose firstly that P is the maximal ideal of R;
then, by the previous lemma, P/(x) * Z(R/(x)), since otherwise dimR = 1,
that is, P has height 1, in contrast with the hypothesis. By Proposition 2.17,
P v = R.

Let now R be any ring, and pick any x ∈ P . RP is as above, so PRP
xRP

*

Z
(
RP
xRP

)
; thus there is a y ∈ PRP \ xRP such that yz /∈ xRP for every

z ∈ RP \ xRP . Let y = y′

s
, with y′ ∈ P ; then, for every z′ ∈ P \ xR,

we have that sz′ /∈ xRP , because otherwise z′ ∈ xRP since s /∈ P ; thus
y′z′ = ysz′ = y(sz′) /∈ xR, and y is not a zerodivisor in R/xR. Therefore, by
Proposition 2.17, P v = R.

In particular, if R is Noetherian and integrally closed, then every prime
ideal of height ≥ 2 is not divisorial; being v of finite type in this context, the



2. Star operations 39

v-maximal ideals are the height 1 primes. If R is not Noetherian, both Lemma
2.21 and Proposition 2.19 need not to hold: if (R,M) is a non-Noetherian
valuation domain with principal maximal ideal (e.g., if its value group is Z2)
then M v = M (since M is principal) and every prime ideal is divisorial.

The v-operation can be defined also if R is not a domain, replacing K by
the total fraction ring Q and putting Iv to be the intersection of all principal
R-submodules of Q containing I (for any integral ideal I). However, in this
case, v is not necessarily semi-prime: for example, if R is an Artinian local
ring with non-principal maximal ideal M , then R is equal to its total ring of
fractions, and the unique principal ideal containingM isR, and thusM v = R,
while (0)v = (0). But if v were semi-prime, then (Mn)v = ((M v)n)v; taking n
such as Mn = (0), it would follow that (0) = (0)v = (Mn)v = Rv = R, which
is impossible. Hence v is not semi-prime.

2.4 Invertibility

As we have noted in Section 1.5 after Proposition 1.11, for every semi-prime
closure c the operation I ×c J = (IJ)c on the set Ic is associative, with
identity R. With this operation, the structure of Ic is not very rich: for
IJ ⊆ I for every J , and thus I ×c J = (IJ)c ⊆ I. From this follows that
there are no invertible elements, except for R itself.

When c = ? is a star operation, however, we can define this operation on
F?, and even on the whole F ; from this we get the following definition.

Definition 2.22. Let ? be a star operation. A fractional ideal I is ?-invertible
if there is a fractional ideal J such that (IJ)? = R. The set of ?-ideals
?-invertible is denoted by Inv? (or Inv?(R) if there is more than one ring
involved).

Note that a ?-invertible ideal is not, in general, a ?-ideal; but, as (IJ)? =
(I?J)?, I is ?-invertible if an only if I? is ?-invertible.

It is also clear that Inv? is the set of invertible elements of the monoid
(F?,×?), and hence is a group.

Since (R : I) is the biggest ideal such that I(R : I) ⊆ R, the definition
could be rephrased as follows: I is ?-invertible if (I(R : I))? = R. If, moreover,
? is of finite type, so that every ?-ideal is contained in a ?-maximal ideal, this
is also equivalent to the following: I is ?-invertible if I(R : I) is not contained
in any ?-maximal ideal. From this, we get that if ?1−Max = ?2−Max then
?1- and ?2-invertible ideals are the same.

As the set of ?-ideals shrinks when we consider bigger star operations,
we expect that the set of invertible ideals becomes larger. More precisely,
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suppose ?1 ≤ ?2 are star operation and I is ?1-invertible. Hence (I(R :
I))?2 ⊇ (I(R : I))?1 = R; but (I(R : I))?2 ⊆ R because I(R : I) ⊆ R, and
thus (I(R : I))?2 = R, that is, I is ?2-invertible. We can say more:

Proposition 2.23. If I ∈ Inv? then Iv = I.

Proof. I(R : I) ⊆ Iv(R : I); but Iv(R : I) = (R : (R : I))(R : I) ⊆ R, and
hence

R = (I(R : I))? ⊆ (Iv(R : I))? ⊆ R? = R (2.17)

and Iv is ?-invertible. But Iv is a ?-ideal, and thus I and Iv are both inverses
of (R : I) in Inv?, which is a group: hence I = Iv is a v-ideal.

Corollary 2.24. If ?1 ≤ ?2 then Inv?1 ⊆ Inv?2.

Proof. Every I ∈ Inv?1 is ?2-invertible (from the remark above) and is a v-
ideal (by the previous proposition), hence a ?2-ideals, that is, I ∈ Inv?2 .

If ? = d is the identity operation, the concept of d-invertible ideals coin-
cides with the usual definition of invertible ideal, and so there is not conflict
of notation. The above proposition shows that every invertible ideal is a v-
ideal, and a ?-ideal for every star operation; thus, if R is a Dedekind domain
(that is, if every ideal is invertible) then the only star operation on R is the
identity. The same happens (for finitely generated ideals) when R is a Prüfer
domain: since star operations of finite type are determined by their action of
the set of finitely generated ideals, the unique star operation of finite type
on a Prüfer domain is the identity. In both cases, the reverse implication is
not true, because there are domains where the v-operation coincides with the
identity, but are not Dedekind nor Prüfer: for example, in L[[t2, t3]] (where L
is a field), every ideal is divisorial, but L[[t2, t3]] is not integrally closed, and
thus is not Prüfer [46].

More generally, in a Noetherian domain R every ideal is divisorial if and
only if R is a Gorenstein ring of dimension 1, i.e., if K/R is an injective R-
module [35, Theorem 222][11, Theorem 6.3]; in an integrally closed domain
R, every ideal is divisorial if and only if R is Prüfer, every nonzero ideal is
contained in finitely many maximal ideals, every prime ideal is contained in
only one maximal ideal and every maximal ideal is invertible [25].

It is well known that an ideal is invertible if and only if it is finitely
generated and locally principal, that is, IRM is principal for every M ∈
Max(R). There is an analogous criterion for ?-invertibility:

Proposition 2.25. Let ? be a star operation of finite type. Then a fractional
ideal I is ?-invertible if and only if it is ?-finite and I?RM is principal for
every M ∈ ?−Max(R).
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Proof. Without loss of generality, we can suppose that I is an integral ideal
and that I = I?.

(=⇒) Suppose I is ?-invertible. Then

1 ∈ R = (I(R : I))? =
⋃
{H? | H ⊆ I(R : I) and H is finitely generated}

(2.18)
and thus there is a finitely generated idealH = (x1, . . . , xn) such that 1 ∈ H?.
As H ⊆ I(R : I), for every xi there are elements aij ∈ I and bij ∈ (R : I) such
that xi =

∑m
j=1 aijbij; define F :=

∑
i,j aijR ⊆ I andG =

∑
i,j bijR ⊆ (R : I).

Then
R = H? = (FG)? ⊆ (F (R : I))? ⊆ (I(R : I))? = R (2.19)

so that (F (R : I))? = R. Thus F ? and I? = I are both ?-inverses of (R :
I)? = (R : I); then F ? = I? and I is ?-finite.

As I is ?-invertible, I(R : I) is not contained in any ?-maximal ideal,
and thus I(R : I)RM = RM for every M ∈ ? −Max(R). Hence IRM is an
invertible ideal; being RM a local ring, this imply that IRM = I?RM (I = I?

by hypothesis) is principal.
(⇐=) As I = I?, ? = ?f and I is ?-finite, I is strictly ?-finite (Proposition

1.19), and thus there is a finitely generated ideal J ⊆ I such that J? = I?.
We have J(R : J) ⊆ R, so (J?(R : J))? = (J(R : J))? ⊆ R; by extension,
J?(R : J) ⊆ R. Let M ∈ ?−Max(R): then

RM ⊇ J?(R : J)RM = (J?RM)(RM : JRM) (2.20)

(because J is finitely generated); we have also J ⊆ J?, so JRM ⊆ J?RM and
(RM : JRM) ⊇ (RM : J?RM). Thus

(J?RM)(RM : JRM) ⊇ (J?RM)(RM : J?RM) = RM (2.21)

because J?RM = IRM is principal by hypothesis. Then J?(R : J) is not
contained in any ?-maximal ideal, that is, (J?(R : J))? = R. But (J?(R :
J))? = (I(R : J))? and so I is ?-invertible.

Along the many ways to characterize Prüfer domains, two of the most
useful are: every finitely generated fractional ideal is invertible, and RM is
a valuation domain for every M ∈ Max(R). This fact can be generalized as
follows:

Proposition 2.26. Let ? be a star operation of finite type, R a domain.
Then every finitely generated ideal of R is ?-invertible if and only if RM is a
valuation domain for every M ∈ ?−Max(R).
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Domains that verify one condition (hence both) of the proposition are
called Prüfer ?-multiplication domains, or in short P?MD ; if ? is not of finite
type, P?fMDs are also called simply P?MDs. The most important case is that
of Prüfer v-multiplication domains (PvMD), when ? = v (that is, ?f = t). It
is clear that if ? is the identity P?MDs are just Prüfer domains, and that if
?1 ≤ ?2 then every P?1MD is a P?2MD.

Proof. (=⇒) LetM ∈ ?−Max(R) and J be a finitely generated ideal of RM ;
there is a finitely generated ideal I of R such that J = IRM . By hypothesis,
I is ?-invertible, that is, I(R : I) is not contained in any ?-maximal ideal,
and in particular I(R : I) * M . This imply I(R : I)RM = RM ; but I(R :
I)RM = IRM(RM : IRM) = J(RM : J), and so J is an invertible ideal of
RM , and hence principal. Since every finitely generated ideal is principal, RM

is a Bézout domain; being local, it is a valuation ring.
(⇐=) Let I be a finitely generated ideal. Then

(I(R : I))? =
⋂

M∈?−Max(R)

((I(R : I))?)RM ⊇

⊇
⋂

M∈?−Max(R)

(I(R : I))RM =
⋂

M∈?−Max(R)

(IRM)(RM : IRM) (2.22)

But IRM is principal because it is a finitely generated ideal of a valuation
ring; hence it is invertible and (IRM)(RM : IRM) = RM . Thus (I(R : I))? ⊇⋂
M∈?−Max(R) RM = R; but (I(R : I))? ⊆ R, and so I(R : I) = R, and I is

?-invertible.

Since a ?-invertible ideal is ?-finite, the proposition shows also that R is
a P?MD if and only if every ?-finite ideal is ?-invertible, or, expressed differ-
ently, if and only if the set of ?-finite ideals is a group under ?-multiplication.

If R is Noetherian, then it is a PvMD if and only if it is integrally closed:
every P?MD is integrally closed (because it is the intersection of valuation
domains, which are integrally closed) and the v-maximal ideals (v = t) of an
integrally closed are the height 1 prime ideals (by Proposition 2.19) and so
the RM are discrete valuation rings.

Many more characterizations of P?MD are known: fourteen equivalence
for PvMDs are listed in [2], while [32] lists some for general P?MDs.

2.5 Inv? and the class group

As we have seen, Inv?(R) is a commutative group; it is also a partially order
group under reverse containment, and every pair of elements has an upper
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bound: if I, J ∈ Inv?, then I ∩ R and J ∩ R are integral ideals of R bigger
than (0) and thus (since R is an integral domain) have nonzero intersection;
but if x ∈ I ∩ J , then (x) is an invertible ?-ideal contained both in I and in
J , so I ≤ (x) and J ≤ (x). The positive cone of Inv? is the set Inv? ∩I of
integral ?-invertible ?-ideal.

Inv? is, however, too big to be a good subject of study; hence we give a
new definition:

Definition 2.27. Let ? be a star operation on R, and let P(R) be the set of

principal ideals of R. The ?-class group of R is Cl?(R) :=
Inv?(R)

P(R)
.

Corollary 2.24 is immediately translated as: if ?1 ≤ ?2, then Cl?1 ≤ Cl?2 .
The class group generalizes two precedent notions: the Picard group of

R, defined as Pic(R) = Inv(R)
P(R)

, and also called “class group” in the context
of Dedekind domains, and the divisor class group of Krull domains, which
is defined as the analogue of Invv(R)

P(R)
. As a matter of fact, the Picard group

of a Dedekind domain and the divisor class group of a Krull domain both
coincide with the t-class group.

Since the identity is the smallest star operation, we always have an inclu-
sion Pic(R) ⊆ Cl?(R); the quotient G?(R) := Cl?(R)

Pic(R)
is called the local ?-class

group of R.
Among the class groups, the most prominent and the most useful is un-

doubtedly the t-class group Clt(R), which is often denoted simply as Cl(R). It
is closely linked to the arithmetical and factorization properties of domains;
in particular, its vanishing “signals” some important properties:

Theorem 2.28. Let R be a domain, Cl the t-class group. Then

1. [44] R is a UFD ⇐⇒ R is a Krull domain and Cl(R) = 0.

2. [13] R is a GCD domain (i.e., every pair of elements has a greatest
common divisor) ⇐⇒ R is a PvMD and Cl(R) = 0.

3. R is a Bézout domain ⇐⇒ R is a Prüfer domain and Cl(R) = 0.

The third part of the theorem is just a corollary of the second: if R is
Bézout, then it is Prüfer (since every finitely generated ideal is principal, and
hence invertible) and Cl(R) = 0 because it is a GCD domain. Conversely, if
R is Prüfer, then it is a PvMD, and since Cl(R) = 0 every t-invertible ideal
is principal: but t-invertible ideals are invertible ideals, because d = t, and
hence every finitely generated idea, being invertible, is principal, and R is
Bézout.
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The t-class group has also some functorial properties that allows to link
Cl(R) to the class group of the localizations or of polynomial rings over R or
of pullbacks; however, an extension R ⊆ T does not always give rise to the
“canonical” map

Cl(R) −→ Cl(T )

[I] 7→ [(IT )t]
(2.23)

because (IT )t is not, in general, t-invertible if I does. For example, let K be
a field, R = K[[x2, xy, y2]], T = K[[x2, x3, xy, y]] and I = (x2, xy)R; t = v
because all the rings are Noetherian. Then R is the quotient of K[[X, Y, Z]]
by (XZ − Y 2), and thus I, being the image of (X, Y ), is a prime ideal of
height 1, and hence a t-ideal; moreover, the maximal ideal M of R is not
a t-ideal (this can be seen either by direct calculation, or by noting that R
is Cohen-Macaulay because it is a quotient of a Cohen-Macaulay ring by
an ideal generated by a regular element, implying that M has depth 2 and
M v = R by Proposition 2.17), IRI is principal (it is generated by y

x
) and

thus I is t-invertible. On the contrary, the maximal ideal N of T is a t-ideal
because x ∈ (T : N) \ T , and thus t-invertible ideals coincide with invertible
ideals, i.e., are the principal ideals. But IT = (x2, xy)T is not contained in
any integral principal ideal different from T , and thus (IT )t is t-invertible if
and only if (IT )t = T . But IT ⊆ N and thus (IT )t ⊆ N , that is, (IT )t is
not t-invertible.

A sufficient condition for the existence of the canonical map is that
((IJ)tT )t = (IJT )t for every ideals I, J of R (here t represent both the t-
operation on R and the t-operation on T ), and in particular if (I tT )t = (IT )t

for every finitely generated I E R; in this last case, the extension R ⊆ T is
said to be t-compatible. Flat extensions are t-compatible [50]: thus, R ⊆ RS

(for S a multiplicatively closed subset of R) and R ⊆ R[X] are t-compatible.
In the former case, Cl(R) −→ Cl(RS) needs not, in general, to be neither

injective nor surjective; a sufficient condition to be injective is that S is
generated by prime elements [3, Theorem 2.3], while to be surjective is that
R is a PvMD [6, Proposition 6.5]; if P is t-prime ideal, then Cl(R) −→ Cl(RP )
is the zero map [8, Proposition 2.3]. In the latter case, Cl(R) −→ Cl(R[X])
(for any set {X} of indeterminates) is an isomorphism if and only if R is
integrally closed [21]. More results on the map Cl(R) −→ Cl(T ) can be
found in [7] and in [50].

2.6 v-invertibility and complete integral closure

While the general criterion 2.25 works for star operations of finite type, there
is also one for the v-invertibility:
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Proposition 2.29. I is v-invertible if and only if (Iv : Iv) = R.

Proof. Since (Iv : Iv) = (Iv : I), and using Proposition 2.4, part 6, we have

(Iv : Iv) = ((R : (R : I)) : I) = (R : I(R : I)). (2.24)

If (Iv : Iv) = R, then R = (R : I(R : I)) and (I(R : I))v = R, that is, I is
v-invertible; conversely, if I is v-invertible, then (R : I(R : I)) = (R : (I(R :
I))v) = (R : R) = R.

(I : I) is at the same time an overring and a fractional ideal of R; it
is also easy to see that an R-submodule S is an overring of R if and only
if (S : S) = S. This imply that an overring S of R is a fractional ideal
if and only if there is an (integral) ideal I such that (I : I) = S (since
(xS : xS) = (S : S)).

The union of all these overrings is denoted by R̃ and is called the complete
integral closure of R, and its elements are said to be almost integral over R:

R̃ :=
⋃
{(I : I) | I ∈ I(R)}. (2.25)

By definition, R = R̃ if and only if every ideal of R is v-invertible; in this
case, R is said to be completely integrally closed.

We also have that

R̃ =
⋃
{(Iv : Iv) | I ∈ I(R)} =

⋃
{(I? : I?) | I ∈ I(R)} (2.26)

for every star operation:
⋃
{(Iv : Iv)} ⊆

⋃
{(I? : I?)} ⊆

⋃
{(I : I)} because

each union has more terms than the previous one, while, for every I, (I :
I) ⊆ (Iv : I) = (Iv : Iv), and thus

⋃
{(I : I)} ⊆

⋃
{(Iv : Iv)}.

R̃ is also a ring: for every K and L, we have (K : K) ⊆ (KL : KL), and
so if i, j ∈ R̃ there are I, J such that i ∈ (I : I) and j ∈ (J : J); both i + j
and ij are in (IJ : IJ).

It is useful to compare complete integral closure with integral closure: an
element x is integral over R if and only if there is a finitely generated ideal
I such that xI ⊆ I, that is, x ∈ (I : I); thus

R :=
⋃
{(I : I) | I is a finitely generated ideal of R} (2.27)

is contained in R̃, and R̃ = R if R is Noetherian, since every fractional ideal
of a Noetherian ring is finitely generated. Since v = t if R is Noetherian, this
characterization permits a different proof (which does not uses Proposition
2.19) that a Noetherian ring is a PvMD if and only if it is integrally closed.

Also the “equational” definition of integral element has an analogue:
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Proposition 2.30. x ∈ R̃ if and only if there is a c ∈ R such that cxn ∈ R
for every n > 0.

Proof. If x ∈ R̃, then x ∈ (I : I) for an integral ideal I; thus xn ∈ (I : I)
for every n > 0 (since (I : I) is an overring) and for every i ∈ I we have
ixn ∈ I ⊆ R.

If cxn ∈ R, then cR[x] ⊆ R, and thus R[x] is a fractional ideal of R; in
particular x ∈ (cR[x] : cR[x]) ⊆ R̃.

R̃ itself need not to be a fractional ideal of R; if it does, then its fractional
ideals coincide with those of R (since if xI ⊆ R̃ and cR̃ ⊆ R, then xcI ⊆ R)
and so the complete integral closure of R̃ is equal to the complete integral
closure of R, that is, ˜̃R = R̃. If R̃ is not a fractional ideal, however, it
could be that its complete integral closure is strictly larger than itself: thus
complete integral closure is not a “real” closure, since it is not, in general,
idempotent; an example is L[{X2n+1Y n(2n+1) | n ∈ N}], where L is a field
[23]. In fact, there are examples of domains where complete integral closure
never stabilizes, that is, if R1 := R̃ and Rn is the complete integral closure
of Rn−1, then the chain R ( R1 ⊆ R2 ( · · · ( Rn ( · · · is strictly ascending
[28].

We end by a small proposition concerning completely integrally closed
local domains and the divisoriality of their maximal ideal.

Proposition 2.31. Let (R,M) be a completely integrally closed local domain.
M is divisorial if and only if R is a discrete valuation ring.

Proof. If R is a DVR then M is principal and hence divisorial. Conversely,
suppose M v = M , and let I be any ideal of R; then I is v-invertible because
R is completely integrally closed. Thus (I(R : I))v = R and I(R : I) = R
(otherwise (I(R : I))v ⊆ M v = M), that is, I is invertible. Since R is local,
I is principal; hence every ideal of R is principal, and R is a local PID, i.e.,
a DVR.

2.7 Historical and bibliographical note

Star operations were introduced by Krull [37] under the name “8-operations”,
and received their name by Gilmer. They have also been called prime oper-
ations, by analogy with semi-prime operations [41, 36].

Results in Sections 2.1, 2.2 and the first half of 2.3 are standard, and can
be found, for example, in [22], although I elected to define star operations
as closure operations on R and then extend them to fractional ideals rather
then start from these (as is commonly done).
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The second half of Section 2.3 is largely built upon [35] (where the star
operation language is not used).

Proposition 2.26 was first proved in [24] for PvMD (where they were called
“v-multiplication rings”); the term “Prüfer” was added no later than Gilmer’s
book [22].

Complete integral closure was also introduced by Krull [37]; results in
Section 2.6 are in [22, Chapters 13 and 34].



3. STAR OPERATIONS AND OVERRINGS

3.1 Homomorphisms and modules

In this section, we do not suppose that the rings considered are integral
domains.

A very productive way to construct closure operations on a ring R is by
using homomorphisms from R to other rings.

Proposition 3.1. Let φ : R −→ S be a homomorphism and d a closure
operation on S. Then the map

I 7→ Ic := φ−1((φ(I)S)d) (3.1)

is a closure operation on R. Moreover, if d is semi-prime (respectively, of
finite type) then so is c.

When φ is an inclusion, c can be written simply as Ic = (IS)d ∩R.

Proof. Extension and order-preservation are clear:

I ⊆ φ−1(φ(I)S) ⊆ φ−1((φ(I)S)d) = Ic, (3.2)

while I ⊆ J implies that φ(I)S ⊆ φ(J)S, and the inclusion is preserved
under d and under contraction.

Suppose that x ∈ (Ic)c. Then φ(x) ∈ φ(Ic) = φ(φ−1((φ(I)S)d)), i.e.

x ∈ (φ−1 ◦ φ ◦ φ−1)((φ(I)S)d). (3.3)

But, for every ideal J E S,

(φ−1 ◦ φ ◦ φ−1)(J) = φ−1(J); (3.4)

thus x ∈ φ−1((φ(I)S)d), that is, x ∈ Ic.
Suppose that d is semi-prime, and let y ∈ xIc: then y = xz with z ∈ Ic,

and thus φ(y) = φ(x)φ(z) ∈ φ(x)(φ(I)S)d. Since d is semi-prime, the last
ideal is contained in (φ(x)(φ(I)S))d = (φ(xI)S)d, and y ∈ (xI)c. Thus xIc ⊆
(xI)c, and c is semi-prime.
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Suppose that d is of finite type, and let I be an ideal. For every y ∈ φ(I)S,
y = φ(i1)s1 + . . . + φ(in)sn, and thus there is a finitely generated ideal J of
R contained in I (namely (i1, . . . , in)) such that y ∈ φ(J)S. Pick x ∈ Ic:
then φ(x) ∈ (φ(I)S)d, so that there is a finitely generated ideal H ⊆ φ(I)S
such that φ(x) ∈ Hd; let H = (h1, . . . , hm). Each hi is contained in a finitely
generated ideal Ji ⊆ I; hence φ(x) ∈ Hd ⊆ ((J1 + · · · + Jm)S)d, so that
x ∈ (J1 + · · · + Jm)c. Since J1 + · · · + Jm is finitely generated, c is of finite
type.

We note that the above proposition does not work if we replace “semi-
prime” with “star operation”, even if φ is an inclusion, S is an overring of
a domain R and d is the identity, because aS ∩ R need not to be equal to
aR: for example, if R = Z and S = Z(2) = Z2Z, then 6S = 2S = 2Z(2), and
(6)c = 2Z(2) ∩ Z = 2Z. A slightly different construction that actually yields
star operations is given in Section 3.6.

If S is equal to R/I, where I is an ideal of R, then the closure operation
induced by the quotient map π : R −→ S and by the closure operation d
on R/I is the closure c on R whose c-ideals are the ideals containing I that
project to the d-ideals of S.

If we have a whole family of rings Sα, closure operations dα and homo-
morphisms φα : R −→ Sα, we can take the infimum of the corresponding
closures cα, obtaining

Ic :=
⋂
α∈A

φ−1
α ((φα(I)Sα)dα) (3.5)

which (by Proposition 1.13) is semi-prime if all the dα are.
Closure operations that arise in this way are, for example, the radical (if

the family {Sα} is the family of fields), and integral closure (if {Sα} is the
family of valuation rings; see Proposition 4.24).

Further on this way, there is also a method to obtain closure operations
from modules: rewriting φ−1(φ(I)S) as {x ∈ R | φ(x) ∈ φ(I)S} = {x ∈
R | φ(x)S ⊆ φ(I)S}, we can replace S by any R-module U , and the map
becomes

I 7→ Ic := {x ∈ R | xU ⊆ IU} = (IU :R U) (3.6)

This is really a closure operation: extension and order-preservation are clear,
while for idempotence we suppose x ∈ (Ic)c. Then xU ⊆ IcU ; but since
iU ⊆ IU for every i ∈ Ic, we have IcU ⊆ IU , and hence xU ⊆ IU , that is,
x ∈ Ic.

For every module U , c is semi-prime: if y ∈ xIc; then y = xz for a z ∈ Ic,
and yU = xzU ⊆ xIU , so that y ∈ (xI)c and xIc ⊆ (xI)c.
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If, moreover, U is finitely generated, then c is of finite type: let x ∈ Ic

and suppose that U is generated by u1, . . . , um. For every i, xui ⊆ HiU
for a finitely generated ideal Hi ⊆ I; hence xU ⊆ (H1 + · · · + Hm)U and
x ∈ Hc, where H := H1 + · · · + Hm is finitely generated; it follows that
Ic =

⋃
{Hc | H ⊆ I,H is finitely generated}, and c is of finite type.

If U is not finitely generated, it may happen that c is not of finite type:
for example, if I is a non-finitely generated ideal such that I2 = I (e.g.,
the non-principal maximal ideal of a valuation ring), then Ic = (I2 :R I) =
(I :R I) = R, but, for every finitely generated ideal H ⊆ I, we have that
HI ⊆ H ( I, and thus Hc = (HI :R I) 6= R because 1 /∈ (HI :R I).

A closure arising in this way is the Frobenius closure: we recall that, for
a ring R of prime characteristic p, an element x is in the Frobenius closure
IF of I if there is an e ∈ N such that xpe ∈ I [pe], where I [pe] is the ideal
generated by the peth powers of elements of I.

Define the R-module eR with the same additive structure as R (with
elements denoted er for each r ∈ R), and R-multiplication as follows:

a · er =
e
(ap

e

r). (3.7)

Then we have closure operations ce such that Ice := (I ·eR : eR), and ce ≤ ce+1

for every e; their supremum IF :=
⋃
e∈N

Ice is Frobenius closure, because, as

sets, I · eR = I [pe]. (Proposition 1.4 actually guarantees that F is idempotent
only if R is Noetherian; however, the closure works in every case.)

3.2 Extension rings

An extension ring of R is just a ring S with a injective homomorphism
i : R −→ S. To avoid any problem, when we will talk about a family {Rα}
of extension rings, we will tacitly assume that all the Rα are domains and
that they are contained in a bigger field F ; in this way, the injective homo-
morphisms become just inclusions, and it is meaningful to speak about IS
for a fractional ideal I. The main case is when every Rα is an overring of R,
i.e., when Rα is contained between R and its quotient field K.

Definition 3.2. Let R be an integral domain and {Rα}α∈A a set of extension
rings of R. The closure operation induced by {Rα} is

Ic :=
⋂
α∈A

IRα ∩R. (3.8)
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By the results of the above section, c is indeed a closure operation; more-
over, if

⋂
Rα = R, then it is a star operation, because, for every x ∈ R,

xIc = x

(⋂
α∈A

IRα

)
=
⋂
α∈A

xIRα = (xI)c. (3.9)

It is easy to see that Definition 3.2 works also for fractional ideals.
A little more precise form of idempotence is the following:

Lemma 3.3. Ic = J c if and only if IRα = JRα for every α ∈ A.
Proof. One implication is clear; for the other, it is sufficient to prove that
IRα = IcRα; the ⊆ containment comes from the extensive property of closure
operations, while

IcRα =

(⋂
α∈A

IRα

)
Rα ⊆ IRαRα = IRα. (3.10)

Lemma 3.4. Let c be the closure operation induced by {Rα}, and let I be an
ideal of R contracted from some J E Rβ (that is, I = J ∩ R). Then I is a
c-ideal.

Proof. Since IRβ = (J ∩R)Rβ ⊆ J , we have

Ic =
⋂
α∈A

IRα∩R = IRβ ∩
⋂
α∈A

IRα∩R ⊆ J ∩
⋂

Rα∩R = J ∩R = I (3.11)

and thus I is a c-ideal.

Closure operations induced by a family of extension rings need not to be
of finite type, although every IRα ∩R is of finite type. A sufficient condition
is that every x ∈ R is a non-unit only in finitely many Rα: in this case,
if I E R, pick any a ∈ I, and let R1, . . . , Rn be the rings where a is not
invertible; then IRα = Rα if Rα 6= Ri for every i, and thus Ic =

⋂n
i=1 IRi.

The map

J 7→ Jd :=
n⋂
i=1

JRi (3.12)

is a closure operation of finite type (by Proposition 1.9) such that Jd = J c if
a ∈ J . For every x ∈ Ic there is a J ⊆ I finitely generated such that x ∈ Jd;
hence x ∈ (J, a)d = (J, a)c, and, since (J, a) ⊆ I, c is of finite type.

If every Rα is a localization of R, we can get a characterization of finite
type closure operation in terms of the topology of c−Spec(R): see Proposition
3.13.

However, this closures share an important property with finite type clo-
sure operations:
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Proposition 3.5. Let c be the closure operation induced by {Rα}. Every
c-ideal is contained in a prime c-ideal.

Proof. Let I = Ic, and let Rβ ∈ {Rα} such that IRβ 6= Rβ (it exists, because
otherwise we would have Ic =

⋂
Rα ∩R = R). Let M be a prime ideal of Rβ

containing IRβ; then P := M ∩ R is a prime ideal of R, and is a c-ideal by
Lemma 3.4.

Note that the previous proposition is not true if we replace c-prime ideals
with c-maximal ideals, because these need not to exist: for example, set
R = K[X1, . . . , Xn, . . .], let ∆ be the set of finitely generated prime ideals
and c be the closure operation induced by the set {RP | P ∈ ∆}. Every
P ∈ ∆ is a c-ideal, while every Q /∈ ∆ is not contained in any P ∈ ∆, and so
Qc = R; hence every c-maximal ideal M should be finitely generated, but, if
Xm does not appear among the generators of M , then (M,Xm) is a c-prime
ideal bigger then M , which is absurd.

Corollary 3.6. Let c be the closure operation induced by {Rα}. For every
c-ideal I,

I =
⋂

P∈c−Spec(R)

IRP . (3.13)

The proof is completely analogous to that of Proposition 1.17, part 4.
It is to be noted that it is not true that Ic =

⋂
P∈c−Spec(R)

IRP : for example,

if M c = M for every maximal ideal M , then
⋂
IRP = I, so if c is different

from the identity there is an ideal such that Ic 6= I =
⋂
IRP . An explicit

example is integral closure (see next chapter).

3.3 Spectral operations

Definition 3.7. Let ∆ ⊆ Spec(R) be a (nonempty) set such that
⋂
P∈∆RP =

R. The star operation ?∆ induced by {RP}P∈∆ is called the spectral operation
induced by ∆, and a star operation is called spectral if ? = ?∆ for a set
∆ ⊆ Spec(R).

A spectral operation can be associated to more than one subset. To study
this case, we introduce the following terminology: a set ∆ ⊆ Spec(R) is closed
under generization if every prime ideal contained in a Q ∈ ∆ is a member of
∆, and the generization ∆ of a set ∆ ⊆ Spec(R) is the smallest set closed
under generization containing ∆, or, more explicitly, ∆ = {Q ∈ SpecR |
∃ P ∈ ∆ such that Q ⊆ P}.
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Proposition 3.8. If ? = ?∆ is a spectral star operation, then ?−Spec(R) =
∆.

Proof. If P ∈ ∆, then there is a Q ∈ ∆ such that P ⊆ Q; thus PRQ∩R = P ,
and P ? = P by Lemma 3.4, i.e., P ∈ ?− Spec(R).

Conversely, suppose P /∈ ∆. Then P is not contained in any Q ∈ ∆, and
thus PRQ = RQ for every Q ∈ ∆; it follows that P ? =

⋂
RQ = R and P is

not a ?-ideal.

Given ?∆ and the star operation ?∆ induced by the generization of ∆,
the previous proposition shows that they have the same spectrum. Moreover,
they are equal:

Proposition 3.9. Suppose that ∆ and Λ are subsets of Spec(R) such that⋂
P∈∆

RP =
⋂
Q∈Λ

RQ = R. Then the corresponding star operations ?∆ and ?Λ

are equal if and only if ∆ = Λ.

Proof. If ?∆ = ?Λ then ?∆−Spec = ?Λ−Spec, which is equal (respectively)
to ∆ and Λ, that thus coincide.

For the other implication it suffices to show that ?∆ = ?∆. Since ∆ ⊆ ∆,

I?∆ =
⋂
M∈∆

IRM ⊆
⋂
M∈∆

IRM = I?∆ . (3.14)

On the other hand, set ∆′ = ∆ \∆; for each P ∈ ∆′ there is a Q ∈ ∆ such
that P ⊆ Q, and thus RP ⊇ RQ. Hence

⋂
M∈∆′

IRM ⊇
⋂
M∈∆

IRM and

⋂
M∈∆

IRM =
⋂
M∈∆

IRM ∩
⋂

M∈∆′

IRM ⊇
⋂
M∈∆

IRM . (3.15)

Therefore ?∆ = ?∆.

The previous proposition establishes a one-to-one correspondence be-
tween spectral star operations and subset of Spec(R) closed under gener-
ization with the property that

⋂
RP = R.

One one the main features of spectral star operations is that they dis-
tributes over finite intersections: that is, (I ∩ J)? = I? ∩ J? for every pair
of fractional ideals I, J ; this does not happens with general operations in-
duced by extension rings, or even by overrings. In fact, this property “almost”
characterizes them:
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Proposition 3.10. Let ? be a star operation on R. The following are equiv-
alent:

1. ? = ?∆ is spectral.

2. (a) (I ∩ J)? = I? ∩ J? for all integral ideals I, J .

(b) Each proper ?-integral is contained in a ?-prime ideal.

3. (a) (I :R J)? = (I? :R J?) for all integral ideals I, J with J finitely
generated.

(b) Each proper ?-integral is contained in a ?-prime ideal.

4. (a) (I :R x)? = (I? :R x) for all integral ideals I.

(b) Each proper ?-integral is contained in a ?-prime ideal.

Proof. (1 =⇒ 2) (a) follows because localization commutes with finite inter-
sections, while (b) follows from Proposition 3.5.

(2 =⇒ 3) Let J = (j1, . . . , jn). We have

(I :R J)? = (R ∩ (I : J))? =

(
R ∩

(
I :

n∑
i=1

jiR

))?

=

=

(
R ∩

n⋂
i=1

(I : jiR)

)?

= R ∩
n⋂
i=1

(I : jiR)?. (3.16)

But (I : jR)? = (j−1I?) = j−1I? = (I? : jR), and thus

(I :R J)? = R ∩
n⋂
i=1

(I? : jiR) = R ∩

(
I? :

n∑
i=1

jiR

)
=

= R ∩ (I? : J) = (I? :R J) = (I? :R J
?) (3.17)

the last equality coming from Proposition 2.9.
(3 =⇒ 4) Obvious.
(4 =⇒ 1) Let ∆ = ? − Spec(R), and let ?1 be the map (from the set of

R-submodules of K to itself)

I?1 :=
⋂
P∈∆

IRP . (3.18)

By Corollary 3.6, R = R?1 and thus ?1 is a star operation, which clearly is
spectral.
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Let I be any ideal. If x ∈ I?, then (I :R x)? = (I? :R x) = R, and thus (by
property (b)) (I :R x) is not contained in any P ∈ ∆, and (I :R x)RP = RP

for every P ∈ ∆. This imply (I :R x)?1 =
⋂

(I :R x)RP =
⋂
RP = R; but (as

?1 is a spectral operation) (I :R x)?1 = (I?1 :R x); hence the last one contains
1, and x ∈ I?1 .

Suppose x ∈ I?1 . In the same way, (I :R x)?1 = R and (I :R x) is not
contained in any P ∈ ∆; hence also (I :R x)? is not contained in any P ∈ ∆,
and by property (b) (I :R x)? = R. By property (a), (I :R x)? = (I? :R x)
and so x ∈ I?; thus I?1 = I? and ?1 = ?.

It is to be noted that property (b) is used only in the last implication,
and thus we have that (2a)=⇒(3a)=⇒(4a). Moreover, it is also true that
(4a)=⇒(2a) [5], so that conditions (2a)-(4a) are equivalent.

It is not true that if ? distributes over finite intersections then it is spec-
tral: for example, let (R,M) be a valuation domain. Then the set of ideals of
R is totally ordered; in particular, if I ⊆ J , then I ∩ J = I and I? ∩ J? = I?

because ? is extensive, and thus

(I ∩ J)? = I? = I? ∩ J?. (3.19)

But if ? = v and M is non-principal, then ? cannot be spectral, since M v =
R while there are principal ideals directly below M , so that they are not
contained in any ?-prime ideal. However, if ? is of finite type and distributes
over intersections, it is necessary spectral.

In this example, v also distributes over arbitrary intersections; this is in
general not true for spectral operations.

Proposition 3.11. [1, Theorem 7] Suppose that ? is a finite type star oper-
ation that distributes over arbitrary intersections. Then it is the identity.

Proof. Since in particular it distributes over finite intersections, ? is spectral;
the thesis would follow if we prove that every maximal ideal is ?-closed.

Suppose M is maximal and M? 6= M . Then M? = R and, since ? is of
finite type, there is a finitely generated ideal I ⊆ M such that I? = R. Let
J := {I ⊆ M | I? = R} 6= ∅, x ∈ M and define J :=

⋂
{(x) + I | I ∈ J }.

Then

J? =

(⋂
I∈J

(x) + I

)?

=
⋂
I∈J

((x) + I)? ⊇
⋂
I∈J

I? = R (3.20)

and hence there is a J0 ⊆ J finitely generated such that J?0 = R; in particular,
since J0 ⊆ J ⊆ M , J0 ∈ J . Moreover, (J2

0 )? = ((J?0 )2)? = R? = R, so that
J2

0 ∈ J . We have that J0 ⊆ (x) + I for every I ∈ J , and in particular
J0 ⊆ (x) + J2

0 . If P is a minimal prime of (x), then J0 ⊆ (x) + J2
0 ⊆ P + J2

0
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and thus P + J0 = P + J2
0 ; in R/P , this means that J0 = J0

2, and since J0

is finitely generated it is the zero ideal, i.e., J0 ⊆ P . But P ? = P because
it is a minimal prime over the ?-ideal (x), and thus J?0 ⊆ P , which is a
contradiction. Hence M? = M .

Proposition 3.12. A star operation generated by a family of flat extension
rings is spectral.

A more explicit way to view this proposition is: if ? is induced by a family
of R-flat extension rings, then there is a family of localizations that induces
it.

Proof. By Proposition 3.10 and Proposition 3.5, it is sufficient to prove that,
if T is a flat R-module, then (I ∩ J)T = IT ∩ JT .

There is an exact sequence

0 −→ I ∩ J −→ R −→ R

I
× R

J
(3.21)

where the last map sends r to (r + I, r + J). Tensoring with T , we get an
exact sequence

0 −→ (I ∩ J)⊗R T −→ R⊗R T −→
(
R

I
× R

J

)
⊗R T (3.22)

that is,

0 −→ (I ∩ J)T −→ T −→ T

IT
× T

JT
. (3.23)

But the kernel of the last map is exactly IT ∩ JT , so that (I ∩ J)T =
IT ∩ JT .

There is a very neat characterization of finite type spectral operations:

Proposition 3.13. Let ? be a spectral operations associated to a set ∆. Then
? is of finite type if and only if ∆ is compact (in the Zariski topology inherited
from Spec(R)).

Proof. Set V∆(I) := {P ∈ ∆ | I ⊆ P} = V (I)∩∆ and D∆(I) := ∆\V (I) =
D(I) ∩∆. The closed set of ∆ are precisely the V∆(I), and the open set are
the D∆(I).

Suppose ? is of finite type; let D := {D∆(Iα)} be a cover of ∆ and
J :=

∑
Iα. Then J is not contained in any prime of ∆: if J ⊆ Q, then

Iα ⊆ Q for every Iα, and thus Q ∈ V∆(Iα) and Q /∈ D∆(Iα) for every I,
against the hypothesis that D is a cover. Since any ?-ideal is contained in a
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member of ∆, it follows that J? = R, and since ? is of finite type and J is
?-finite, then by Proposition 1.19 J is strictly ?-finite, i.e., there is a finitely
generated ideal H ⊆ J such that H? = R; let H = (h1, . . . , hn). Each hi is
contained in the sum of a finite number of the Iα; hence H is contained in a
sum I1 + · · ·+ In. This implies that

∅ = V∆(H) ⊇ V∆(I1 + · · ·+ In) = V∆(I1) ∩ · · · ∩ V∆(In) (3.24)

and thus {D(I1), . . . , D(In)} is a finite subcover of D.
Conversely, suppose that ∆ is compact and x ∈ I?. Consider the set

D := {D∆((H :R x)) | H ⊆ I and H is finitely generated}: we say that it is
a cover of ∆. Otherwise, if P /∈

⋃
D∆((H :R x)), then P ∈

⋂
V∆(H :R x),

that is, (H :R x) ⊆ P for every finitely generated ideal H ⊆ I. Since ? is
spectral, by Proposition 3.10 (I :R x)? = (I? :R x) = R (because x ∈ I?),
and thus (I :R x) * P (since P is a ?-ideal); if y ∈ (I :R x) \ P , then yx ∈ I
and y ∈ (yx :R x); but (yx) ⊆ I is finitely generated, and thus we should
have (yx :R x) ⊆ P , which is absurd. Therefore D is a cover of ∆.

Since ∆ is compact, there is a finite subcover {D∆((Hi :R x))}ni=1; set
H := H1 + · · · + Hn. Then H ⊆ I is finitely generated; if x /∈ H?, then
R 6= (H? :R x) = (H :R x)?, and thus (H :R x) is contained in a prime
ideal P ∈ ∆; but then, for every i, (Hi :R x) ⊆ (H :R x) ⊆ P and thus
P ∈ V∆((Hi :R x)); therefore P /∈

⋃
iD∆((Hi :R x)), against the hypothesis.

Thus (H :R x)? = R, and x ∈ H?.

See also Proposition 3.19.
We recall that a topological space is Noetherian if the the family of open

sets satisfies the ascending chain condition or, equivalently, the family of
closed sets satisfies the descending chain condition; since there is a one-to-one
correspondence between open sets and radical ideals, Spec(R) is Noetherian
if and only if the radical ideals of R satisfy the ascending chain condition.
Since a subset of a Noetherian space is again Noetherian, from the previous
proposition we get at once:

Corollary 3.14. If Spec(R) is Noetherian, then every spectral operation on
R is of finite type.

Corollary 3.15. Suppose that R is a Prüfer domain with Noetherian spec-
trum, and let ∆ ⊆ Spec(R) be a set such that

⋂
P∈∆ RP = R. Then Max(R) ⊆

∆.

Proof. Since Spec(R) is Noetherian, by the previous corollary ? = ?∆ is of
finite type and, since R is Prüfer, it equals the identity. Thus the generization
∆ coincides with Spec(R); but a maximal ideal is in ∆ if and only if it is in
∆, and hence Max(R) ⊆ ∆.



3. Star operations and overrings 58

If Spec(R) is not Noetherian, then the last corollary could not hold: for
example, let R be the ring of entire functions, that is, functions that are
holomorphic on the whole C. Then R is a Bézout domain whose maximal
ideals are either principal, generated by X−α for some α ∈ C, or non-finitely
generated and of infinite height [27]. Let ∆ = {(X − α) | α ∈ C}. For any
r ∈ K, r = f/g with f, g ∈ R; if r /∈ R, then g has a zero β (otherwise it
would be invertible), and thus r /∈ R(X−β). Then

⋂
P∈∆

RP = R, while ∆ does

not contain all the maximal ideals of R. This is also an example of a spectral
operation which is not of finite type.

3.4 The ?w construction

A special case is when ∆ = ?−Max for a (finite type) star operation ?.

Definition 3.16. Let ? be a star operation of finite type; then ?w is

I?w :=
⋂

M∈?−Max(R)

IRM . (3.25)

If ? = t, tw is simply called the w-operation.

Since ? is of finite type,
⋂
M∈?−Max(R) RM = R, so that ?w is a star op-

eration; the same construction would work also if ? were only semi-prime,
yielding a star operation.

A less transparent but useful characterization is the following:

Proposition 3.17. I?w =
⋃
{(I : J) | J? = R, J is finitely generated}.

Proof. If x is in the right hand union, then xJ ⊆ I for a finitely generated
J such that J? = R; since ? is of finite type, J is not contained in any
?-maximal ideal, and⋂
M∈?−Max(R)

(xJRM) = x
⋂

M∈?−Max(R)

(JRM) = x
⋂

M∈?−Max(R)

RM = xR. (3.26)

But xJRM ⊆ IRM for every ?-maximal ideal, and therefore⋂
M∈?−Max(R)

(xJRM) ⊆
⋂

M∈?−Max(R)

IRM = I?w (3.27)

and xR ⊆ I?w , that is, x ∈ I?w .
Conversely, suppose x ∈ I?w ; then, for every ?-maximal ideal M , x ∈

IRM , and x = iM
sM

for some iM ∈ I and sM /∈ M . Let H be the ideal
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generated by all the sM ; then H is not contained in anyM and thus H? = R,
and in particular H is ?-finite; since ? is of finite type, H is strictly ?-finite
by Proposition 1.19, and thus there is a finitely generated ideal J ⊆ H such
that J? = R. Since xsM = iM ∈ I for every M , xH ⊆ I and thus xJ ⊆ I,
i.e., x ∈ (I : J) and x is the union.

This characterization allows a simple proof that ?w is of finite type: since
x ∈

⋃
(I : J), x ∈ (I : J) for a J ; but then xJ is a finitely generated ideal

contained in I and x ∈ (xJ : J), so that x ∈ (xJ)?w and ?w is of finite type.
Another feature of this characterization is that it can be generalized to

arbitrary star operations ?, giving rise to two star operations, ? and ?w [5]:

I? :=
⋃
{(I : J) | J? = R}, (3.28)

I?w :=
⋃
{(I : J) | J? = R, J is finitely generated}. (3.29)

There is no ambiguity of notation, because, if ? is not of finite type, then the
last definition of ?w coincides with the above definition of (?f )w; it follows
that ?w is spectral for any ?.

It can be shown that both these maps are star operations that distributes
over intersections, although ? need not to be spectral; moreover, the proof of
Proposition 3.17 shows that ? = ?w if ? is of finite type.

The map ? 7→ ?w bears resemblance to the map c 7→ cf that associates
every closure operation with a closure operation of finite type; the following
is an analogue of Proposition 1.8.

Proposition 3.18. Let ? be a star operation of finite type.

1. ?w ≤ ?.

2. If ?1 ≤ ?2 then (?1)w ≤ (?2)w.

3. ?w − Spec(R) is the generization of ? − Spec(R); in particular, ? −
Max(R) = ?w −Max(R).

4. (?w)w = ?w, and ?w is the largest spectral operation smaller than ?.

Proof. 1. By Proposition 1.17, I? :=
⋂
M∈?−Max(R) I

?RM ; thus every ?-
ideal is a ?w-ideal, and ?w ≤ ?.

2. As ?1 ≤ ?2, F?1 ⊇ F?2 and thus every ?2-maximal idealM is contained
in a ?1-maximal ideal M ′. Since IRM ⊇ IRM ′ , we have

I(?2)w =
⋂

M∈?2−Max

IRM ⊇
⋂

M ′∈?1−Max

IRM ′ = I(?1)w (3.30)

and (?1)w ≤ (?2)w.
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3. If P ∈ ?− Spec(R), then P ⊆ Q for some Q ∈ ? − Spec(R); since
PRQcapR = P , by Lemma 3.4 P ?w = P . Conversely, if P ?w = P , then
PRM 6= RM for some M ∈ ?− Spec(R); hence P ⊆M and P is in the
generization.

The second claim follows because, if ∆ ⊆ Spec(R), ∆ and ∆ share the
same maximal elements.

4. Since ? −Max(R) = ?w −Max(R), the intersections
⋂

M∈?−Max(R)

IRM

and
⋂

M∈?w−Max(R)

IRM are the same, and ?w = (?w)w.

If ?1 ≤ ?, (?1)w ≤ ?w; but, being ?1 spectral, (?1)w = ?1, because they
are two spectral operations with the same set of maximal ideals, and
?1 ≤ ?w.

Part 4 implies that every spectral operation of finite type is obtained as
?w of itself; since each ?w is of finite type, we have that a spectral operation
is of finite type if and only if it is in the form ?w.

Proposition 3.19. If ? be a star operation of finite type, then ? − Spec is
compact in Spec(R).

Proof. ? − Spec induces the spectral operation ?w, which is of finite type;
by Proposition 3.13, ?− Spec is compact.

3.5 Chain conditions

In this section, we pursue the investigation of closure operations that sat-
isfy Proposition 1.20, that is, closure operations c such that Ic satisfies the
ascending chain condition or, equivalently, such that every ideal is strictly
c-finite. To shorten the notation, in this case we say that R is c-Noetherian.

Proposition 3.20. If R is c-Noetherian and c ≤ d, then R is d-Noetherian;
in particular, each closure operation bigger than c is of finite type.

Proof. If c ≤ d, then Id ⊆ Ic; thus every ascending chain of d-ideals is a
chain of c-ideals, and hence stabilizes.

Proposition 3.21. If R is c-Noetherian, then c − Spec(R) is a Noetherian
topological space.
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Proof. Let ∆ = c−Spec(R). With the same notation of the proof of Propo-
sition 3.13, V∆(I) = V∆(Ic) for every I, because, if P is a c-ideal, then I ⊆ P
if and only if Ic ⊆ P .

Let {D∆(Iα)}α∈A be an ascending chain of open sets; without loss of gen-
erality, we can assume that each Iα is a c-ideal. Thus {Iα}α∈A is an ascending
chain of c-ideals, which stabilizes by hypothesis, and also {D∆(Iα)}α∈A sta-
bilizes; i.e., c− Spec(R) is Noetherian.

The condition that c− Spec(R) is Noetherian is far from sufficient: if c is
the identity, there are non-Noetherian rings such that c−Spec(R) = Spec(R)
is Noetherian (for example, finite-dimensional valuation domains).

Corollary 3.22. Let c be a semi-prime operation. If R is c-Noetherian, then
every c-ideal has only a finite number of minimal primes.

Proof. Let I = Ic and ∆ := c − Spec(R) ∩ V (I) = {P ∈ Spec(R) | I ⊆
P = P c}: then ∆ is a Noetherian topological space (since it is a subspace of
c− Spec(R), which is Noetherian by the previous proposition) and thus has
only a finite number of minimal elements. But the minimal elements of ∆ are
exactly the minimal primes of I that are c-ideals; since R is c-Noetherian,
c is of finite type, and thus every minimal prime of a c-ideal is c-closed by
Proposition 1.17. Hence I has only a finite number of minimal ideals.

Corollary 3.23. Let c be a semi-prime operation, and suppose that R is c-
Noetherian. If P is a c-prime ideal of height n, then there is a n-generated
ideal I such that P is minimal over Ic.

Proof. We proceed by induction: if h(P ) = 1 the thesis is immediate. Sup-
pose h(P ) = n: let Q be a prime of height n − 1 contained in P , and let
I be a (n − 1)-generated ideal such that Q is minimal over Ic. Ic has only
a finite number of minimal ideals and thus there is a x ∈ P not contained
in any minimal prime of I; then (I, x) is n-generated and (I, x)c ⊆ P , but
(I, x) is not contained in any minimal prime of I, and thus P is minimal over
(I, x)c.

If ? is a star operation, Proposition 3.20 shows that if R is ?-Noetherian
then it is also v-Noetherian; these are called Mori domains, and have been
extensively studied (see e.g. [10]).

If ? is spectral, the similarity between ?-Noetherian and Noetherian rings
becomes even more marked.

Theorem 3.24. [15, Theorem 2.6] Let ? be a finite type spectral operation
on R. Then R is ?-Noetherian if and only if every prime ?-ideal is ?-finite.
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Proof. If R is ?-Noetherian, every ideal is ?-finite, and hence so are prime
ideals.

Suppose that every prime ?-ideal is ?-finite, and let J be the set of ?-
ideals that are not ?-finite; suppose that it is not empty. If {Jα} is a chain
in J , then J :=

⋃
Jα is in J : it is a ?-ideal (every finitely generated ideal

contained in J is contained in some Jα, thus every ?-finite ideal is contained
in some Jα and J? is their union, because ? is of finite type), and is not
?-finite (otherwise it would be equal to some Jα, that would be ?-finite). By
Zorn lemma, J has a maximal element I.

By hypothesis, I is not prime; let a, b ∈ R \ I such that ab ∈ I, and let
H := (I :R a): then H is a ?-ideal (H? = (I :R a)? = (I? :R a) = (I :R a) =
H) and is ?-finite, because I ⊆ H and b ∈ H \ I; set H? = H?

0 , with H0

finitely generated. Similarly, I ( (I, a) and thus (I, a)? = (x1, . . . , xn, a)? for
some xi ∈ I (if (I, a)? = (y1, . . . , yn)?, with yi ∈ (I, a), then yi = xi + αia for
some xi ∈ I).

We claim that I? = (x1, . . . , xn, Ha)?: the ⊇ containment follows because
every xi ∈ I and Ha = a(I :R a) ⊆ I; for the other, let y ∈ I. Then
y ∈ (I, a)? = (x1, . . . , xn, a)? and thus y ∈ (x1, . . . , xn, a)RM for any ?-
maximal ideal M ; hence there is a s ∈ R \M such that sy = x+ βa, where
x ∈ (x1, . . . , xn) and β ∈ R; but then sy and x are in I, and thus β ∈ (I :R
a) = H, and y ∈ (x1, . . . , xn, Ha)RM . Hence I ⊆ (x1, . . . , xn, Ha)RM for
every M , and I? ⊆ (x1, . . . , xn, Ha)?.

Now

(x1, . . . , xn, Ha)? = ((x1, . . . , xn) +Ha)? = ((x1, . . . , xn)? + (Ha)?)? =

= ((x1, . . . , xn)? +H?a)? = ((x1, . . . , xn)? +H?
0a)? = (x1, . . . , xn, H0a)?

(3.31)

which is ?-finite because H0 is finitely generated. Hence I is ?-finite, against
the hypothesis, and J is empty.

The hypothesis that ? is of finite type is necessary: if R the ring of entire
functions, and ? is the spectral operation defined after Corollary 3.15, then
every ?-prime ideal is principal, but ? is not of finite type and thus R is not
?-Noetherian.

Proposition 3.25. Let ? be a spectral operation on R, and suppose that R
is ?-Noetherian. Then RP is a Noetherian ring for every P ∈ ?− Spec(R).

Proof. If J is an ideal of RP , there is a I E R such that J = IRP ; since
I? is ?-finite (by Proposition 1.20), I? = H? for a H ⊆ I finitely generated.
Then, by Proposition 3.3, J = IRP = HRP is finitely generated, and RP is
Noetherian.
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The previous proposition shows that every statement about Noetherian
rings, depending only on the local structure of the ring, can be carried over
to ?-Noetherian domains, although restricted to ?-ideals. Two almost imme-
diate corollaries are the Principal Ideal Theorem and the Krull Intersection
Theorem.

Proposition 3.26. Let ? be a spectral operation on R, and suppose that R
is ?-Noetherian.

1. R satisfies the Principal Ideal Theorem, i.e., every prime minimal over
a principal ideal has height 1.

2. If P is a prime ideal minimal over (a1, . . . , an)?, then h(P ) ≤ n.

3. If P is a ?-prime ideal, then h(P ) is finite.

4. Let P ( Q be ?-prime ideals. The set of prime ideals properly contained
between P and Q is either empty or infinite.

Proof. Part 1 is an immediate consequence of part 2, because every principal
ideal is ?-closed.

For part 2, since RP is Noetherian, PRP (which is minimal over IRP ) has
height at most n, by the (generalized) Principal Ideal Theorem. Moreover,
since P = (x1, . . . , xm)? for some x1, . . . , xm ∈ P , the height of P is ≤ m, and
in particular is finite. (Alternatively, h(P ) = h(PRP ), which is finite because
RP is a Noetherian local ring.)

In the same way, the last part follows because it is valid in the Noetherian
ring RQ, and because there is a one-to-one order-preserving correspondence
between prime ideals in RQ and prime ideals of R contained in Q.

Proposition 3.27. Let ? be a spectral operation on R, and suppose that R
is ?-Noetherian. If I? 6= R, then

⋂
n≥1

(In)? = (0).

Proof. Suppose that z is in the intersection, and letM be a ?-maximal ideal
containing I?; then, for every integer n, z ∈ (In)? ⊆ InRM = (IRM)n. But
RM is Noetherian, and thus z = 0.

Another theorem which remains valid for ?-Noetherian rings is primary
decomposition.

Proposition 3.28. Let ? be a spectral operation on R, and suppose that
R is ?-Noetherian. Then, for each ?-integral ideal, there are primary ideals
Q1, . . . , Qn, which are ?-ideals, such that I = Q1 ∩ · · · ∩Qn.
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Proof. The proof mirrors the corresponding proof for Noetherian rings: we
show that every ?-ideal can be decomposed in irreducible ?-ideals, and that
these are primary.

Say that a ?-ideal I is ?-irreducible if I = J ∩H, with J,H ∈ I?, imply
that J = I or H = I, and let R be the set of ?-ideals which can’t be written
as a finite intersection of ?-irreducible ideals. If this set is nonempty, it has
a maximal element M , which is not irreducible; hence M = M1 ∩M2, where
M1 and M2 are decomposable as intersection of ?-invertible ideals. Hence
also M is, and every ideal is decomposable.

Suppose now that I is a ?-irreducible ideal, and define on R′ := R/I the
closure operation c given by

J c :=
J̃?

I
(3.32)

for every J E R′, where J̃ is the (unique) ideal containing I and projecting to
J under the quotient map; the c-ideals are just the quotients of the ?-ideals
containing I, and so the set Ic(R′) satisfies the ascending chain condition.
Let x̃, ỹ ∈ R, and suppose that x̃ỹ ∈ I, and let x, y be the respective images
in R′; the chain {Ann(xm)c} is ascending and hence stabilizes at Ann(xn)c

(say). Let Hm be ideals of R such that Hm/I = Ann(xm), and set H := Hn.
Suppose that z ∈ (xn) ∩ (y); then xz ∈ x(y) = (xy) = (0), and z ∈

Ann(x). Moreover, since z = αxn (for an element α ∈ R′), then αxn+1 =
βxnx = zx = 0, and thus α ∈ Ann(xn+1) ⊆ Ann(xn)c. Let α̃ be an element
of R which projects to α; then α̃ ∈ H?, and since ? is spectral, α̃ ∈ H? =⋂
HRM . We have that H/I = Ann(xn); thus xn(H/I) = 0, and x̃nH ⊆ I.

Hence

x̃nH? = x̃n
⋂

HRM =
⋂

x̃nHRM ⊆
⋂

IRM = I? = I (3.33)

and in particular α̃x̃n ∈ I. But then αxn = 0 in R′, that is, z = 0; hence
(xn) ∩ (y) = (0), and (0) is primary in R′. But then I is primary in R, and
every ?-irreducible ideal in R is primary; in particular, every ?-ideal has a
decomposition in primary ?-ideals.

If R is Noetherian, the proposition provides an extension of Proposition
1.12, where there were no control over embedded components.

Corollary 3.29. Let ? be a spectral operation on R, and suppose that R is
?-Noetherian. Then every ?-ideal contains a power of its radical.

Proof. Let P1 . . . , Pm the minimal primes of I (there are only a finite number
by Proposition 3.22). For each i, PiRPi is minimal over IRPi , and thus is its
radical; since RPi is Noetherian, there are ni such that (PiRPi)

ni ⊆ IRPi .
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Moreover, rad(I) = P1 ∩ · · · ∩ Pm, and thus rad(I)RPi = PiRPi ; let n :=
maxi{ni}. Then

rad(I)n ⊆ (rad(I)n)? =
m⋂
i=1

rad(I)nRPi =
m⋂
i=1

(rad(I)RPi)
n =

=
m⋂
i=1

(PiRPi)
n ⊆

m⋂
i=1

(PiRPi)
ni ⊆

m⋂
i=1

IRPi (3.34)

Now IRPi ∩ R = QiRPi ∩ R = Qi because Qi is Pi-primary, and thus⋂
i IRPi =

⋂
iQi = I; hence rad(I)n ⊆ I.

Both the Principal Ideal Theorem and primary decomposition need not to
hold if R is ?-Noetherian, but ? is not spectral. For example, if R = K[{XY n |
n ≥ 0}], then R is a Mori (i.e. v-Noetherian) domain of dimension 2, M =
({XY n | n ≥ 0}) is maximal of height 2 and minimal over (X); v-primary
decomposition holds if and only if every divisorial prime ideal has height 1,
and thus a counterexample is a Noetherian ring with a height 2 divisorial
prime ideal, for example R = K[[x2, x3, xy, y2]] (if M = (x2, x3, xy, y2), then
x ∈ (R : M) \R and so M v = M) [10, Section 3].

We note that the results of this section can be generalized to semistar
operations [42].

3.6 Constructions of star operations

Definition 3.30. Let ? be a star operation on an integral domain R and ?′ a
star operation on an extension ring S of R. Then the map δ(?, ?′) is defined
by

I 7→ Iδ(?,?
′) := (IS)?

′ ∩ I?. (3.35)

Proposition 3.1 implies that δ(?, ?′) is a closure operations; moreover

xIδ(?,?
′) = x((IS)?

′ ∩ I?) = x(IS)?
′ ∩ xI? = ((xI)S)?

′ ∩ (xI)? = (xI)δ(?,?
′)

(3.36)
and thus δ(?, ?′) is a star operation. Clearly, δ(?, ?′) ≤ ?.

A productive way to build star operations is to use this construction with
different localization of R. For a star operation ? and a set Λ of prime ideals,
we say that the star operation induced by ? and Λ is

I 7→ Iδ(?,Λ) := I? ∩
⋂
P∈Λ

IRP . (3.37)
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Proposition 3.31. Let ? be a star operation on R and Λ ⊆ Spec(R) \ ? −
Spec(R) a finite set of cardinality n. There are n + 1 sets Λ0 ( Λ1 ( · · · (
Λn+1 = Λ such that δ(?,Λi) < δ(?,Λj) for i > j.

Proof. Put Λ := {P1, . . . , Pn} and δi := δ(?,Λi).
Define Λ0 := ∅ and Λi+1 := Λi∪{Qi}, where Qi ∈ Λ is minimal in Λ\Λi.

Then δ0 = ?, and δi is the infimum of δi−1 and IRPi ∩R, so that δi ≤ δi−1.
Suppose P ∈ Λi. Since P = PRP ∩ R, P δi = P by Lemma 3.4, and thus

P is a δi-prime. On the contrary, if P ∈ Λ \Λi, then each P is not contained
in any Q ∈ Λi, and thus PRQ = RQ. It follows that

P δi = P ? ∩
⋂
Q∈Λi

PRQ = P ? ∩
⋂
Q∈Λi

RQ = P ? ∩
⋂
Q∈Λi

RQ ∩R = P ? ∩R = P ?

(3.38)
and hence P δi 6= P , since P /∈ ? − Spec(R) by hypothesis. In particular,
δi < δi−1, since Pi is a δi-ideal but not a δi−1-ideal.

As a corollary, we get that if Spec(R) \ ?− Spec(R) is infinite, then there
are an infinite number of star operations smaller than ?. The result of the
proposition is the best possible if Λ is totally ordered, because each choice
is forced; on the other hand, if the primes of Λ are not comparable, we get
more:

Proposition 3.32. Let ? be a star operation on R, and suppose that Λ ⊆
Spec(R) \ ? − Spec(R) is a set of non-comparable prime ideals. Then every
subset of Λ induces a different star operation on R, which is smaller than ?.

Proof. For each set Σ ⊆ Λ, put δΣ := δ(?,Σ). If P ∈ Σ, then P δΣ = P
because the intersection includes RP ; if P /∈ Σ, then PRQ = RQ for each
Q ∈ Σ and hence

P δΣ = P ? ∩
⋂
Q∈Σ

PRQ = P ? ∩R = P ?. (3.39)

Hence the action of δΣ on Λ is uniquely determined by Σ, and thus δΣ 6= δΓ

for any pair of subsets Σ 6= Γ of Λ.

A suitable Λ is the set of maximal ideals which are not ?-ideals. We give
three applications.

The first is obtained by choosing ? = v: since v is the largest star opera-
tion, this choice gives the greatest number of star operations.

Corollary 3.33. If Λ is the set of non-divisorial maximal ideals, then there
are at least 2|Λ| star operations on R.
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The second is obtained by choosing ? = w. Since we are intersecting
Iw with other IRP , we get still a spectral operation; the same construction
can be obtained by “adding” prime ideals to w − Spec(R), and taking the
spectral operation associated to w− Spec(R)∪Σ; the choice of the Λi in the
proof of Proposition 3.31 can be seen as a construction that avoids that Pi
is contained in the generization of w − Spec(R) ∪ Λi−1. Moreover, since w is
the largest finite type spectral operation, all the others can be obtained by
adding prime ideals to w−Spec; if we restrict to Noetherian integrally closed
domains, we obtain a precise statement:

Corollary 3.34. Let R be a Noetherian integrally closed domain, and let S
be the set of spectral operations on R. Then:

• If dimR = 1 then |S| = 1.

• If dimR = 2 then |S| = 2|Max(R)|.

• If dimR ≥ 3, then |S| =∞.

Proof. By Proposition 2.19, the t-maximal ideals of R are the height 1 prime
ideals; moreover, since every operation is of finite type, every ? − Spec(R)
contains the height 1 prime ideals (by Proposition 2.6).

If dimR = 1, then w −Max = Max and w is the identity.
If dimR = 2, then each subset of Max(R) yield a different star operation,

and thus |S| ≥ 2|Max(R)|. Conversely, if ? is a spectral star operation, then
?− Spec(R) = w − Spec(R) ∪ Λ for a Λ ⊆ Max(R) (since ?− Spec contains
the height 1 primes, and those are the w-primes), that is, each spectral star
operation is associated to a subset of Max(R). Hence |S| = 2|Max(R)|.

If dimR ≥ 3, then R has an infinite number of height 2 prime ideals,
because, in a Noetherian ring, the set of primes properly contained between
two prime ideals is either empty or infinite (this is a consequence of the
Principal Ideal Theorem: see e.g. [35, Theorem 144]; see also Proposition
3.26). By Proposition 3.31 or Proposition 3.32, S is infinite.

The third application concerns the number of spectral operations on a
polynomial ring.

Proposition 3.35. Let R be a domain, X = {Xα} a nonempty set of in-
determinates and S the set of spectral operations on R[X]. Then S if finite
if and only if |X| = 1 and R is a field; moreover, in this case, R[X] admits
only one star operation.
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Proof. If X ∈ X and X′ = X \X, then R[X] = R[X′][X], so we can assume
that X = {X}.

If R is a field, then R[X] is a Principal Ideal Domain and hence has only
one star operation.

Suppose that R is not a field. Since R[X] = K[X]∩R[[X]], the map I 7→
I? = IK[X]∩IR[[X]] is a star operation of finite type. For any maximal ideal
M of R, MR[X] is prime in R[X] but not maximal, since R[X]/MR[X] '
(R/M)[X], which is not a field; moreover, for a polynomial f ∈ R[X], the
ideal (M, f)R[X] is maximal if and only if the image f of f in (R/M)[X] is
irreducible, and (M, f)R[X] = (M, g)R[X] if and only if f = g.

For any irreducible polynomial α ∈ (R/M)[X], α = α0 + α1X + · · · +
αnX

n 6= X, we have that α0 6= 0, and so α0 is invertible; hence there is
a f ∈ R[X] such that f = α and the term of degree 0 is equal to 1. Let
N := (M, f)R[X] for any such f .

BothNK[X] andNR[[X]] are not proper ideals, becauseN contains some
elements that become invertible in K[X] (every r ∈ M ; M 6= (0) because
R is not a field) and some that become invertible in R[[X]] (f is invertible
because the term of degree 0 is invertible). Hence N? = R[X], and thus
N?w = R[X]; but there are an infinite number of such N (because (R/M)[X]
has an infinite number of maximal ideals), and so, by Proposition 3.31 or
Proposition 3.32, S, is infinite.

Note that, in the above proof, if R is Noetherian ? is itself spectral,
because both K[X] (which is a localization of R[X]) and R[[X]] (which is
the (X)-completion of R[X]: see e.g. [9, Proposition 10.14]) are flat R[X]-
modules.

These results are useful when searching conditions on R equivalent to have
only a fixed number of star operations (or only finitely many star operations):
for example, if R has exactly n star operations, then it has at most blog2(n)c
non-divisorial maximal ideals. For n = 2 or n = 3, it follows that R has at
most one non-divisorial maximal ideal.

3.7 Historical and bibliographical note

The first star operation defined through overrings has been integral closure,
where the family {Rα} is the family of valuation overrings of R; see next
chapter. The case of arbitrary family of overrings has been treated in [1];
Section 3.2 and the backbone of Section 3.3 (Propositions 3.10, 3.11 and
3.12) comes from there and from [4].

The ?w operation was first considered, in the general case, in [5], building
upon the definition of the w-operation in [47], where it was defined in the
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way of our Proposition 3.17; Section 3.4 follows [5].
Propositions 3.26, 3.27 and 3.28 are present in [5], where they are proved

by the theory of Noether lattices.
Section 3.6 has been inspired by [31].



4. INTEGRAL CLOSURE

4.1 Equivalent definitions

Definition 4.1. Let R be a domain. The b-operation on R is the closure
operation associated to the set {Vα} of valuation overrings of R; that is,
Ib :=

⋂
α∈A

IVα ∩R.

Definition 4.2. Let R be an arbitrary ring. An element r ∈ R is integral
over I if there are elements ai ∈ I i and an n ∈ N such that

rn + a1r
n−1 + · · ·+ an−1r + an = 0 (4.1)

The set of integral elements over I is the integral closure I− of I; if I = I−,
it is said to be integrally closed.

We will prove that, for integral domains, the two definitions coincide and,
moreover, the integral closure of an ideal in a ring R is determined by the
integral closure in suitable domains arising as quotients modulo prime ideals
of R, so that the latter construction, although more general, is determined
by the former. This will prove, in particular, that the set of integral elements
over an ideal is itself an ideal, and that integral closure is a closure operation.

It should be noted that the name “b-operation” is generally used to denote
the map I 7→

⋂
α∈A IVα, without the intersection with R; this means that, if

R is not integrally closed, Ib is not always an ideal of R but rather it is an
ideal of its integral closure R, and, likewise, R 6= Rb = R. With this definition,
b is no more a closure operation on R but a semistar operation: these are
closure operation defined on the set of R-submodules of K satisfying all the
properties of the star operations (Definition 2.8), except for R? = R. I have
chosen to use this definition to continue with the assumptions and notations
of the previous chapters.

We begin with three lemmas: the first will also be useful later, while the
third provides an important property of integral closure.

Lemma 4.3. Let R be any ring, I an ideal and r ∈ Ik. There is a finitely
generated ideal J ⊆ I such that r ∈ Jk.
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Proof. Since r ∈ Ik, r = α1π1 + · · ·+ αnπn, where αi ∈ R and every πi is a
monoid of degree k in elements of I; if πi = x

(i)
1 · · · x

(i)
k , for x(i)

j ∈ I, then πi ∈
(x

(i)
1 , . . . , x

(i)
k )k, and r ∈ Jk, where J := ({x(i)

j | i = 1, . . . , n, j = 1, . . . , k}) is
a finitely generated ideal.

Lemma 4.4. In a valuation ring V , every ideal is integrally closed.

Proof. It is clear that every i ∈ I is in I−; suppose r ∈ I−, and take an
equation of integral dependence over I: rn + a1r

n−1 + · · · + an−1r + an = 0.
Passing to the valuation v, we have

v(rn) = v(a1r
n−1 + · · ·+ an−1r + an) ≥ min{v(air

n−i)} = v(akr
n−k) (4.2)

for a k ∈ {1, . . . , n}, ak ∈ Ik. Thus

nv(r) = v(rn) ≥ v(akv
n−k) = v(ak) + (n− k)v(r) =⇒ v(rk) ≥ v(ak) (4.3)

By the previous lemma, there is a finitely generated ideal J ⊆ I such that
ak ∈ Jk; but in a valuation ring every finitely generated ideal is principal, and
so ak = αjk for some j, α ∈ V . Hence v(rk) ≥ v(αjk), and thus rk

jk
= α ∈ V .

Since V is integrally closed, this imply r
j
∈ V , that is, r ∈ jV ⊆ I.

Lemma 4.5. Integral closure is persistent: that is, if φ : R −→ S is a ring
homomorphism and I an ideal of R, then φ(I−) ⊆ (φ(I)S)−.

Proof. Let rn+a1r
n−1+· · ·+an = 0 be an equation of integral dependence of

r over I; then, applying φ, we have φ(r)n+φ(a1)φ(r)n−1+· · ·+φ(an) = 0; but
since ai ∈ I i, φ(ai) ∈ φ(I i)S = (φ(I)S)i and φ(r) is integral over φ(I)S.

Definition 4.6. Let ∆ be a set of extension domains of R. ∆ is a b-set of
R (or for R) if each V ∈ ∆ is a valuation ring that contains R and, for all
ideals I of R,

I− =
⋂
V ∈∆

IV ∩R. (4.4)

A b-set is discrete if each V ∈ ∆ is a discrete valuation ring.

The above definition is obviously useless without a criterion to determine
if a ∆ is a b-set:

Proposition 4.7. Let ∆ be a set of valuation rings containing R, and sup-
pose that it satisfies the following condition:

for every ideal I E R, every x ∈ R and every maximal ideal M
of S := R

[
I
x

]
(that is, the R-algebra generated by the elements i

x

for i ∈ I) there is a V ∈ ∆ such that S ⊆ V and MV 6= V .
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Then ∆ is a b-set.

Proof. We have to show that I− =
⋂
V ∈∆ IV ∩R.

(⊆) By persistence (Lemma 4.5) I− ⊆ (IVα)−; by Lemma 4.4, (IV )− =
IV , and thus I− ⊆ IVα for every α, and I− is contained in the intersection.

(⊇) Suppose r is in the intersection, and take the ring S := R
[
I
r

]
. For

every V ∈ ∆ such that S ⊆ V , we have
(
I

r
S

)
V = V because r ∈ IV and

so r
r
∈
(
I
r
S
)
V .

Suppose that
(
I
r

)
S 6= S. Then I

r
S ⊆M for a maximal ideal M of S, and

thus there is a valuation ring V ∈ ∆ such that MV 6= V ; but this implies
that I

r
V ⊆ MV 6= V , against what we have proved. Then I

r
S = S; hence

1 ∈ I
r
S and

1 =
a1

r
+
a2

r2
+ · · ·+ an

rn
(4.5)

where ai ∈ I i. Multiplying by rn, we get an equation of integral dependence
of r over I, and r ∈ I−.

Thus to prove that Ib = I− what we have to show is that the set of
valuation overrings satisfies the condition of the previous proposition. We do
this through a well-known result:

Theorem 4.8. Let P be a prime ideal of a domain R and let F be a field
containing R. There is a valuation ring V containing R and with quotient
field F such that PV 6= V .

Proof. Let R be the set of rings between R and F such that PS 6= S; it is
not empty because R ∈ R. If {Sα} is a chain in R, then their union S too
belongs to R: if not, PS = S and 1 = s1p1 + · · · + snpn for some si ∈ S,
pi ∈ P ; since every si belongs to all member of the chain after Sαi (say),
there is an α such that every si ∈ Sα, and thus 1 ∈ PSα, contradicting the
fact that PSα 6= S.

By Zorn lemma, it follows that R has a maximal element V ; suppose
that there is an x ∈ F such that neither x nor x−1 are in V . Since V is
maximal, the rings V [x] and V [x−1] are not in R, and thus PV [x] = V [x]
and PV [x−1] = V [x−1]; therefore{

1 = p0 + p1x+ p2x
2 + · · ·+ pnx

n

1 = q0 + q1x
−1 + · · ·+ qmx

−m (4.6)

for some elements pi, qi ∈ PV , and natural numbers n ≥ m (without loss of
generality) which can be chosen to be the smallest possible. Multiplying by
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xn, we get xn = q0x
n + q1x

n−1 + · · · + qmx
n−m, i.e., (1 − q0)xn = q1x

n−1 +
· · · + qmx

n−m. Multiplying the first equality by 1 − q0 and substituting we
have that

pn(1− q0)xn + · · ·+ (1− q0)p1x+ (1− q0)p0 = 1− q0

pn(q1x
n−1 + · · ·+ qmx

n−m) + pn−1(1− q0)xn−1 + · · ·+ (1− q0)p0 + q0 = 1
(4.7)

is an equation of degree n−1, against the minimality of n. Hence PV [x] and
PV [x−1] cannot both be equal to the V [x] and V [x−1] (respectively), and
thus one of these should be in R, against the maximality of V . Then V is a
valuation ring with quotient field F .

Corollary 4.9. The set ∆ of valuation rings between R and a field F is a
b-set of R.

Proof. The first two conditions are clearly satisfied. Let S := R
[
I
x

]
, and let

M ∈ Max(S): since S has the same quotient field of R, if R ⊆ F also S ⊆ F .
By the previous theorem, there is a valuation ring between S and F such
that MV 6= V ; hence ∆ satisfies the condition of Proposition 4.7.

Proposition 4.10. Let R be an integral domain. For every ideal I, I− = Ib.

Proof. Just take F to be the quotient field of R in the above corollary.

We note that these proofs does not use in a fundamental way the inter-
section with R: so with the same reasoning we can deduce that, if I is an
integral ideal (or a fractional ideal) of R, the intersection

⋂
IV is equal to

the set of elements of K (the quotient field of R) that are integral over I (i.e.,
x ∈ K such that there is an equation xn + a1x

n1 + · · ·+ an = 0 with ai ∈ I i).
Moreover, this statement can be extended to the case where I is merely
an R-submodule of K, and not a fractional ideal; however, the condition of
Proposition 4.7 must be replaced by a stronger version, where, instead of the
R[ I

x
], we consider all the overrings of R (it would be sufficient to consider

only the rings R[H
x

], but, for every overring S, we have that S = R[xS
x

] and
so every overring is in this form). While the set of valuation overrings of R is
still enough to get the equality, this is not true for every b-set: for example,
if W is a valuation overring of R with maximal ideal M , there are no proper
overrings V of W such that MV 6= V , and thus every valuation overring of
R must appear among the V in the intersection

⋂
IV .
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4.1.1 The Noetherian case: discrete b-sets

When R is Noetherian, not all the valuation rings whose existence is guar-
anteed by Theorem 4.8 are Noetherian: in fact, it could be proved that there
are valuation overrings of R with dimension equal to dimR [22, Corollary
19.7], and thus every Noetherian domain of dimension greater than 1 has non-
Noetherian valuation overrings. However, Noetherian valuation overrings are
enough to obtain integral closure; the strategy is the same of the general
case, but a different argument is needed to assure the existence of discrete
valuation overrings.

Theorem 4.11. Let R be a Noetherian domain and P a prime ideal. There
is a discrete valuation overring V of R such that PV 6= V .

Proof. [16, Lemme 2] It is enough to consider the case where R is local and
P = M is the maximal ideal of R.

Let x1, . . . , xd be a system of parameters in R (i.e., d = dimR and
(x1, . . . , xd) is M -primary); let I := (x1, . . . , xd), J := (x1, . . . , xd−1), and
define yi := xi

xd
(xd 6= 0 because, otherwise, M would be minimal over J , and

thus would have height ≤ d− 1) and S := R[y1, . . . , yd−1]. Suppose xdS = S:
then 1 = xdP (y1, . . . , yd−1), where P is a polynomial with coefficients in R
with degree g and constant term a. Multiplying by xsd for a s ≥ g, we get
xsd = xs+1

d P ′(x1, . . . , xd), where P ′ has no terms only in xd but the constant
term a. Hence xsd ≡ axs+1

d mod J , and thus xsd ∈ (xs+1
d ) + J ; by induction,

xsd ∈ (xs+nd ) + J for every n ∈ N. Hence, in particular,

xgd ∈ J +
⋂
n≥1

(xg+nd ) = J, (4.8)

because in a Noetherian ring the intersection of the powers of a principal
ideal is (0). But this would imply that, if Mm ∈ I and k is bigger than m
and g, then Mk ⊆ J , against the hypothesis that M is not minimal over J .
Thus xdS 6= S.

Let Q be a prime ideal minimal over xdS. By the Principal Ideal Theorem,
Q has height 1, and thus SQ is Noetherian of dimension 1; hence its integral
closure T is again Noetherian and of dimension 1 (see e.g. [35, Theorem 93]),
and thus is a discrete valuation ring with maximal ideal N . Moreover, N
contains xd (becauseQ ⊆ N) and also the other xi (because xi = yixd ∈ xdS),
and thus I ⊆ N ∩ R. But N ∩ R is prime, and M is the unique prime ideal
over I; hence M = N ∩R and MT 6= T .

Corollary 4.12. Let R be a Noetherian domain. The set of discrete valuation
overrings of R satisfies the condition of Proposition 4.7; moreover, so does
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the set of discrete valuation overrings whose maximal ideal contracts to a
maximal ideal of R.

Proof. It is sufficient to note that every S = R
[
I
x

]
is Noetherian because

I is finitely generated, making S a finitely generated R-algebra, which is
Noetherian by Hilbert Basis Theorem, and then apply the previous theorem.

This is sufficient to prove that Ib =
⋂
IV ∩ R, where the intersection

ranges among DVRs; we make a small deviation to include some more cases.

Lemma 4.13. Let R be a domain; for every maximal ideal M , let ∆M be a
b-set for RM . Then ∆ :=

⋃
M∈Max(R) ∆M is a b-set for R.

Proof. We use the fact that IbRM = (IRM)b, which is proved in Proposition
4.27 below.

We have that

Ib =
⋂

M∈Max(R)

IbRM =
⋂

M∈Max(R)

(IRM)b =
⋂

M∈Max(R)

⋂
V ∈∆M

(IRM)V =

=
⋂

M∈Max(R)

⋂
V ∈∆M

IV =
⋂
V ∈∆

IV (4.9)

and thus ∆ is a b-set for R.

Proposition 4.14. Let R be a locally Noetherian domain (i.e., RM is Noethe-
rian for every maximal ideal M), and let ∆R = {Vα} be the set of discrete
valuation overrings of R such that MVα 6= Vα for some M ∈ Max(R). Then

Ib =
⋂

Vα∈∆R

IVα ∩R. (4.10)

In particular, a locally Noetherian domain admits a discrete b-set.

Proof. For each M ∈ Max(R), the set ∆M of discrete valuation overrings V
of RM such thatMV 6= V satisfies the condition of Proposition 4.7, and thus
is a discrete b-set of RM ; by the previous lemma, so is the union ∆ :=

⋃
∆M ,

which clearly is discrete.

Proposition 4.15. Integral closure is a Nakayama closure.

Proof. Let (R,M) be a Noetherian local ring, and suppose J ⊆ I ⊆ (J +
MI)b. Then, for every V ∈ ∆ (where ∆ is the set of the previous proposition),
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IV ⊆ (J + MI)V = JV + MIV ; since MV 6= V by the choice of ∆, by
Nakayama lemma we have that IV = JV for every V ∈ ∆. Thus

Ib =
⋂
V ∈∆

IV =
⋂
V ∈∆

JV = J b (4.11)

and integral closure is Nakayama.

From this it follows that for every ideal I there are ideals J minimal with
respect to the property that J ⊆ I and J b = Ib, and that, if the residue filed
R/M is infinite, the minimal number of elements need to generate any such
J is the same, and equal to the analytic spread `(I) of I (see [40] and the
discussion in Section 1.6).

We proceed to find another class of domains that are not Noetherian, but
that admits discrete b-sets.

Proposition 4.16. Let R ⊆ S be an extension of domains. The following
are equivalent:

1. Ib = (IS)b ∩R for every ideal I E R;

2. every b-set of S is a b-set of R;

3. there is a b-set of S that is a b-set of R.

Proof. (1 =⇒ 2). Let ∆ be a b-set of S; then

Ib = (IS)b ∩R =
⋂
V ∈∆

ISV ∩ S ∩R =
⋂
V ∈∆

IV ∩R (4.12)

and thus ∆ is a b-set of R.
(2 =⇒ 3) is obvious.
(3 =⇒ 1). Suppose that ∆ is a b-set of both R and S. Then S ⊆ V for

every V ∈ ∆ and thus

Ib =
⋂
V ∈∆

IV ∩R =
⋂
V ∈∆

ISV ∩R =
⋂
V ∈∆

ISV ∩ S ∩R = (IS)b ∩R. (4.13)

Proposition 4.17. Let R ⊆ S be an integral extension of domains. Then
Ib = (IS)b ∩R for every ideal I E R.

Proof. Suppose firstly that S is the integral closure of R in a field F . Then
the valuation rings between R and F with quotient field F are precisely
the valuation overrings of S; hence this set is a b-set of both R and S, and
Ib = (IS)b ∩R by the previous proposition.
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Suppose that R ⊆ S ⊆ T , where T is the integral closure of R in F ; this
imply that T is also the integral closure of S in F . By the first part of the
proof and the previous proposition, every b-set of T is a b-set of R and S,
and thus R and S share a common b-set. Hence Ib = (IS)b ∩R.

Corollary 4.18. Let R ⊆ S be an integral extension of domains, and suppose
that S admits a discrete b-set (for example, if it is Noetherian). Then R
admits a discrete b-set.

Proof. By the previous proposition, R and S share a common b-set, and
thus every b-set of S is also a b-set of R. By hypothesis, S has a discrete
b-set, and thus so does R.

Thus every domain with Noetherian integral closure admits a discrete
b-set; for example, if F ⊆ L is an infinite algebraic field extension, then
R = F + XL[X] and S = F + XL[[X]] have Noetherian integral closure (it
is equal, respectively, to L[X] and L[[X]]), and so R and S admit a discrete
b-set, although they are not Noetherian.

A consequence of the existence of discrete b-sets is given in Proposition
4.40.

If ∆ is a b-set for R, the valuation rings of ∆ need not to have the same
quotient field; however, the quotient field of each V ∈ ∆ contains the the
quotient field K of R. We show that, if needed, we can always suppose that
a b-set is composed by overrings.

Lemma 4.19. Let V be a valuation ring with quotient field F , and let K be
a subfield of F . Then V ∩K is a valuation ring of K whose value group is
a subgroup of the value group of V ; in particular, if V is a DVR, V ∩K is
either a field or a DVR.

Proof. Let v : F −→ G be the valuation whose ring is V . The restriction
v|K is still a valuation, and its associated ring is {x ∈ K | v|K(x) ≥ 0} =
{x ∈ F | v(x) ≥ 0} ∩K = V ∩K. Clearly v|K(K) is a subgroup of G; if V
is a DVR, then G ' Z and thus v|K(K) is isomorphic either to Z or to the
trivial group.

Proposition 4.20. Let ∆ be a b-set for R, F a field containing R. The set
∆∩F := {V ∩F | V ∈ ∆} is a b-set for R, which is discrete if ∆ is discrete.

Proof. By persistence, Ib ⊆
⋂

W∈(∆∩F )

IW ∩R; moreover, by the previous lemma,

eachW = V ∩F ∈ ∆∩F is a valuation ring. We have that I(V ∩F ) ⊆ IV ∩K
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and thus⋂
W∈(∆∩F )

IW ∩R =
⋂
V ∈∆

I(V ∩ F ) ∩R ⊆
⋂
V ∈∆

IV ∩ F ∩R =
⋂
V ∈∆

IV ∩R = Ib

(4.14)
so that ∆∩ F is a b-set; by the previous lemma, if each V ∈ ∆ is discrete so
are the intersections V ∩K.

Corollary 4.21. If R has a discrete b-set, then for each maximal ideal M
there is a discrete valuation overring V such that MV 6= V .

Corollary 4.22. Let R be a Prüfer domain. R admits a discrete b-set if and
only if RM is a DVR for every maximal ideal M (Prüfer domains with this
property are called almost Dedekind domains).

We will prove slightly more in Corollary 4.42, so we delay the proof.

4.1.2 Non-domains

We study how integral closure on a ring R is linked to integral closure of
domains.

Proposition 4.23. An element r ∈ R is integral over an ideal I if and only
if, for every minimal prime P of R, the image of r in R/P is integral over
(I + P )/P .

Proof. If r is integral, by persistence r is integral over (I + P )/P for every
P (and in particular for minimal primes).

Conversely, suppose r is integral over (I + P )/P for every minimal P ,
and define W := {rn + a1r

n−1 + · · · + an | n ∈ N, ai ∈ I i}. If 0 ∈ W , then
r is integral over I; otherwise, we note that W is a multiplicatively closed
set, because the product of two elements of W is still in W . Hence there is
prime ideal Q disjoint from W ; thus, for every minimal prime P contained
in Q, P ∩ W = ∅. But r is integral over (I + P )/P , and thus there is
an equation of integral dependence rn + a1 · rn−1 + · · · + an−1 · r + an = 0
with ai ∈ ((I + P )/P )i = (I i + P )/P ; hence there are ai ∈ I i such that
w = rn+a1r

n−1 + · · ·+an−1r+an ∈ P ; this w is both in P and inW , against
the hypothesis. Then r ∈ I−.

Propositions 4.8 and 4.9 show that the intersection
⋂
IV does not shrink

if we consider only valuation overrings or every valuation ring that contains
R. The same happens for arbitrary homomorphisms:
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Proposition 4.24. Let R be a ring and let V be the set of couples (Vα, φα)
where Vα is a valuation domain and φα : R −→ Vα is a homomorphism. Then

Ib :=
⋂

(Vα,φα)∈V

φ−1
α (φα(I)Vα) (4.15)

Proof. By persistence, φα(Ib) ⊆ (φα(I)Vα)b (Lemma 4.5) and (φα(I)Vα)b =
φα(I)Vα because every Vα is a valuation domain; hence Ib ⊆ φ−1

α (φα(I)Vα)
for every (Vα, φα).

Conversely, if R is a domain, then V contains its valuation overrings, and
thus the intersection is contained in Ib. If R is not a domain, letQα = ker(φα);
Qα contains a minimal prime P , and thus there is a map ψα : R/P −→ Vα;
since every map from R/P to a valuation ring V can be extended to a map
R −→ V composing with the quotient map, V is the union of the sets VP of
couples (Vα, ψ

(P )
α ) with ψ(P )

α : R/P −→ Vα.
Hence (Min(R) is the set of minimal primes of R)⋂

(Vα,φα)∈V

φ−1
α (φα(I)Vα) =

⋂
P∈Min(R)

⋂
(Vα,ψ

(P )
α )∈VP

(ψ(P )
α )−1(ψ(P )

α (πP (I))Vα) =

=
⋂

P∈Min(R)

⋂
(Vα,ψ

(P )
α )∈VP

(ψ(P )
α )−1

(
ψ(P )
α

((
I + P

P

)
Vα

))
=

⋂
P∈Min(R)

(
I + P

P

)b
(4.16)

and the last intersection is, by Proposition 4.23, exactly Ib.

4.2 Properties of integral closure

Proposition 4.25. Integral closure is a semi-prime closure operation of fi-
nite type; if R is an integrally closed domain, then it is a star operation.
Moreover, Ib ⊆ rad(I).

Proof. Integral closure is semi-prime by Propositions 3.1 and 1.13.
To see that it is of finite type, suppose rn+a1r

n−1 +· · ·+an = 0. Then, by
Lemma 4.3, ai ∈ J ii for finitely generated ideals Ji ⊆ I; hence J := J1+· · ·+Jn
is finitely generated and ai ∈ J i, so that r ∈ J b.

If R is an integrally closed domain, then R =
⋂
Vα, where the intersection

runs among all the valuation rings between R andK; by the results in Section
3.2, b is a star operation.

For the last claim, it is sufficient to observe that, if rn+a1r
n−1+· · ·+an =

0, then rn = −a1r
n−1 − · · · − an ∈ I and thus r ∈ rad(I).
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The above proposition implies, in particular, that if R is an integrally
closed domain then (a)b = (a) for every a ∈ R. It is true also the converse:

Proposition 4.26. Let R be a ring. R is integrally closed in its total ring of
quotient Q if and only if every principal ideal generated by a regular element
is integrally closed.

Proof. We will prove that the principal ideal (a) is integrally closed if and
only if R is integrally closed in the localization Ra (as a is regular, the map
R −→ Ra is injective); since every Ra is canonically included in Q and
Q =

⋃
{Ra | a is a regular element}, this implies that R is integrally closed

in Q if and only if it is integrally closed in every Ra, that is, if and only if
every principal ideal generated by a regular element is integrally closed.

Suppose R is integrally closed in Ra, and let r ∈ (a)−; since (a)n = (an),
there is an equation rn+α1ar

n−1+α2a
2rn−2+· · ·+αnan = 0 for some αi ∈ R.

In Ra, a becomes invertible, and hence, dividing the above equation by an
we get (r

a

)n
+ α1

(r
a

)n−1

+ α2

(r
a

)n−2

+ · · ·+ αn = 0 (4.17)

and r
a
is integral over R; if R is integrally closed in Ra, then r

a
∈ R, that is,

r ∈ (a).
Conversely, suppose b = r

ak
∈ Ra \R is integral over R, for a r ∈ R; then

also c := ak−1b = r
a
is integral over R. The equation of integral dependence of

c over R, when multiplied by ad (where d is its degree), becomes an equation
of integral dependence of r over the ideal (a); if (a)− = (a), then r ∈ (a) and
c ∈ R. Then b = r1

ak−1 with r1 ∈ R; repeating the process k times, we obtain
b ∈ R, against the hypothesis. Hence R is integrally closed in Ra.

More generally, integral closure behaves well under localization:

Proposition 4.27. Let R be a ring and I an ideal.

1. S−1(Ib) = (S−1I)b for every multiplicatively closed subset S.

2. The following are equivalent:

(a) I is integrally closed.

(b) S−1I is integrally closed for all multiplicatively closed subset S.

(c) IRP is integrally closed for all P ∈ Spec(R).

(d) IRM is integrally closed for all M ∈ Max(R).



4. Integral closure 81

Proof. 1. By persistence, S−1(Ib) ⊆ (S−1I)b; suppose that x = y
s
∈

(S−1I)b for y ∈ R, s ∈ S, and take an equation of integral dependence
of x over S−1I:

xn + a1x
n−1 + · · ·+ an−1x+ an = 0 (4.18)

where ai ∈ (S−1I)i = S−1I i; there is a t ∈ S such that bi := tai ∈ I i
for every i, and thus

xn +
b1

t
xn−1 + · · ·+ bn−1

t
x+

bn
t

= 0 (4.19)

and multiplying by tn we get

(tx)n + b1(tx)n−1 + · · ·+ bn−1t
n−2(tx) + bnt

n−1 = 0 (4.20)

and hence tx ∈ Ib; but then x ∈ S−1(Ib), (S−1I)b ⊆ S−1(Ib), and they
are equal.

2. (a =⇒ b) By the previous point, (S−1I)b = S−1Ib = S−1I and thus
S−1I is integrally closed.

(b =⇒ c =⇒ d) is obvious.

(d =⇒ a). We have that J =
⋂
M∈Max(R) JRM for every ideal J ; thus

Ib =
⋂

M∈Max(R)

IbRM =
⋂

M∈Max(R)

(IRM)b =
⋂

M∈Max(R)

IRM = I (4.21)

because (IRM)b = IRM by hypothesis.

For two-generated ideals, however, the picture is more complex and more
interesting, and it allows to characterize the domains where every ideal is
integrally closed.

Lemma 4.28. Let R be an integrally closed domain. If xy ∈ (x2, y2) (that is,
if (x, y)2 = (x2, y2); in particular, if (x2, y2) is integrally closed) then (x, y)
is invertible.

Proof. Write xy = αx2 +βy2, with α, β ∈ R, and set γ := βy
x
; we claim that

(x) = (x, y)(β, 1− γ).
We have

βy

x
=
βxy

x2
=
β(αx2 + βy2)

x2
= βα +

β2y2

x2
= βα + γ2 (4.22)
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and thus γ2 − γ + βα = 0, and γ ∈ R because R is integrally closed; hence
xβ, x(1− γ) ∈ (x), and yβ = xγ ∈ (x). For y(1− γ) we have

y(1− γ)

x
=
y
(
1− βy

x

)
x

=
y(x− βy)

x2
=
αx2 + βy2 − βy2

x2
= α ∈ R (4.23)

and y(1− γ) ∈ (x), so that (x, y)(β, 1− γ) ⊆ (x).
For the reverse containment, we have x(1 − γ) + βy = x − yβ + βy = x

and (x) ⊆ (x, y)(β, 1− γ).
Now (x) is principal, hence invertible; in particular (x, y), being its factor,

is invertible.

Proposition 4.29. Let R be a domain. Every ideal is integrally closed if and
only if R is a Prüfer domain.

Proof. Principal ideals are integrally closed; thus, by Proposition 4.27, R is
integrally closed.

Pick now an ideal (x, y) generated by two elements (if all the ideals are
principal, then R is a principal ideal domain and thus is Prüfer); as (x2, y2)
is integrally closed, (x, y) is invertible by the previous lemma. Since all two-
generated ideals are invertible, R is a Prüfer domain ([22, Theorem 22.1]).

Conversely, if R is a Prüfer domain, the unique star operation of finite
type on R is the identity; but b is a star operation of finite type (since R is
integrally closed), and hence every ideal is integrally closed.

Corollary 4.30. Let R be an integrally closed domain. Then, R is a Prüfer
domain if and only if the t-operation is equal to the identity.

Proof. The “only if” part has been yet observed.
Conversely, suppose that every ideal is t-closed. Since integral closure is

a closure operation of finite type, it is finer than the t-operation and thus
every ideal is integrally closed; by the above proposition, R is Prüfer.

Corollary 4.31. Let R be an integrally closed domain. The integral closure
distributes over finite intersections if and only if R is a Prüfer domain.

Proof. Since b is of finite type, it distributes over finite intersections if
and only if it is spectral; but, since Ib ⊆ rad(I) for each ideal I of R,
b − Spec(R) = Spec(R), and thus bw is the identity. Hence b distributes
over finite intersections if and only if b is the identity, i.e., if and only if R is
Prüfer.

Proposition 4.32. Let I, J, L be ideals of R with I finitely generated. If
(IJ)b ⊆ (IL)b, then J b ⊆ Lb.
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Proof. For every homomorphism φ : R −→ V , where V is a valuation do-
main, and every ideal H of R, we have φ(Hb)V = φ(H)V ; hence (IJ)b ⊆
(IL)b implies that φ(IJ)V ⊆ φ(IL)V =⇒ φ(I)φ(J)V ⊆ φ(I)φ(L)V ; but
φ(I)V is principal because it is finitely generated, so φ(J)V ⊆ φ(L)V , and
thus J ⊆ φ−1(φ(L)V ). Intersecting on all such φ we have J ⊆ Lb and thus
J b ⊆ Lb.

Star operations that satisfy this conditions are said to be aritmetisch
brauchbar ; this property is the basis of the constructions of Kronecker func-
tions rings (see e.g. [20]).

4.3 ∆-closures and complete integral closure

The following lemma is the basis of the theory of reductions, introduced in
[40], which can be used very effectively to avoid any use of valuations in the
study of integral closure.

Lemma 4.33. x ∈ Ib if and only if there is a n ∈ N such that (I + (x))n =
I(I + (x))n−1

Proof. Since I ⊆ I+(x), we have always I(I+(x))n−1 ⊆ (I+(x))n; moreover,

I(I + (x))n−1 = In + xIn−1 + x2In−2 + · · ·+ xn−1I and (4.24)
(I + (x))n = In + xIn−1 + x2In−2 + · · ·+ xn−1I + (xn) (4.25)

and thus we have to prove that xn ∈ I(I + (x))n−1 ⇐⇒ x ∈ Ib.
Suppose x ∈ Ib. Then xn + a1x

n−1 + · · · + a0 = n for some ai ∈ I i, i.e.,
xn = −a1x

n−1 − · · · − an; since xj ∈ (I + (x))j, for every j > 0 we have

aix
n−i ∈ I i(I + (x))n−i ⊆ I(I + (x))i−1(I + (x))n−i = I(I + (x))n−1 (4.26)

and thus −a1x
n−1 − · · · − an ∈ I(I + (x))n−1, and xn ∈ I(I + (x))n−1.

Conversely, if xn ∈ I(I + (x))n−1, then xn ∈ In + xIn−1 + x2In−2 + · · ·+
xn−1I, and so there are ai ∈ I i such that xn = an + xan−1 + · · · + xn−2a2 +
xn−1a1, that is, x is integral over I.

Proposition 4.34. Let ∆ be the set of all nonzero finitely generated ideals
of a domain R. Then

Ib =
⋃
L∈∆

(IL :R L). (4.27)
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Proof. (⊇): if x ∈ (IH :R H), then xH ⊆ IH, and thus xHV ⊆ IHV for
every valuation overring V of R. But, since H is finitely generated, HV = hV
for some h ∈ V , and thus xhV ⊆ hIV =⇒ xV ⊆ IV =⇒ x ∈ IV for every
valuation overring of R, and x ∈ Ib.

(⊆): let x ∈ Ib. Since b is of finite type, there is a finitely generated ideal
J ⊆ I such that x ∈ J b; let L := (J, x). Then, by the previous lemma,
xLn−1 ⊆ LLn−1 = JLn−1, and thus x ∈ (JLn−1 : Ln−1) ⊆ (ILn−1 :R Ln−1).

This is no longer true when R is not a domain: for example, if R =
K[[X, Y ]]/(X, Y ), let x, y be the respective images of X and Y in R and
I = (x). Then I is prime (and thus Ib = I), while I = (0), and so (0) =
y(x2) ⊆ (x2)I, that is, y ∈

⋃
(IL :R L) (where the union ranges among

finitely generated ideals), while y /∈ I = Ib.
The set ∆ used in this proposition is not the unique that can be used to

obtain closure operations:

Proposition 4.35. Let ∆ ⊆ I be a multiplicatively closed set of nonzero
ideals of a ring R (i.e., if I, J ∈ ∆, then IJ ∈ ∆), and suppose every L ∈ ∆
is finitely generated. Then the map

I 7→ Id∆ =
⋃
L∈∆

(IL :R L) (4.28)

is a closure operation of R of finite type.

Closures of this type were introduced in [43] and called ∆-closures.

Proof. It is clear that I ⊆ Id∆ and that Id∆ ⊆ Jd∆ if I ⊆ J , because
(IL :R L) ⊆ (JL :R L). Thus we have to show that Id∆ is an ideal and that
I 7→ Id∆ is idempotent.

Suppose x, y ∈ Id∆ : then x ∈ (IL1 :R L1), y ∈ (IL2 :R L2), and thus
(x + y)L1L2 = (xL1)L2 + (yL2)L1 ⊆ IL1L2 + IL2L1 = IL1L2, that is,
x + y ∈ (I(L1L2) :R L1L2) ⊆ I∆; if a ∈ R, then axL1 ⊆ aIL1 ⊆ IL1 so that
ax ∈ (IL1 :R L1) ⊆ Id∆ . In particular, Id∆ =

∑
L∈∆(IL :R L).

Suppose x ∈ (Id∆)d∆ , and let H ∈ ∆ such that x ∈ (Id∆H :R H). Let
H = (h1, . . . , hm); we have that

xH ⊆ HId∆ = H

(∑
L∈∆

(IL :R L)

)
=
∑
L∈∆

(IL :R L)H ⊆
∑
L∈∆

(IHL :R L)

(4.29)
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and thus, for each i, xhi ∈ (IHLi :R Li) for some Li ∈ ∆. If L := L1 · · ·Lm,
then L ∈ ∆ (since ∆ is multiplicatively closed) and xH ⊆ (IHL :R L);
therefore x ∈ (IHL :R HL) and x ∈ Id∆ .

For the last claim, suppose x ∈ (IL :R L) and let L = (l1, . . . , ln). Each xli
is contained in JiL for some Ji ⊆ I finitely generated, and thus x ∈ (JL :R L),
where J := J1 + · · ·+ Jn, and x ∈ Jd∆ .

Proposition 4.36. Let R be a domain. For every multiplicatively closed sub-
set ∆ ⊆ I of finitely generated ideals, d∆ is semi-prime; if (L :K L) = R for
every L ∈ ∆, then d∆ is a star operation.

Proof. For every ideal I and every x ∈ R, we have

xId∆ = x
∑
L∈∆

(IL :R L) =
∑
L∈∆

x((IL :K L) ∩R) =
∑
L∈∆

((xIL :K L) ∩ xR) =

=
∑
L∈∆

((xIL :K L)∩R∩xR) = xR∩
∑
L∈∆

(xIL :R L) = xR∩(xI)d∆ ⊆ (xI)d∆ .

(4.30)

Suppose (L :K L) = R for every L ∈ ∆, and pick x ∈ R. Then

(x)d∆ =
∑
L∈∆

(xL :R L) =
∑
L∈∆

((xL :K L)∩R) = R∩
∑
L∈∆

x(L :K L) = R∩xR = (x);

(4.31)
hence (xI)d∆ ⊆ (xR)d∆ = xR and thus xId∆ = xR ∩ (xI)d∆ = (xI)d∆ .

Possible ∆ are (a) the set of (nonzero) finitely generated ideals, (b) the
set of principal ideals, (c) the set of invertible ideals, (d) the set {In} of
powers of a finitely generated ideal I.

The set ∆ induces naturally a ring

R∆ :=
⋃
L∈∆

(L :Q L) (4.32)

where Q is the total ring of fractions of R; in particular, R∆ is the integral
closure of R if ∆ is the family of finitely generated ideals. Proposition 4.36
can thus be restated as: if R = R∆, then d∆ is a star operation.

It is natural to ask what happens if we take ∆ to be the set of all nonzero
ideals of R, removing the condition that they must be finitely generated: in
this case, the ring R∆ defined above becomes the complete integral closure of
R, and so we may ask for a definition of complete integral closure of ideals,
and if it coincides with the map

I 7→ Id :=
⋃

(IH :R H), (4.33)

where the union runs among all the nonzero ideals of R.
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Definition 4.37. Let R be a domain. We say that an element x ∈ R is
almost integral over I if there is a α ∈ R, α 6= 0, such that αxn ∈ In for
every n ∈ N; the set of almost integral elements is the complete integral
closure of I, and is denoted by Icic.

It is clear that Icic is an ideal: if αxn, βyn ∈ In, then αβ(x + y)n ∈ In

and α(rx)n ∈ In for every r ∈ R; moreover, I 7→ Icic is extensive and order-
preserving. However, I have not been able to show that it is idempotent (and
thus that it is a closure operation); since complete integral closure of rings is
not idempotent, it is possible that neither complete integral closure of ideals
is.

It is straightforward to see that Icic = R ⇐⇒
⋂
n≥1 I

n 6= (0).

Lemma 4.38. Let I 7→ Id defined as in (4.33). Id ⊆ Icic; in particular,
Ib ⊆ Icic.

Proof. Let x ∈ (IK :R K); we say that xn ∈ (InK :R K). By induction, if
this is true for n− 1, we have that

xnK = xxn−1K ⊆ xKIn−1 ⊆ IKIn−1 = KIn. (4.34)

Hence, for every α ∈ K, αxn ∈ InK ⊆ In and x is almost integral over I.
The last claim follows from Proposition 4.34.

This inclusion is enough to prove that, in Noetherian rings, the integral
and the complete integral closure of an ideal coincide, just like it happens for
rings. We consider first the case when R is a DVR.

Lemma 4.39. In a discrete valuation ring, complete integral closure coin-
cides with the identity.

Proof. Let M = (p) be the maximal ideal of R, x ∈ Icic; let α such that
αxn ∈ In. here are i, s, t ∈ N such that I = (pi), x = ps and α = pt (up to
units); hence

αxn = ptpsn = psn+t = upin (4.35)

where u is a unit of V . Thus sn + t ≥ in for every n ∈ N and t ≥ n(i − s)
which can happen only if i ≥ s, i.e., if x ∈ I.

Proposition 4.40. In a domain that admits a discrete b-set, integral closure
coincides with complete integral closure.

Proof. Suppose x ∈ Icic, and let V ∈ ∆, where ∆ is a discrete b-set of
R. Then αxn ∈ In, and thus αxn ∈ InV = (IV )n; hence x ∈ (IV )cic and
x ∈ IV by the previous lemma. Therefore Icic ⊆

⋂
{IV | V ∈ ∆}, and
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this intersection is exactly Ib by the definition of a b-set; hence Icic ⊆ Ib.
But by Lemma 4.38 we have that Ib ⊆ Icic for an arbitrary domain; thus
Ib = Icic.

The Noetherian case is important enough to warrant an explicit state-
ment:

Corollary 4.41. In a Noetherian domain, integral closure coincides with
complete integral closure.

Proof. It follows directly from Propositions 4.14 (Noetherian domains admit
a discrete b-set) and 4.40.

Corollary 4.42. Let R be a Prüfer domain. The following are equivalent:

1. RM is a DVR for every maximal ideal M (i.e., R is almost Dedekind);
2. R admits a discrete b-set;
3. Ib = Icic for every I E R.

Proof. (1 =⇒ 2). For each ideal I, sinceR is Prüfer, Ib = I =
⋂
M∈Max(R) IRM ;

since each RM is a valuation ring, Max(R) is a b-set, and is discrete because
each RM is a DVR.

(2 =⇒ 3). See Proposition 4.40.
(3 =⇒ 1) [22, Theorem 36.5]. Since Ib = Icic, in particular

⋂
n≥1 I

n = (0)
for each proper ideal I; let M ∈ Max(R). Since Mn is M -primary for every
n ≥ 1, Mn = MnRM ∩R; hence

(0) =
⋂
n≥1

Mn =
⋂
n≥1

(MnRM ∩R) = R ∩
⋂

(MRM)n (4.36)

and
⋂

(MRM)n = (0). Since RM is a valuation ring, this imply that it is a
DVR.

When R is not a domain, the example after Proposition 4.34 shows that
we cannot extend carelessly the results above. (Moreover, even if R is Noethe-
rian, it is not always true that

⋂
n≥1 I

n = (0) when R is not a domain; for
example, if I is generated by an idempotent element.) We must make a small
change in the definition of complete integral closure:

Definition 4.43. Let R be an arbitrary ring, I an ideal. An element x ∈ R
is almost integral over I if there is a α ∈ R, α not contained in any minimal
prime of R, such that αxn ⊆ In for every n ∈ N; the set of almost integral
elements is the complete integral closure of I, and is denoted by Icic.
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With this definition, it is possible to recover the result that Ib = Icic if R
is Noetherian [34, Corollary 6.8.12].

When R is not Noetherian, the behaviour of complete integral closure can
be far from that of integral closure: for example, it is not true, in general,
that Icic ⊆ rad(R), because

⋂
n≥1 I

n can be bigger than zero. However, some
properties can be recovered:

Proposition 4.44. Let R be a domain, a ∈ R.

1. Complete integral closure is persistent.

2. The principal ideal (a) is completely integrally closed if and only if R
is integrally closed in the localization Ra (i.e., if R̃ ∩Ra = R).

3. aIcic ⊆ (aI)cic; if R is completely integrally closed, then aIcic = (aI)cic.

4. If complete integral closure is idempotent in R, then it is a semi-prime
closure operation; if R is completely integrally closed, it is a star oper-
ation.

Proof. 1. Let φ : R −→ S be a homomorphism of domains, and sup-
pose x ∈ Icic. Then αxn ∈ In for some α ∈ R, and thus φ(αxn) =
φ(α)φ(x)n ∈ φ(In)S = (φ(I)S)n, and φ(x) ∈ (φ(I)S)cic, i.e., φ(Icic)S ⊆
(φ(I)S)cic.

2. x ∈ (a)cic ⇐⇒ there is α ∈ R such that αxn ∈ (an) ⇐⇒ αx
n

an
∈

R ⇐⇒ x
a
is almost integral over R. But x

a
∈ Ra, and thus x ∈

(a)cic ⇐⇒ R = R̃∩Ra, i.e., if R is completely integrally closed in Ra.

3. x ∈ aIcic =⇒ x = ay with y ∈ Icic =⇒ there is a α ∈ R such that
αyn ∈ In, and

αxn = α(ay)n = anαyn ∈ anIn = (aI)n (4.37)

so that x ∈ (aI)cic. If R is completely integrally closed, and x ∈ (aI)cic,
then αxn ∈ (aI)n = anIn for some α ∈ R; thus α

(
x
a

)n ∈ In ⊆ R
and, in particular, x

a
is almost integral over R, and hence is in R. Thus

x = ay, and α(ay)n ∈ (aI)n =⇒ αyn ∈ In, so that y ∈ Icic.

4. This follows directly from the previous point.
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4.4 Tight closure

Throughout this section, all rings will be Noetherian and of prime character-
istic p, but will not be assumed to be domains; q = pe will represent a power
of p. We recall that the bracket power I [n] of I is the ideal generated by the
nth powers of the elements of I.

Definition 4.45. Let R be a domain and I an ideal of R. An element x ∈ R
is in the tight closure I? of I if there is an element c ∈ R, c 6= 0, such that
cxq ∈ I [q] for all sufficiently large q.

It is evident the similarity between the definition of tight closure and
that of complete integral closure (Definition 4.37). Since we are dealing with
Noetherian rings, and since I [q] ⊆ Iq, by Corollary 4.41 we have that I? ⊆ Ib;
it follows that the tight closure is always contained in the radical, and that
prime ideals are tightly closed.

When R is not a domain, we have to restrict the choice of the element c:

Definition 4.46. Let R be a ring and I an ideal of R. x ∈ I? if there is
an element c ∈ R, c not contained in any minimal prime of R, such that
cxq ∈ I [q] for all sufficiently large q.

Proposition 4.47. x ∈ I? if and only if, for every minimal prime P of R,
the image of x in R/P is contained in the tight closure of I R

P
= I+P

P
.

Note the similarity between this characterization and Proposition 4.23.

Proof. If x ∈ I? and cxq ∈ I [q], then the image of c in R/P (where P is a
minimal prime) is different from 0; hence c · xq ∈

(
I+P
P

)[q], and x ∈
(
I+P
P

)?.
Conversely, let P1, . . . , Pn be the minimal primes of R (they are finite

because R is Noetherian), and let πi : R −→ R/Pi be the projections. Take
c1, . . . , cn not contained in any Pj such that πi(ci)πi(x)q ∈

(
I+P
P

)[q] for every
i; then c := c1 · · · cn is not contained in any minimal prime and cxq ∈ I [q].

Proposition 4.48. Tight closure is a semi-prime closure operation; if R is
an integrally closed domain, it is a star operation.

Proof. It is sufficient to consider the case when R is a domain.
Since charR = p, (x + y)q = xq + yq for every q = pe; thus, I? is an

ideal. It is clear that I ⊆ I? and I? ⊆ J? whenever I ⊆ J ; for idempotence,
suppose x ∈ (I?)?, and let I? = (y1, . . . , yn); there are c, c1, . . . , cn such that
ciy

q
i ∈ Iq and

cxq ∈ (I?)[q] = (yq1, . . . , y
q
n) (4.38)
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for all sufficiently large q (the last equality is true because q is a power of
the characteristic of the ring); in particular, d := c1 · · · cn verify dyqi ∈ Iq for
every i ∈ {1, . . . , n}. Then

dcxq ∈ d(I?)q = (dyq1, . . . , dy
q
n) ⊆ I [q] (4.39)

and x ∈ I?.
Tight closure is semi-prime: if y ∈ xI?, then y = xz with z ∈ I?, and

there is a c 6= 0 such that czq ∈ I [q]; thus cyq = cxqzq ∈ xqI [q] = (xI)[q] and
y ∈ (xI)?.

Suppose now that R is integrally closed. If x ∈ (a)?, then cxq ∈ (a)[q] =
(aq) for a c 6= 0; hence c

(
x
a

)q ∈ R, that is, x
a
is almost integral over R. Since

R is Noetherian, x
a
is integral over R, and thus x

a
∈ R, that is, x ∈ (a) and

(a)? = (a).
If y ∈ (xI)?, then there is a c such that cyq ∈ (xI)[q] = xqI [q] ⊆ (xq), and

thus c
(
y
x

)q ∈ R; again, y
x
is almost integral over R and thus y ∈ (x). Then

y = xz and cxqzq ∈ xqI [q] =⇒ czq ∈ I [q] =⇒ z ∈ I? =⇒ y ∈ xI?.

If R is not Noetherian, we could define tight closure in the same way;
however, the proof above relies heavily on the fact that I? is finitely generated,
so it might be that, in general, tight closure is not idempotent. Even if it does,
it suffers the same “problems” of complete integral closure: for example, it
can be that

⋂
e≥1 I

[pe] 6= (0), and thus I? need not to be contained in rad(I).
However, we have always I? ⊆ Icic.

The c involved in the definition is in general dependent on both x and I;
an element c such that x ∈ I? if and only if cxq ∈ I [q] for every q is called a
test element, because it can be used to test if x is in the tight closure of I or
not. Their set (plus 0) forms an ideal, called the test ideal. Test elements are
known to exist for a wide class of rings: if R is a finitely generated module
over the ring Rp of the pth powers of elements of R (such rings are called
F -finite), or if R is a domain which is a finite A-module, where A is a regular
domain [33, Chapter 2].

Usually, integral closure is really bigger than the tight closure of an ideal,
although (since (a)n = (an) = (a)[n] for every n ∈ N and every a ∈ R) they
agree for principal ideals. However, the following theorem shows that we can
compare integral closure of powers of the ideal with the tight closure:

Theorem 4.49 (Briançon-Skoda theorem). Let I be an ideal generated
by n elements. Then, for every k ∈ N, (In+k)b ⊆ (Ik+1)?.

This result was proved firstly in [45] for ideals in the ring of convergent
power series in n variables over C, and subsequently generalized to arbitrary
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regular rings [38]; the tight closure version (which strictly speaking is not
a generalization, because it covers only the case of positive characteristic)
appeared in [30, Theorem 5.4].

Proof. Suppose u ∈ (In+k)b; then there is a c ∈ R, not contained in any
minimal prime, such that cum ∈ (In+k)m = I(n+k)m for every m. We claim
that, if m = q = pe, I(n+k)q ⊆ (Ik+1)[q]; taken this for granted, cuq ∈ (Ik+1)[q]

and u ∈ (Ik+1)?.
Let I = (x1, . . . , xn). Then I(n+k)q is generated by the monomials of degree

(n + k)q in x1, . . . , xn; take one of them, say π = xa1
1 · · ·xann , and put ai :=

qbi + ri, with 0 ≤ ri < q. Then

π = xqb1+r1
1 · · ·xqbn+rn

n = (xb11 · · ·xbnn )q · xr11 · · ·xrnn = σqρ (4.40)

The degree of ρ is strictly less than nq; hence the degree of σ is

>
(n+ k)q − nq

q
=
kq

q
= k (4.41)

and hence, being an integer, is≥ k+1. Thus σ ∈ (Ik+1)[q], and every generator
of I(n+k)q is contained in (Ik+1)[q].

The tight closure cannot be dropped, as it could be that (In+k)− * Ik+1

[34, Section 13.4]. However, it can (and so the theorem is especially useful)
when all the ideals are tightly closed: if this happens, the ring is said to be
weakly F -regular. On this, the most important result is:

Theorem 4.50. Regular local rings are weakly F -regular.

Sketch of proof. It is sufficient to suppose that R is a domain. Let

Fe :R −→R

x 7→ xp
e (4.42)

be the Frobenius map, and set Se := Fe(R). Since R is regular, the Fe are
flat homomorphisms (i.e., the Se are flat R-modules); hence, for any ideal I
and every x ∈ R,

(I :R x)[pe] = (I :R x)Se = (ISe :R Fe(x)) = (I [pe] :R x
pe). (4.43)

If x ∈ I?, then there is a c 6= 0 such that c ∈
⋂

(I [pe] :R x
pe); but⋂

e≥1

(I [pe] :R x
pe) =

⋂
e≥1

(I :R x)[pe] ⊆
⋂
n≥1

(I :R x)n (4.44)

which is (0) unless (I :R x) = R, i.e., x ∈ I. Hence I? = I.
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If every localization of R is weakly F -regular, R is said to be F -regular.
While an F -regular ring is weakly F -regular, it is an open question if the con-
verse holds. Moreover, unlike integral closure, tight closure does not commute
with localization [14].

Beyond regular rings, tight closure is also linked to regular sequences:

Theorem 4.51. [29, Proposition 4.2] Let R, S be Noetherian domains such
that S is a finite R-module, and let x1, . . . , xd be a regular sequence in R.
If Ik := (x1, . . . , xk), then (IkS :S xk+1) ⊆ (IkS)?. In particular, if S = R,
(Ik :R xk+1) ⊆ I?k ; if S is weakly S-regular, then every regular sequence in R
is a regular sequence in S.

Tight closure is a powerful method to tackle the so-called homological
conjectures, a broad set of statements about Noetherian rings. Two examples
are:

1. Let R be a regular local ring, S a module-finite extension ring of R. As
R-modules, R is a direct summand of S.

2. Let R and S be local rings such that S is regular and R is a direct
summand of S as R-modules. Then R is Cohen-Macaulay.

If R and S has positive characteristic p, both can be proved using tight
closure; by an extension of tight closure, they have have been proved in the
case when R and S have characteristic 0 along with their residue fields. The
general case, when the characteristics of R and S are different from those of
the respective quotient fields, is still open for rings of dimension ≥ 4 [19, 29].

4.5 Historical and bibliographical note

The two definitions 4.1 and 4.2 correspond to the two different fields that
have used this closure. Both have their origin in Krull’s Idealtheorie [37].

The former, using valuation rings, is used in multiplicative ideal theory,
and has been called (in the past) completion. As said, the definition used in
this context is different from the one there used.

The latter, using the equational definition, has been the main route used
in the theory of Noetherian rings; the theory of reductions, first developed
in [40] (and here present with Lemma 4.33, its most basic result), is a fun-
damental tool in this context.

Propositions 4.10 and 4.14 are classical results; proofs analogous to the
the one presented, but more direct, can be found in [34, Chapter 6] or in [51,
Appendix 4]. Likewise, results in Sections 4.1.2 and 4.2 are well known: see
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e.g. [34, Chapter 1] for the former and for localization properties, and [22]
for the characterization of Prüfer domains in term of integral closure and the
aritmetisch brauchbar property.

Results about ∆-closures are taken from [43]; Proposition 4.41 is another
classical result, that allows to link integral closure with tight closure.

Tight closure has been introduced in [30], where the main features of
the theory (test elements, connections to regular and Cohen-Macaulay ring,
Briançon-Skoda theorem) are developed. The discussion of homological con-
jectures follows [19].
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