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Let R be a commutative ring with identity. If an ideal 7 of R can be generated
by n elements, then we say that [ is n-generated. If every ideal of R is n-generated,
we say that the ring R has the n-generator property; when R has this property then the
Krull dimension of R is zero or one (S, Chapter 3, § 1, Theorem 1.2, p. 51].

Considerable interest has been shown in rings with the n-generator property (see
for example [C], [Mc], [OV], {S]. {Sh1}]) and in the problem of determining when a
group or monoid ring has the n-generator property, either in general or for a specific
choice of n, see [AM], [M1]}, [M2], [ORV], {OV] and [Sh2].

In this paper, we consider the problem of determining when a group ring R[G]
has the 3-generator property, if R is an Artinian principal ideal ring or R has the 2-
generator property.

From the restriction on Krull dimension, we have

12dimR[G]=dim R+,
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where « denotes the torsion {ree rank of G and dim R denotes the Krull dimension of
R . Since, under our assumptions, dim R <1, wehave a=0 or . If a=0, then
G must be a finite group. If a=1, then G =2 ® H, where H is a finite Abelian
group and 2 denotes the group of the integers.

Since the case a =1 was considered in [OV, Theorem 5.1], this paper concerns
the case a=0, i.e. the case of a finite Abelian group G .

All rings and groups considered in this paper are commutative and the groups are
written additively. We refer to [G2] for elementary properties of group rings. If p isa
prime integer, then the p-Sylow subgroup of the finite Abelian group G is denoted by
Gp,.

If I is anideal in R, then p(l) denotes the number of the elements of a
minimal set of generators of 7.

We recall that, if R=R; ® R, ® ... ® R; is a direct sum of rings, then R has
the n-generator property if and only if each R; has the n-generator property. If R is
an Artinian ring, then R=R; ® R, ® ... @ R;, where each R; is a local Artinian ring.
Therefore, in this case, R[G] has the n-generator property if and only if R;{G] has the
n-generator property for each R;.

If R is an Artinian ring, in order to determine when the group ring R[G] has the
n-generator property, by the previous remarks it suffices to consider the cases where R
is a field or R is an Artinian local ring which is not a field.

In this paper, we prove the following:

Theorem. Let R be an Artinian ring with the 2-generator property and let G be a
finite abelian group. Then R[G] has the 3-generator property if and only if R =
R\® ... ®R; where each (R, Mj) is a local Artinian ring with the 2-generator
property, subject to:
(A) Assume R, is a field of characteristic p#0,
(i) if p=2 then G, is a homomorphic image of 2122 @ Z2Z ® Z/2Z or
Z21R2Z® 2122 , where i20;
(ii) if p=3 then G, is a homomorphic image of 2/32 @ 2132 , where
i20;
(iii) if p>3 then G, is a cyclic group .
(B) Assume (R;, M) is a principal ideal ring which is not a field. If there exist a
prime integer p such that plOrd(G) and p e M;, then
(i) Case:p=2,
(a) when M2=0 then G, is a cyclic groupor G,= ZRZOZNZ ;
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(b) when MP2#0, then G, is a cyclic group.
More precisely, if MP#0 then
(b*) G, = 2122 whether 2e M2,
(b") Gp = Z/2'2 where 1 <i<2, whether 2¢ MAMZ .
(ii) Case: p=3,
(a) Gp isacyclic group and
(b) when M3 #0, then
(b') G, = Z/3Z whether 3e M?;
(b") Gp = 2132 where 1 <i<2 whether 3e Mj\Mj2 .
(iii) Case: p>3,
(a) G, is a cyclic group and
(b) when M3 #0, then peM? and
(b') Gp = ZIpZ whether pe M2\M3 ;

b") Gy = ZIp'2, where 1<i<2, whether pe Mj\Mﬂ.

1255

(C) Assume (R;, Mj) has the 2-generator property but is not a principal ideal

ring. If there exist a prime integer p such that plOrd(G) and pe M;, then
(i) Case: p=2,
(a) G, s acyclic group and M7 is a principal ideal; moreover,
(b) when M2#0, then G, = Z22 .
(ii) Case: p23,
(a) Gy, is acyclic group and MZ is a principal ideal; moreover,
(b) when M2#0, then G,= ZIpZ and M2C (p)CM,.

§ 1. The coefficient ring of R[G] is an Artinian principal ideal ring

In the present section, we assume that R is an Artinian principal ideal ring and
G is a finite Abelian group . In this situation, we intend to charaterize when the group
ring R[G] has the 3-gencrator property, proving the statements (A) and (B) of the

Theorem.

Remark 1.1. (1) Assume that F is a field of characteristic p and that G isa
torsion group. If p=0, then FIG] is a principal ideal ring. If p# 0, then FIG] isa
principal ideal ring if and only if the p-Sylow subgroup of the finite abelian group G is

cyclic [G2, Theorem 19.14}.

(2) Let R be a special principal ideal ring (i. e. a local principal ideal ring with
nilpotent maximal ideal). Assume that R is not a field and that G is a finite group of




16:36 7 January 2010

Downl oaded At:

1256 AMEZIANE HASSANI, FONTANA, AND KABBAJ

order m . Then R[G] is a principal ideal ring if and only if m is a unit of R [G2,
Theorem 19.15].

Proposition 1.2. [OV, Example 2.6). Let F be a field of characteristic p#0 and G
a finite abelian group then F{G) has the 3-generator property if and only if

(i) when p=2, then G, is a homomorphic image of Z/22 © Z/122 ® Z/2Z
or ZRZ®Z/2XZ where i20;

(ii) when p=3, then G, is a homomorphic image of Z/32 @ Z/3Z where
iz20;

(iii) when p >3, then Gp is a cyclic group. W

Proposition 1.3. Assume that G is a non trivial finite 2-group, (R, M) is a local
Artinian principal ideal ring which is not a field and 2e€ M . Then R[G] has the
3-generator property if and only if
(a) when M2=0 then G isa cyclic groupor G= ZI12ZSZ/22 ;
(b) when M?#0, then G is a cyclic group .
More precisely, if M3#0, then
b') G = 2/22., whether 2e M?;
") G = 2122 , where 1<i<2, whether 2e€ M\ M2,

Before giving the proof of Proposition 1.3, we need two preliminary results.

Lemma 14. Let R bearing, G a cyclic group of finite rank m, g a generator of
G and a an elementin R. If a(l - X8)e (1 - X8)2R[(G] then a = Am for some
AeR.

Proof. Since a(l - X8)e (1 - X£)2R[G] then a(l - X&) = B(1 - X&)2 for some
B e RIG), i.e. (1-X8)a- P -Xe) =0. Therefore, a - B(l - X&)e
Anng(Gj((1 - X¢)) whichisequalto (1 +X&+ ... + Xtm-D&)R because R[G] is a
free R-module (generated by {1, X2, ..., X(m-1)¢}), Then a- B(1 - X&) = A(1 + X¢ +
..... + X(m-1)¢) for some A€ R. Muliiplying both sides of this equation by
(1 +Xe+..... + X(m-1)¢g) . we obtain that a(l + X¢ + ..... + X(m-1)g) = A(1 + X8 +
..... + Xtm-1)8)2 Again by the fact that R[G] is a free R-module it is easy to verify that
(Q+Xe+.... + X(m-18)2= m(1 + X8 + ..... + X(m-1)g),
From the previous relations, we deduce that a=Am. B

Lemma 1.5. Assume that (R, M) is a local Artinian principal ideal ring and G is a
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finite cyclic group. Let N be the muximal ideal of the local ring R[G]. Then R[G]
has the 3-generator property if and only if N, N? and N3 are 3-generated.

Proof. Let M =rR and g a generator of G, then we know that R[G] is local with
maximal ideal N =(r, 1-X8) [G2, Theorem 19.1 and Coroliary 19.2]. Suppose that
N, N2 and N3 are 3-generated. We need (o prove that each ideal I of R{G] is 3-
generated. By [Shi, Corollary 4.2.1), it suffices to consider the case where I @ N2 .
Let xe I\N?2. By [K, Theorem 159], p(N/(x)) = u(N)-1=2-1=1. Therefore the
ring R[G)/(x) is principal, hence u{(//(x)) =1, thus u(l) £2. We conclude that
R[G] has the 3-generator property. W

Proof of Proposition 1.3.

(=), (8). By assumption G = Z/22 ® 2/22Z & ... ® Z/2'sZ where
O<sp<.... <1, If R[G] has the 3-generator property, then the homomorphic
image (R/M){G] does also. By Proposition 1.3 (i) (or by [OV, Corollary 2.2]) s<3.

Firstly, we show that the case s =3 is not possible.

Since R is local ring with residue field of characteristic 2 (because 2e M) and
G = ZNRN"ZO2/2RZ B Z/2M2Z s a finite 2-group, then R[2/212&2Z/2R2Z &
Z2/22] is local with maximal ideal N:=(r, 1 - X8, 1 - X4, 1 - X*) where r generates
M in R and g (respectively: h, k) is a generator of Z2/22 (respectively: 2/222Z ,
Z/212Z) {G2, Theorem 19.1 and Corollary 19.2]. By [N, (5.3) p. 14], the 3 generators
of N can be chosen among the elements of the given set of generators of N.

If N=(,1-Xg,1-Xh), then by applying the augmentation map
RI<kO)Kg? ®@<hD) — RIKKkDY, we have 1-Xke(r) in R[<k>]. This forces r to
be aunitof R: a contradiction.

The argument for N=(r,1-X8,1-X%) and N=(r, 1 - X1, 1 - X¥) is similar.

If N=(1-Xs1-Xh 1-X*% , then applying the augmentation map
RCg>D<hODBUII - R 10 r=a(l - X8) + b(1 - X¥) + c(1 - X*) where a, b, ce
R[<g>®<h>®<k>], we obtain r =0 contradicting the hypothesis that R is not a
field.

If s=2, then G= ZN"Z ®Z/2M2 =<{g> ®<h> where O <<y, If
R[<g>® <{h>] has the 3-generator property, then the homomorphic image
(R/M)[<g>@®<h>] does too. By Proposition 1.2 (i) (or by [OV, Proposition 2.1 (a)])
G=2RZOZI22Z, with i21.

Assume i > I, then necessarily R[2/2Z & Z/42Z] has the 3-generator property.
Consequently N2 is 3-generated, where N:=(r, 1 - X8, 1-X"), r generates M in R
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and g (respectively, h ) is a generator of 2/22 (respectively, Z/42 ). We note that

N2 = (r(1 - X&), r(1 - XP), (1 - XE)(1 - X, (1- X592, (1 - XM
because we are assuming M2 = (. Moreover, as {g> = 2/2Z and 2e M , then
(1-X8)2=1-2X8+X2%=2(1 - X8)e (r(1 - X8)), therclore

N2 = (r(1- X&), r(1 - XM, (1- X5)(1 - XM, (1 - X" .

Suppose that (1 - X¢) is a redundant generator of the 3-generated ideal N2. By
applying the augmentation map R[{g>][<h>]— R[{g?] to the equality

r(1- X8 =ar(l - X" + b(1 - X8)(1 - X") + c(1 - X")?
where a, b, c € R[{g> ®<hD], we obtain that r(1 - X&) =0 in R{<g>], thus r=0
in R : acontradiction. Therefore r(1 - X¢) must appear in a party of 3 generators of
N2, The argument for r(1 - X") is similar; so also (1 - X") must appear in a party of 3
generators of NZ.

If (1-X"M? is redundant, then by applying the augmentation map
R(<hY[<g>]1 = R[<AD] 1o the equality

(1-X"2=ar(l - X" + br(1 - X8) + c(1 - X)(1 - X")
where a, b, c e R[<{g> ®<{hD>], weobtain (1 - XF)2=1-2X"+ X2h e rR{<HD].
This forces r to be a unitin R : a contradiction. Then (1 - X%)2 must appear in a
minimal set of generators of N2,

The previous argument shows that, if R[G] has the 3-generators property, then
N2 =(r(1 - X8), r(1 - X", (1 - X"?) . By passing to the homomorphic image onto
(R/M)[{g> ®<h>], we obtain that

(1-X8(1-XMe ((1-XM?) in K[<g> DY,
where K := R/M is a field of characteristic 2 (since 2€ M ). Then, in K[{g> ®<{hD]
we have (1 - X8)(1 - XP) = (1 - X")2, where
a = apX° + IJKXS + angA'*" + a“z,.xs'ﬂ" + ag,g,,xxﬂ" + apXh + aznX?h + azp X3k
since a basis for the free K-module K[<{g> ® {h>] is given by {X0, X, Xs+h Xz+2h
Xs+3h, Xh X2h, X3h} . Moreover, in K[<g> ®@<hD>], (1-Xh)2=1-2Xh+ X2h=
1 + X2h | After setting the corresponding terms equal, from the coefficient of X0, we
obtain 1 = ag + ay, and, from the coefficient of X2%, we obtain 0 =agp +aq:
a contradiction.

Therefore N2 is not 3-generated in R[Z/2Z ® Z/42] , consequently
R[Z1RZ ® 2/42] does not have the 3-generator property.

By the previous argument, we conclude that s<2 andif s =2 then
G=2RZeZn122.

(<), (a). Suppose that G = 22Z®Z/2Z and M2=0.

We know that R[Z/2Z2 ® 2/22] is a local ring with maximal ideal N :=
(r,1-X&,1-Xk), where r generates M in R and <{g> ®<h> =2/2Z2 & Z2Z
[G2, Theorem 19.1 and Corollary 19.2].
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Step 1. Weclaim that N, N? and N3 are 3-generated.
We note that
N2 =2, r(1 - X8), r(1 - XM, (1 - X8)(1 - XM, (1 - X6)2, (1 - Xh)2) =
= (r(1 - X8), r(1 - Xk, (1 - X8)(1 - X))
since r2=0 (because M2=0), (] -X8)2=1-2X¢ + X2 =2(1 - X¢) e (r(1 - X¥))
and (1-XM2=2(1-XM e (r(1 - X")) (because 2 € M and 2 is the order of g and
h).
By a similar argument, it can be proven that
N3 = (3, r2(1 - X2), r2(1 - Xhy, r(1 - X8)(1 - X&), r(1 - X8)2, (1 - X&)%(1 - XP),
(1- Xx8)(1 - XM)2, (1 - X1)2) = (r(1 - X8)(1 - XH)) .
Step 2. Let I be anideal of R[G], then I is 3-generated.
By [Sh1, Corollary 4. 2.1], it sutlices to consider the case where I @N2.
Let xe I\N2. Since xe N, then by {K, Theorem 159]
(1.3.1) RN =pN)-1=3-1=2.
Now, we claim that
(1.3.2) HNI)H) 2.
Since P(N/(x)) =2, then
N=(rx1-X¢8 o N=(,x1-X" o N=(x1-X81-Xh.
We denote by z the class of ze R[G] modulo (x).
If N=(r.x,1-X8) then N/(x) =(;—. 1-X¢) and
N/ ()2 = (V24 () = ((r o - x5), (1-x8) = ((H1-X%) )
(because r2=0 and (1 - X&)2=2(1 - X8)e (r(l - X8) ) . Therefore, in this case,
obviously p((N/(x))2) 2.
The argument for N = (r, x, 1 - X*) is similar.
If N=(x,1-X%1-Xh) then
(N7 ()2 = (N2 +(0))/(x) = (r(1 = X&) (1-X"), A1-X8)1-XP)).
Since re N then there exist A, u, v in R[G] such that r = Ax + u(l - X&) +
w1l -Xh) .
If 4 isaunit, then
(1- X&) = pr - pthx - 11 - XH)
thus, recalling that r2=0,
r(1-X8) = - - Axr - p-tvr(l - Xb)
hence r(1-X%) e (r(l —X")) . Therefore, in this case, H{((N/(x))2)<2.
If 4 isnotaunit(i.e. (e N), we have
r(l - X&) = Ax(1 - X2) + u(1 - X&)% + (1 - X8)(1 - X") .
Since 2e M =(r) then 2 =ar, where ae R, whence (I - X8)2=2(1 - X&) =
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ar(l - X¢) . Therefore:
(1 - auyr(l -X8) = Ax(1 - X&) + v(1 - X&)(1 - X
thus

r1-x&e ((1-x851-x")
because (1 - au) is a unitin R[G] (since R[G] is local ring and e N ). We
conclude that p((NV/(x))) 2.

By (1.3.1) and (1.3.2) and by [Mc, Theorem 1, (6) = (1)] the ring
R[G}/(x) has the 2-generator property. Consequently I/(x) is 2-generated, whence [/
is 3-generated. We conclude that R[Z2/2Z ©Z/2Z] has the 3-generator property.

In order to complete the proof of ((<), (a)) suppose that M2=0 and G =
2122 , where 1<i . Then R[G] has the 2-generator property by [OV, Proposition
4.6].

(=), (b). Assume that R[G] has the 3-generator property and that M2#0.
Suppose that G is not cyclic. Then the homomorphic image R[Z/12Z @ Z/2Z] of
R[G] has the 3-generator property. Consequently N? is 3-generated, where N is the
maximal ideal of R[Z/22®©2/22) and N=(r,1- X8, 1-X"), with M =(r) and
{g>®<h> =212Z2&2/22.

We note that

N2 =(r2, r(1 - X8), r(1 - XP), (1 - X&)(1 - XP), (1 - X8)2, (1 - XI)?) =

= (r2, r(1 - X¢), r(1 - X*), (1 - X8)(1 - Xh))
(because (1 - X£)2e (r(1 - X£)) and (1 - XM)2e (r(1 - XP)), since the order of g and
h is 2 and 2e M =(r)). As we noticed before, the 3 generators of N? can be chosen
among the given generators of N,

If r2 is redundant in the set of generators of N2, then

r2=ar(l - X&) + br(1 - X*) + c(1 - X¢)( 1 - Xk) where g, b, ce R[{g> ®{hD).
By applying the augmentation map R[<g> & <h>] = R to the previous equality, we
obtain that r2=0 contradicting our hypothesis that M2=0.

If r(1-Xe) is redundant in the set of generators of N2, then

r(1 - X&) =ar2 + br(l - Xy + ¢(1 - Xe)(1 - Xhy,
where a, b, ce R[{g> & <h>] . By applying the augmentation map
RI<g>1[<h>) - R[<g>] to the previous equality, in R[{g>] we obtain that r(1 - X&)
=r¥{a + BX8) where o, fe R ; thus r=r2a, i.e. M2=M =rR, whence, by
Nakayama's Lemma, M = 0: a contradiction.

The argument for {1 - X*) is a similar, thus r(1 - X#) must also appear in a
party of 3 generators of N2.

If (1 - X&)(1 - Xh) is redundant in the set of generators of N2, then
(1 - X8)(L - Xhye (2, r(1 - X8), r(1 - X*)) c rR[<g> ® <hD]. Since R{<g> & {hD]
is a free R-module, this condition yields 1€ (r) : a contradiction.
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The previous argument shows that {r2, r(1 - X8), r(1 - X7, (1 - X&)(1 - X#)} s
a minimal set of generators of N2, whence we reach the contradiction that
RIZRZ & 2Z122Z]) does not have the 3-generator property.

We conclude that if M2# 0 and if R[G] has the 3-generator property then
G must be a cyclic group.

Let g be the generator of G. We know that R[G] is a local ring with maximal
ideal N =(r,1-X¢) where r generates M [G2, Theorem 19.1 and Corollary.19.2].
Since, by hypoyhesis, R[G] has the 3-generator property then N, N2 and M are 3-
generated. 'We note that:

N2 =(r2, r(1 - X8), (1 - X£)2) and N3 =(r3, r2(1 - X3), r(1 - X£)2, (1 - X2)3) .
Itis clear that N, N2 and N3 are 3-generated if M3 =0.

(b*). Suppose M3 =0 and 2e M2, In order to conclude that G = 2/22 , it
suffices to prove that R[Z/4Z] does not have the 3-generator property, since R(2/22]
has the 3-generator property (in fact, it has the 2-generator property by [OV, Proposition
4.6]).

We claim that, in R[2/4Z]), N3=(r3, ri(1 - Xg), r(1- X£)2, (1 - X¢)3) may not
be generated by 3 elements, where Z/4Z = {g> and M=(r).

By contradiction, suppose that N? is generated by 3 elements. Since M3 =(r3)
# 0 and the order of g is strictly bigger than 3, it is clear that r3 and (I - X£)* must
appear in a party of 3 generators extracted from the given set of generators of A3.

If r2(1 - X#) is redundant, then r2(1 - X&)e (3, r(1 - X£)2, (1 - X8)3) . By
passing to the homomorphic image onto (R/(r*))[{g>], in this ring we have r¥(1 - X#)
= b(1 - X¢)2 where be (R/(r3))[<g>]. By Lemma 1.4, we have r2 =44 for some
Ae R/(r3) . Since 2e M2, wehave r2=0 in R/(r3) i.e. (#r3) =(3) in R: a
contradiction.

If r(1-X8% (P, r}(1- X®), (1 - X¢)>), by passing to the homomorphic onto
(RI(r*)[Kg>) . in this ring we obtain that r(1 - X%)2 = a(l - X*)®, where a e
(RIANIg>]. Consequently, in (R/(r))[<g>] we have

r(1- X8 = a(1 - X5)* = a(l - 4XE + 6X%8 - 4X%8 + X*) =

= 2a(l - 2X8 + 3X28 - 2X3¢) (since the order of g is 4)
=0 (because 2e M2 =(r?)).
Since (R/(ﬂ))[(g)] is a free R/(r2)-module and the order of g is strictly bigger than 3,
this equation holds for r =0 in R/(r?) i.e. r=r2in R, whence r=0:2a
contradiction.

The previous argument shows that N3 is not 3-generated because 73, r(1 - X2),
r(1 - X8)2 and (1 - X£)3 must appear in a minimal set of generators of N3 . Thus
R[Z/4Z] does not have the 3-generator property.
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(b'') . Suppose that R[G)] has the 3-generator property, M3 = 0 and
2e M\M?2 . In order to conclude, it suffices to prove that R[Z/82] does not have the
3-generator property. Let N be the maximal ideal of R(Z/82], we already know that

N=(rn1-X5, N=@,r(1-X5),(-X5% and

Ny = (7, - X8, r(1 - X852, (1 - X8)%) .

Suppose that R[Z/82] has the 3-generator property, then in particular a set of 3
generators can be extracted from the given sct of generators of N3,

Since M3 = (r})# 0 and the order of g is strictly bigger than 3, itis clear that
r3 and (1 - X2)? must appear in each system of 3 generators extracted from the original
set of generators of N3,

If N3=(3,r(1-X8)2 (1-X8)3), by passing to the homomorphic onto
(RIrH))[2Z/82Z], we obtain that r2(1 - X8) = a(l - X¢)? where ae (R/(r3))[2/82Z] . By
Lemma 1.4 we have r2 =84 for some Ae R/(r?). As 2e M =(r), then (+?) =(3),
therefore r2=0: a contradiction.

Let N3 =(r3, r2(1 - X2), (1 - X8)3). Since (2) = (r) because 2e M\M2, by
passing to the homomorphic onto (R/(r2))[Z2/82], we have 2(1 - X8)2e ((1 - X8)3) .
We know that (R/(r2)){Z/82] is R/(r?)-module free, generated by {X*: 0<k< 7).
Therefore 2(1 - X8)2 = (ap + a1 X8 + ... + a:X7¢ )(1 - X28)3, where a;e R/(r?). By
setting corresponding terms equal, we obtain the following equations:

X0  gg-as+3ag-3a7 =2

X8  3ag+a -a¢g+3a; =0

X2 3ag-3a,+a-a7 =2

X382 -ap+3a;-3a3;+ay =0

X4  -ay+3ax-3az3+a4 =0

X58 -ay+3a3-3as+as =0

X%¢ -az+3as-3as+as =0

X¢ -ag +3as-3ag+a; =0.
After resolving this system, we obtain 2 =0 in R/(r?),i.e. 2e€ M2: a contradiction.
We conclude that R[Z/82] does not have the 3-generator property.

(<), (b). Assume that M2#0 and thus G is a cyclic group. We want to
show that R[G] has the 3-generator property. We recall that R[G] is a local ring [G2,
Theorem 19.1 and Corollary 19.2] with ideal maximal N =(r, | - X8), where r
generates M and G=<g>.

Step 1. We claim that N, N2 and N3 are 3-generated.

We note that:

NZ2=(r2, r(1 - Xg), (1 -X£)2) and N? = (3, r2(1 - X8), r(1 - X8)2, (1 - X8)3) .

If M3=0, thenitisclearthat N, N2 and N? are 3-generated.
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(b') . Assume that M3 #0 and 2e M2 thus G = 2/22Z . In this situation,
R[G] has the 2-generator property {OV, Theorem 4.1 (b, 2)].

(b"). Assume that M3 20, 2e M\M2 and G = Z/42 .
For R[Z/4Z], we have

N=(1-X8, N=¢2r(-X)30-X)?) and

N =@, r21- X&), r(1 - X8)%, (1- X6%) = (2, r(1 - X5)2, (1 - X&)
because r(1 - X&)e (r(1 - X%)%, (1 - X8)%) . As a matter of fact,

I=(1-Xe+X)4%=1+4(1 - X8)X3% + 6(1 - X8)2X2¢ + 4(1 - X&)3X¢ + (1 - X&)%

i.e. 4(1 - X8)X38 = -6(1 - X8)2X28 - 4(1 - X8)3X¢ - (1 - X&)4
therefore 4(1 - X£)e (2(1 - X¢)2, (1 - X8)3) . Since (R, M) islocal, M = (r) and
2e M\M2 then r=2u where u isaunitin R. Consequently, r2(1 - X8)e (r(1 - X5)2,
(1-Xx2)3).

Step 2. Each ideal in R[G] is 3-generated.

This statement follows from Step 1 and Lemma 1.5. B

Proposition 1.6. Let (R, M) be a local Artinian principal ideal ring not a field, p a
prime integer, p 23, G is a non trivial finite p-group and pe M . Then R[G] has the
3-generator property if and only if
(1) Case p=3,
(a) G isacyclic group; and
(b) when M3#0, then
() G=2Z/32, whether 3e M2,
(b") G=2/3Z, with 1<5i<2, whether 3¢ M\M? .
(2) Case p>3,
(a) G isa cyclic group; and
(b) when M>#0, then pe M3 and
(b) G = ZIpZ, whether pe MA\M3 ;
(") G= Z/p'2, with 1Li<2, whether pe M\M?.

We establish first a lemma which will be used later several times.

Lemma 1.7. Let R bearing, G a cyclic group of finite rank m, g a generator of
G and a an elementin R. Suppose that m is odd. If a(l - X£)2e ((1 - X8)3) in
R[G), then a=Am, forsome A€R.

Proof. Since a(l - X&)2e ((1 - X¢)3) then a(l - X8)2 = B(1 - X¢)3, for some
Be RIG), i.e. a(l - X8)- B(1 - X&)2e Anng(G) (1 - X&) = (1 + X& + ... + Xm-D&)R
(cf. also the proof of Lemma 1.4) . Therefore
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(1.7.1) a(l - X&) - B(1-X8)2=A"(1 + X8 + ..... + X(m-1)¢g) = for some A'e R.
Since f is an element of the free R-module R[{G], then B=bo+ b X8+ +
b Xm-18 | where b;e R foreach i. By setting in (1.7.1) the corresponding terms
equal, we obtain the following equations :

a =A+bg-2by+bma

a =A'+ b| - 2bg + b,,..l

0 =42 +by-2b1+ by

0 =4"+ b3 - 2b2+ b\

0 =4+ b,,..[ - 2b,,,.2 + b,,,_3 .
After multiplying these equations by (m - 1)/2,-1 + (m - 1)/2, ..., 1,0, -1, ...,
- (m - 1)/2 respectively and adding the resulting equations, we have a =m(bp.2 - bp-1) .
Take A:=bpy-bpmy. B

Proof of Proposition 1.6.

(1) Case: p=3. (=).

(a). By contradiction suppose that G is not cyclic. Since we are supposing that
R[G] has the 3-generator property, then also its homomorphic image R[2/32 © Z/32)
does. Let N:=(r,1-X%,1-X", where r generates M in R and {g> @ <h> =
2/3Z@®2/32. Then N2 and N3 are 3-generated in R[{gD> ®@<hD>]. We note that:

N2 = (2, K1 - X8), r(1 - X, (1 - X8)(1 - XH), (1 - X8)2, (1 - Xh)2) .

We know that N2 can be generated by 3 elements chosen in the previous set of
generators of N2 [N, (5.3) p. 14].

If (1 - X&)? is redundant, then in particular (1 - X€)? =ar2 + br(l - X&) +
cr(l - XAy + d(1 - X&)(1 - XP) + e(1 - XM)2 |, where a, b, ¢, d, ee R[{g> ®<hD]. By
applying the augmentation map R[{g>[{hD] — R[{g>], wehave (1 -X8)2 =1-
2X# + X22e rR[{g>], since the order of g is strictly bigger than 2, we reach easily a
contradiction.

The argument for (1 - X2 is similar. Consequently (1 - X8)2 and (1 - X*)2
must appear in a party of 3 generators extracted from the given set of generators of N2,

If (1-Xe)(1-X"e (r2, r(l - X&), r(1 - X), (1 - X£)2, (1 - X1)2), by passing
to the homomorphic image K[{g> @ <h>}, where K :=R/(r), we obtain that
(1 - X8)(1 - Xk) = a(l- X8)2 + b(1 - X})2 where a, be K[{g)> ®<h>]. Therefore
(1-X52(1 - X"y =a(l - X3+ b(1 - X¢)(1 - X%)2, hence in K[{g> ®<hD>] we have
(1.6.1) (1 - X8)2(1 - X?) = b(1 - X8)(1 - XM)2,
because <{g> =2Z/3Z and the characteristic of K is 3. Since b =bo + b X8 +
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bgehX8*h + by 2 X8*2h + by X2 + b23+;,X23*" + bogaanX2+2h 4 by Xh + bapX2h, then
after setting in (1.6.1) the corresponding terms equal, we obtain the following system:

I =bg- by +2byg.2n- bagen - 2bay + by

-2 =by - bo+2bay- by - 2bg san+ byun

2 =byp-by +2bo - by - 2by + byyan

I =bay- by + 2bgan- bysp - 2bage2n + bagen

-1 =bogan - bgan + 2bg - byyan - 2bag + bagaan

=1 = by - bagen + 2b2y - bagaan - 2bo + bap

0 = bg+2h - bzf, + 2bh - bo - Zbgm + bg

0 = b23+2h - bg+2h + 2bg+h - bg - 2b2g+h + b2g

=ban - bagsan + 2b2gsn - bag- 2bp+ by

It is easy to see that, in the field K of characteristic 3, the previous system has no
solutions: a contradiction. Therefore (1 - X8)(1- X*) must appear in a minimal set of 3
generators of N2,

If N2 =((1-X8)(1-X"), (1-X8)2 (1-X"2), then particular 72 = a(l - X¢)?
+b(1 - Xk)2 + c(1 - X&)(1 - Xh) where a, b, ce R[{g> ®<h>]. By applying the
augmentation map R[<g> ®<h>] > R wehave r2=0.

The previous argument shows that if M2# 0, then N2 may not be 3-generated,
consequently R[{g> @ <h>}] does not have the 3-generator property : a contradiction.
Therefore G must be a cyclic group.

If M2=0, then we look at N3, we notice that

N3 =N2N = ((1 - X8)(1 - Xh), (1 - X8)2, (1 - X")2)(r, 1 - X8, 1 - Xh) =
= (r(1 - X&) - XM, (1 - X6)2(1 - XM, (1 - X&)(1 - XM?, r(1 - XE)2,
(1-X8)3, r(1 - Xm2,(1 - Xh3) =
= (r(l - XE)(1 - XR), (1 - X8)2(1 - Xh), (1 - X2)(1 - X*)2, r(1 - X2)2,
S3(1 - XOXe, r(1 - XB)2, -3(1 - XhXh) |

Since 3e (r) and (I - X&)2(1 - Xk), (1 - X&)(1 - Xh)2¢ rR[g> ®<hD], then it is easy
to show that at least one between (1 - X£)2(1 - Xb) and (1 - X£)(1 - X%)2 must appear
in a party of 3 generators extracted from the original set of generators of N3. Since g
and h have the same role, by passing to the homomorphic image K{[<{g> & <{h>]
where K = R/(r), we obtain again the equation (1.6.1) , which is not solvable in K.
Therefore, both (1 - X8)2(1 - X*) and (1 - X£)(1 - X*)2 must appear in a party of 3
generators of N3,

Now, suppose that -3(1 - X£)X¢ e (r(1 - X8)(1 - Xh), (1 - X£)2(1 - X*),
(1 - X&)(1 - XM)2, r(1 - X&)2, r(1 - Xk)2, -3(1 - Xk)X*) |, then by applying the
augmentation map R[Z/3Z ®Z/3Z] = R[{g>][{h>]) - R[{g>], in the last ring we
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have
231 - X8)XE = (ag + a1 X& + a,X28)r(1 - X8)? , where aq, 4y, aze R.
Thus, after setting the corresponding terms equal, we obtain among other equations the

following:
1)) 0 =r(ag + ay - 2a3)
(In 3 =r(ao-2a1 + az)

We note that (II) - (I) yields 3 = r(-3a; + 3a3) = 3r(-a; + a;3) = 0, where the last
equality holds because 3€ (r) and r2=0. Therefore, ch(R)=3 hence:
N3 = (r(1 - X8)(1 - X*), (1 - X&)2(1 - Xh), (1 - X&)(1 - Xk)2, r(1 - X&)2, r(1 - Xh)2).

Suppose that (1 - X£)2 does not appear in a party of 3 generators extracted from
the original set of generators of N3. By applying the augmentation map
RIKg>U<AD] - RKg>], in R[{g>] we have r(l - X8)2=0. This forces r=0 in
R : acontradiction.

The argument for r(l - X#)2 is similar. Therefore, we conclude that
(1-X8)2(1 - Xhy, (1.- X8)(1 - XM?2, r(1 - X£)? and r(1 - Xh)2 must appear in a minimal
set of generators of N3: a contradiction.

We proved that -3(1 - X28)X¢ must appear in a party of 3 generators extracted
from the original set of generators of N3,

Similarly, we can prove also that -3(1 - X*)X* must appear in a party of 3
generators chosen among the given generators of N3,

Now, we may conclude that N3 is not 3-generated, because the elements
(1 - X8)2(1 - Xk), (1 - X8)(1 - XM)2, -3(1 - X&)X¢ and -3(1 - X*)X* must appear in a
minimal set of generators of N3, Consequently, G is cyclic also when M2 =0,

(b') . Suppose that M3# 0 and 3e M2,

The conclusion will follow if we prove that R{Z/9Z] does not have the 3-
generator property. By contradiction, suppose that the ideal

N3 = (3, r2(1 - X2), r(1 - X2)2, (1 - X£)3)
is 3-generated in R[Z/92), where r generates M in R and g is a generator of
2192 .

It is clear that r3 and (I - X¢)3 must appear in a minimal set of generators
extracted from the original set of generators of N3, since M3 # 0 and the order of g is
strictly bigger than 3.

If r2(1 - X8)e (r3, (1 - X£)2, (1 - X#)3) . By passing to the homomorphic
image onto (R/(r*))[Z2/92], in this ring we obtain that r2(1 - X8) = X1 - X8)2, where
e (RI(r3))[Z/92]) . By Lemma 1.4, in the ring R/(r3) we have that r2 =94, for
some Ae R/(r?). Since, we are assuming 3e M2, then M2 =M3, whence (by
Nakayama's Lemma) M?=0, contradicting the hypothesis M3 # 0.
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The previous argument shows that, when R[Z/92Z] is 3-generated then N3 =
(3, r2(1 - X8), (1 - X8)3) , hence r(l - X¢)2e N3. Therefore, passing modulo
riR[(Z/9Z) . in this quotient ring we obtain r(l - X£)2 = p(1 - X2)3 where
pe (RI(rM[Z/9Z) . By Lemma 1.7, r =94 for some Ae R/(r2) i.e. r=0 in R/(r?),
since 3e M2. We deduce that (r) =(+2) in R : acontradiction.

In conclusion, we proved that, if M3# 0 and 3e M2, R[Z/9Z] does not have
the 3-generator property.

(b'') . Suppose that M3 =0 and 3e M\M2.

We note that the condition that 3e M\M2 (i.e. (3) = (r) = M ) implies the
conclusion, if we prove that R[Z/272Z] does not have the 3-generator property. By
contradiction, suppose that R[Z/272] has the 3-generator property. In particular, the
ideal N3 is 3-generated, where N := (3, (1 - X#)) is the maximal ideal of R[Z/272]
and g is a generator of 2/27Z . We note that:

N2 =(9,3(1-Xe),(1-X8)2) and N3 =(27,9(1 - X¢), 3(1 - X£)2, (1 - X#)3) .
Since M3 # 0 and the order of g is strictly bigger than 3, then 27 and (1 - X¢)3
must appear in a minimal set of 3 generators extracted from the given set of generators of
N3,

If 9(1 - X&) is redundant, passing modulo 27R[2/27Z]}, then, in the ring
(RIRT)[2/272Z] we obtain 9(1 - X&) = B(1 - X£)2 (where Be (R/I(27)){Z2/272]). By
Lemma 1.4, we have 9 =27A for some A€ R/(27). Therefore, 9¢ (27) in R, hence
M?= M3 acontradiction.

Since we are supposing that R[Z/272] has the 3-gencrator property then the
previous argument implies that N3 = (27, 9(1 - X¢), (1 - X2)3) ,i.e. 3(1 - X£)2e N3,
Passing to the quotient ring modulo 9R[Z/27Z], we obtain 3(1 - X8)2 = (1 - X#)3,
where fBe (R/(9))(2/272] . By Lemma 1,7, we have 3 =274 for some A€ R/(9),
whence M =M?3: a contradiction.

In conclusion, R[Z/27Z] does not have the 3-generator property.

(1) Case p =3. (<=).

(a). Assume that G is a cyclic group. We want to show that R[G] has the 3-
generator property. Since R[G] is a local ring {G2, Theorem 19.1 and Corollary 19.2]
with ideal maximal N :=(r, 1 - X¢), where r generates M and G=<{g>, by Lemma
1.6 it suffices to prove that N, N2 and N3 are 3-generated. We note that:

NY=(r2, r(1- X&), (1 -X£)2) and N3 =(3, r2(l - X8). r{l - X£)2, (1 - X8)3) .
Itis clear that N, N2 and A3 are 3-generated when M3 =0,
Suppose that (b) holds,i.e. M3 0.
(b'). Incase 3e M2, we need to prove that N3 is 3-generated in R[Z/32] .
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We note that (1 - X&)3 = -3(1 - X8)Xte (r2(1 - X8)), hence N3=(r3, r2(1 - X3),
r(l - X£)?) .
(b"'). Incase 3e M\M2, the conclusion will follow if we prove that N3 is 3-
generated in R[Z/p?*Z], with p=3. Wenote that:
1=(- X8+ X)W = 2:2 C(p2 (1 - X&)y XP?-ilg =
= X8P% + p2(1 - X)XW2- V¢ 4+ C(p?, 2)(1 - X8)2 X(P?- ¢ 4

SU-XC T C il - Xa)i- DK@ s
where C(x, y) := (x
y
Since Ord(g) = p?, then
pA(1 - X&) = - C(p2, 2)(1 - X&)2 XW2- ¢ +
- XN ZE O i1 - Xe)i- DK@
hence p2(1 - X2)e (p(1 - X8)2, (1 - X#)3), because p divides C(p?,i), for i22.
Since pe M\M?, i.e. (p) =M =(r), we have r2(1 - X&)e (r(1 - X2)2, (1 - X£)3) .
Then N3 = (r3, r(1 - X8)2, (1 - X¢)3) .
(2) Case p>3. (=).
By [(OV, Proposition 3.5) we have that G is a cyclic group (i. e. (a)) and, when
M3#0,then G=2/p'Z with i<2 (i.e. part of (b)).
We show that R[Z/p2Z] does not have the 3-generator property when pe M2.
By contradiction suppose that pe M2 and that the ideal N3 = (r3, r(1 - Xg),
r(1-Xg&)2, (1-X&)3) is 3-generated in R[2/p2Z] . We know that in this case N3 can
be generated by 3 elements chosen among the elements of the given set generators of N3.
Since M3# 0 and the order of g is strictly bigger than 3, then, it is clear that r3 and

J , and x and y are integers with x>0and y20.

(1 - X#)3 must appear in a minimal set of generators of N3.

If r2(1 - X8)e (3, r(1 - X2)2,(1 - X#)3), then, by passing to the homomorphic
image onto (R/(r3))[2/p?Z], in this ring we have r2(1 - X¢) = (1 - X£)? where
Be (RI(r3))[2/p?Z] . By Lemma 1.4, we have r2=p24 for some Ae R/(r3). Since
peM?, wehave r2=0 in R/(r¥) i.e. M2=M in R: acontradiction.

Since we are supposing that N3 is 3-generated, then the previous argument
shows that N3 = (13, r2(1 - X&), (1 - X#)3) ,i.e. r(1 - X2)2e N3, by passing to the
homomophic image onto (R/(r2))(Z/p?Z] , in this ring we have r(1 - X8)2 = a(1 - X2)3,
where ae (R/(r2))[2/p22]) . By Lemma 1.7, we have r=p2A, for some A€ R/(r?),
whence r=0 in (R/(r2), i.e. M=M? in R: acontradiction. .

The previous argument shows that, if pe M2, then N? is not generated by 3
elements, hence R[Z/p22Z] does not have the 3-generator property.
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In order to complete the proof of part (b), we assume pe M?. We show that
R[Z/pZ]) does not have the 3-generator property.

With the same argument as before, we can conclude that r3 and (1 - X¢)* must
appear in a minimal set of 3 generators of N3 = (3, r3(1 - X¢), r(1 - X8)2, (1 - X¢)3) .

If r2(1 - X¢)e (73, r(1 - X8)2, (1 - X¢)3) then, by passing to the homomophic
image onto (R/(r3))[2/pZ], in this ring we have r2(1 - X&) = a(l - X&)? | with
ae (RI(F)2/p2Z]. Since pe M3, by Lemma 1.4 we have r2=0 in R/(F), i e
M2 = M3 a contradiction.

If r(1-X&)2e (3, r2(1 - X8), (1 - X¢)3) , then, by passing to the homomophic
image onto (R/(r?))[Z2/p2] , in this ring we have r(l - X¢)2 = b(1 - X&)3 with
be (RI(r?3)(2/p2} . By Lemma 1.7, we have r=pA for some Ae R/(r?) and since
pe M3, then we reach a contradiction.

In conclusion, when pe M3, N3 is not 3-generated, consequently R[Z/pZ]
does not have the 3-generator property.

(2) Case: p>3. (&)

(a) . Assume that G is a cyclic group. Since R[G] is a local ring with
maximal ideal N :=(r, 1 - X8) where r generates M and G =<g> [G2, Theorem
19.1 and Corollary 19.2] then, by Lemma 1.5, it suffices to prove that N, N? and N3
are 3-generated. We note that:

N2= (2, r(1 - X8), (1 - X8)2) and N3 =(r3, r2(1 - X#), r(1 - X£)2, (1 - X#)3).

It is clear that N, N2 and N3 are 3-generated when M3 =0.

(b) . Suppose M3 #0.

(b"). With the same argument as for the case p =3, we prove that R[Z/p?Z]
has the 3-generator property, when pe M\M?2.

(b') . Suppose that pe M2\M3 . In this case, M2=(r) =(p), i.e. p=ur?
where u is a unitof R. We need to prove that N3 is 3-generated in R[Z/pZ]. We

note :
1 =(1-Xe4+ X0 = XP8 + p(1 - XOX@ V8 + 27 C(p, i)(1 - X8)i Xp-ide =

=1 +p(l - XO)XCDs 42, Clp, i)(1 - X8) X&) ,
Therefore
p(1 - X&) = - C(p, 2)(1 - X)2X®-18 - (1 - X)X 27 C(p, i)(1 - Xe)3X@+1-0g) .
Since pIC(p, 2), then p(l - X8)e (p(l - X£)2), (1 - X£)3) . Consequently
r2(l - X8)e (r(1 - X8)2, (1 - X£)3), whence N3=(3,r(1-X8)2, (1-X8)%). R

Proof of the Theorem: (A) and (B).
If R is an Artinian principal ideal ring, then R = R, @ ... ® R; where each

(R, . M;) is alocal Artinian principal ideal ring {J, Vol. II, Theorem 7.15]. Itis easy to
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see that R[G] has the n-gencrator property if and only if each R,{G] has the n-generator
property.

(A). If R, is a field then it suffices to apply Proposition 1.2 (and Remark 1.1
(.

(B) . Assume that R; is not a field. It is proved in [G2, Theorem 19.15] that
R,[G] is a principal ideal ring if R, is a principal ideal ring and the order of G is a unit
in R;. Therefore, we can suppose that there exists a local Artinian principal ideal ring
R; in which the order of G is not a unit. For simplicity, we denote (R;, M;) by
R, M).

Since the order of G is notaunitin R, then

Ord(G) = py'p3*---pi'e M , where p; is a prime integer.
Therefore, there exists pe {py, p2, ... , P/} such that pe M, whence p is the
characteristic of R/M. Let G=G,® H, where H is a finite group and p4 Ord(H) .

(=) . If R[G] has the 3-generator property, then its homomorphic image
R[Gp] does also. Now, it suffices to apply Propositions 1.3 and 1.6.

(«=). Forthecase G =G, , itsuffices to apply Propositions 1.3 and 1.6. For
the general case, R[G] = R[H][G,] . We notice that R{H] is an Artinian ring [G2,
Theorem 20.7). Since the order of H isaunitin R, then R[H] =4, ® ... ® A,
where each (A;, N;) is a local Artinian principal ideal ring, 1 <i<gq, [G2, Theorem
19.15]). Furthermore, MR[H] is equal to the nilradical of R[H] by (G2, Corollary
9.18].

We claim that, for k=2, M%=0 implies that N¥ =0, foreach i.

As a matter of fact, for k=2, let ze N? then, without loss of generality,
z=xy where x, ye N;= Nil(A;) (A, is an Artinian ring). Henceforth, there exists
n >0 suchthat x" =y* =0, thus (0,..,0,x,0,...,0), 0, ..,0,%90,..,0e
Nil(R[H]). We conclude that (0, ..., 0, xy, 0, ..., 0)e (Nil(R[H])?) = (MR[H])? =
M2R[H} =0, then z=xy=0. A similar argument applies for k23 .

Therefore for each i, A{G,] has the 3-generator property by Propositions 1.2,
1.3, and 1.6. Hence R[G] has the 3-generator property. W

§ 2. The coefficient ring of R[G] has the 2-generator property

Let G be a finite abelian group and R a commutative ring. In this section we
assume that the coefficient ring R of the group ring R[G] has the 2-generator property.
We will show the statement (C) of the Theorem.
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Proposition 2.1. Let p be a prime integer and G a non-trivial finite p-group.
Assume that (R, M) is an Artinian local ring with the 2-generator property, but R is not
a principal ideal ring, and that p e M. Then R[G] has the 3-generator property if and
only if
(i) Case: p=2,
(a) G isacyclic group and M2 is a principal ideal; moreover,
(b) when M2# 0, then G = 222 .
(ii) Case: p23,
(a) G is acyclic group and M2 is a principal ideal; moreover,
(b) when M2#0, then G = Z/p2 and Mic (p)c M.

Proof.

(=) . Since (R, M) has the 2-generator property but it is not a principal ideal
ring, then M =(u,v), with &, ve R, is not a principal ideal {G1, Ex. 8, p. 33].

If G=2/pZ®Z/pZ , then it is easy to see that the maximal ideal N of R[G]
is minimally generated by 4 elements; more precisely, N = (4, v, 1- X8, 1 - Xh),
where {g>®<h > =2/pZDZ/pZ (cf. also [G2, proof of Theorem 19.1]). The
previous argument shows that G is a cyclic group, foreach p22.

Let G=2/piZ ,i21, andlet g bea generatorof G.

Since M? = (12, v2, uv) is 2-generated, if M? is not principal, then we can find
a minimal set of two generators of M2, extracted from the given set {u?, v2, uv} .
Therefore we can assume either M2 = (12, v2) or M? = (42, uv), since u, v have the
same role. For simplicity, we write M? = («, b) where a = u? and be {vZ, uv}).

Since R[G] has the 3-generator property and G is cyclic, by passing to a
quotient group, we can assume that R[Z/pZ] has the 3-generator property.

Let N=(u,v, (1-X8) be the maximal ideal of R{2/p2]), with {g)>=
2/p2, then N?=(a, b, u(l - X&), v(1 - X¢), (1 - X£)?) . Since R[{g>] has the 3-
generator property, then N2 possedes a minimal set of 3 generators extracted from the
given one.

If a does not appear in a minimal set of generators, then

a=ab+ flu(l - X&) + w(l - X£) + &1 - X&)2 where a, B, 7, 8e R[{g>].

By applying the augmentation map, we have ae (b) in R: acontradiction.
The argument for b is similar. Then a and b must appear in a minimal set of 3
generators of NZ2.
(i): Case: p=2.
(a). Assume that M2 = (g, b) is not principal. We have
(1-X8)2=2(1- X¢)e (u(l - X&), v(1 - X8)),
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because 2e€ M = (u, v) . Then, it is easy 1o see that N2= (g, b, u(1 - X8), v(1 - X8)) .

If N2=(a.b, v(l - X8)) then, passing to the quotient ring modulo vR[G], we
obtain wu(l - X&) = Au?, where Ae (R/(v))[G]. Since (R/(W))[G] is a free R/(v)-
module, then necessarly we have we (#2)in R/(v), hence u =0 in R/(v). This fact
implies that M = (4, v) = (v) : a contradiction.

If N2=(a, b, u(l - X&)} then, passing to the quotient ring modulo uR[G] , we
obtain v(l - X&) =0 or v(l - X&)e (v2) in (R/(u))[G}, accordingto b =uv or
b =v2. Since (R/(u))[G] is a free R/(u)-module, in both cases we have v =0 in
R/(u), whence M = (u, v) = (u): acontradiction.

In conclusion, if p =2, then M? is principal.

(ii) : Case: p 23.

(a) . Since the order of g is strictly bigger than 2, itis clear that (1 - X#)2
must appear in a minimal set of 3 generators extracted from the given set of generators
of N?. Therefore, if R[G] has the 3-generator property then

N2=(a,b, (1-X8)?).

Since u{l - X¢)e N? then, passing to the quotient ring modulo M2, we obtain
that u(l - X&) = ¢(1 - X8)2, where ce (R/M?)[G]. By Lemma 1.5, in R/M? we have
u=Ap for some Ae (R/M?). This forces pe M\M? and A to be invertible in R/M2.
As a matter of fact, if ¥ =0 in R/M? then ue M? = (a, b) . In this case, it is easy to
see that M =(u,v) = (u?,v) = (3, v) = .. =(v), since R is an Artinian ring.
Therefore, we contradict the fact that M is not a principal ideal.

The previous argument shows that (1) = (p) in R/M?

In a similar way, we can prove that (v) = (p) in R/M2. Therefore (4) = (v) in
the quotient ring R/M2, thus u = av + fa + 1 with a, B, ye R . This fact implies
that M = (u,v) = (u?,v) = (u3,v) =... =(v), since R is an Artinian ring: a
contradiction.

The previous argument shows in both cases ((i) and (ii)) that M2 is a principal
ideal.

(b). Now, we want to prove that if M2 0 then, for every prime p,
R[Z/p*Z] does not have the 3-generator property.

Let M2=(a), 2/p22 =<g> andlet N=(u,v, (1-Xe&) be the maximal
ideal of R[Z/p?Z] . By contradiction, assume that R[Z/p22] has the 3-generator
property. In particular, the ideal N2 = (a, u(l - X2), v(1 - X8), (1 - X2)2) possesses a
minimal set of 3 generators, extracted from the original set of generators.

Since M2 (0 and the order of g is strictly bigger than 2, itis clear that &
and (1 - X£)2 must appear in a minimal set of 3 generators.
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If N2=(a, u(l - X%), (1 - X¢)2) then, passing to the quotient ring modulo
(a, u)R[{g>], we have v(l - X&) = ¢(1 - X&)2 where te (R/(a, u))[{g>]. By
Lemma 1.5, in R/(a, u) we have v =p2A, for some A€ (R/(a, u)). Since ple M2
=(a), then v=0 in R/(a, u). Therefore (u,v)=(u, &), and this implies that
(4, v) = (1), because R is an Artinian ring: a contradiction.

With a similar argument, we may prove that N? contains properly (a, v(1 - X¥),
(1- X&) . |

In conclusion, we proved that, if M2# 0, R[Z/p?2Z] does not have the
3-generator property, for each p.

In order to conclude the proof of (b) incase (i), we start to prove

Claim 1: R[(Z/p2]) does not have the 3 generator property, when M2#0,
pe M2and p23.

By contradiction, we can assume that, N2= (o, u(l - X8), v(1 - X£), (1 - X8)2)
is 3-generated, having a set of 3 generators extracted from the given one.

If u(l-X8)e (a, v(l - X¢), (1 - X6)2) then, by passing to the homomorphic
image onto (R/(a, v))[Z/pZ] and by using Lemma 1.5, we have ue (v, @), since
pe M2=(a) . Therefore (u,v) = (v, @) = (v} : a contradiction.

Since # and v have the same role, we may conclude that u(l - X8) and
¥(1 - X8) must appear in a minimal set of 3 generators extracted from the original set of
generators of N2.

As M?%0 and the order of g is strictly bigger than 2, it is clear that also «
and (1 - X#)2 must appear in a minimal set of 3 generators of N2: a contradiction.

In conclusion, we proved that R[Z/p2] does not have the 3-generator property,
when M2#20 and pe M?

Claim 2: Assume that M2# 0 and R{Z/pZ2] has the 3-generator property,
then Mic(p)c M.

We know (Claim 1) that, in this situation, pe M\M? i e. p=cu+dv where ¢
or d isaunitin R . Therefore M = (p, u) (respectively, M = (p,v)) if d
(respectively, c¢) isaunitin R. Since in a local Noetherian ring every set of generators
contains a minimal set of generators [N, (5.3), p. 14], then we may assume M?2= (@),
where ae {p?, pao, a%} and ap=u (respectively, ap=v ) if d (respectively, ¢) isa
unitin R.

We can assume that M? = (ag) , otherwise the conclusion is obvious. We note
that:

N=(uv,(1-X8) and N2=(ad, u(l - X8), v(1 - X8), (1 - X£)?) .

Moreover:
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1 =(1-X8+ X8)P =Xrs + p(l - X8)X-1)¢ +

+(1- X827 Clp, (1 - X8)i-2X@- g) .
Since Ord({g>)=p, then

(cu+dv)(1 - X8) =p(l-X8) =-(1- X)Ly Clp.,i)1- Xa)-2X@-1+1g) .

o If d isaunitin R, wehave:

w1 -X8)=-dlcu(l - X¢) - (1 X2, d1C(p, iX1 - X&) -2X@-i+1)g)

e If ¢ isaunitin R, we have:

u(l - Xe) = - c-ldv(l - X8) - (1 - XU 2z ¢1C(p, i)(1 - X8)-2X(p-i+Dg) .
Therefore, N2= (ag. u(l - X&), (1-X8)2), if d isaunitin R or N2= (a%.
v(l - X&), (1 -X£?), if ¢ isaunitin R.

o Assume that d is a unitin R. In this situation agp=u, therefore:

N3=N2N = (u?, u(l - X8), (1 - X8)2)u, v, (1 - X8)) =

= (W3, u2(1 - X&), u(l - X8)2, (1 - X8)3)
because we proved above that v(l - X&)e (u(l - X#), (1 - X¢)2), that ve (p, ) and
that pue M2 = (u2), whence u?ve (pu?, u3) = (13) .

If u(1 - X#)2 is redundant then, by passing to the homomorphic image onto
(RAu2)[Z/pZ] and by applying Lemma 1.8, we have u = Ap for some Ae RAu?).
If Ae M/M?, then we have ue M? whence M =(u, v) = (u2, v) = (v) : a contradiction
(because M is not a principal ideal). Therefore A is a unitin R/M2. Consequently,
since M2 = (42), then

p=RPu+wu? forsomewe R and £e R suchthat 2+M2=2"1,
whence M = (u, p) = (u) : a contradiction. The previous argument shows that
u(l - X2)2 must appear in 2 minimal set of generators of N3.

Claim 2, case 1: Assume M3 =0 .

It is clear that ¥ must appear in a minimal set of generators of N3,

Moreover, for p >3, itis easy to see that also (1 - X£)3 must appear in a
minimal set of generators of N3.

For p =3, we know that (1 - X$)3=-3Xe(1 - X8). If (I -X&)3e (u3,
u2(1 - X8), u(l - X8)2), then 3(1 - X8)e uR[2/32]. Since R[Z/32Z] is a free
R-module, we have 3e (1), whence M = (u, 3) = (u) : a contradiction.

The previous argument shows that if d isaunitin R, then N3 = (i3,
u(l - X&)2, (1 - X#8)3) . Since u2(l - X¢)e N? then, by passing to the homomorphic
image onto (R/(1?))[Z2/pZ] and by using the Lemma 1.5, in R/(u3) we have u2=24p
for some Ae R/(u3) . Therefore, u?e (p,u?), hence (P, u?) =(p,u3)=..=(),
because R is an Artinian ring. Whence u2e (p), thus M2C (p).
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Claim 2, case 2: Assume M3 =0.

We suppose, by contradiction, that M2 = (u2) @ (p) . Since ple M2 = (u?),
then there exists an element a € M such that p2 =au2=0 (because M2 & (p) and
M3 =0). Moreover, pu € M? = (u2) , thus there exists be M such that pu = bu?2=0
(because M2 & (p) and M3 =0). Therefore p?=pu=0.

Let 7:=N2+(p).

Since d is a unit, we proved already that N2 = (u?, u(l - X2), (1 - X8)2) , thus

I=(p, u?, u(l - X2), (1 -X8)?).

Weclaimthat p(/) =4.

Assume that p () < 3. Since the order of g is strictly bigger than 2, itis
clear that (1 - X8)2 must appear in a party of 3 generators (extracted from the original set
of generators) of the ideal 7.

Suppose that p (respectively, u?) is redundant then pe (u2, u(l - X¢),
(1 - X2)2) (respectively, u2e (p, u(l - X&), (1 - X¢)?) ) . By applying the augmentation
map R[G] = R we have pe (u2) = M? (respectively, M2 = (u2) c (p)) . Thisis
absurd because pe M\M? (respectively, M2 & (p) ) . Therefore p and u? must
appear in a party of 3 generators (extracted from the original set of generators) of the
ideal 7.

Therefore u(l - X&) e (p, u2, (1 - X8)2) . After passing to the quotient ring
modulo (p, u)R[G], we obtain in (R/(p, u2))[G] that u(1 - X&) = A(1 - X&)2) where
Ae R/(p, u?))[G]. By Lemma 1.5, in R/(p,u?), we have u = pp for some
HeR/(p,u?) . Therefore in the ring R, ue (p,u?), whence (p,u)=(,u?) =
(p, u3) =.. = (p) . This is absurd, because M = (p, u) is not principal. We conclude
that M2 c (p) .

ee We recall that if ¢ isaunitin R, then ag=v , M2=(v2) and N = (v2,
V(1 - X#), (1 - X8)2) . Mutatis mutandis, by a similar argument as before we can prove
that M2C (p).

(&) . In the present situation, we know that R[G] is a local ring with maximal
ideal N =(u, v, 1-X8) where u and v are the generators of M and g is a generator
of the cyclic group G [G2, Theorem 19.2].

Step 1: We claim that N, N2 and N3 are 3-generated.

If M2=(a), then

N2 = (o, u(l - X2), v(1 - X£), (1 - X5)2)
N3 = (o, a(l - X&), u(l - X8)2, v(1 - X8)2, (1 - X£)3) .

Itis clear that N, N2 and A3 are 3-generated, if M2=0.

Assume M2#0, hence G = Z/p2 .

(i): Case: p=2.
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We note that (1 - X&8)2 = 2(1 - X8)e (u(1 - X8), v(1 - X8)), because 2e M =
(u,v) . Therefore, N2= (a, u(l - X&), v(1 - X¢)) and N3 = (au, a(l - X8)) , thus
N, N2 and N? are 3-generated.

(ii): Case:p23.

Since pe M\M? then p=cu+dv, where ¢ or d isaunitin R.

« We may assume that  isaunitin R . By an argument used above, we can
prove that v(l - X8)e (u(1 - X8), (1 - X)), whence N2 = (o, u(l - X8), (1 - X#)2)
is 3-generated. Moreover, N3 = (o, a(l - X&), u(l - X&)2, (1 - X&)3) .

By hypothesis, M2 =(a) < (p) € M. By a routine argument, we can prove that

p(L-X8) = - (1- XU Z; Cp, i)l - X8y -2X@-1+g) .
Since plC(p,i), for i=2,...,p-1, then p(l- X&) = pA(l - X&)2- X8(1 - X&) for
some Ae R[G]. From the fact that M? c (p) €M = (u, v), we deduce that:

a(l - Xg)e (p(1 - X&)2, (1 - X&)3) < (u(1 - X&)%, v(1 - X&)2, (1 - X&)3) .

Moreover, since we are assuming that d is a unit of R, we already observed
that v(1 - X8)e (u(l - X¢), (1 - X¢)2) . Hence, a(l - X&)e (u(l - X&)2, (1 - X£)3),
thus N3 = (aue, u(l - X8)2, (1 - X#)?) is 3-generated.

e If ¢ isaunitin R, then mutatis mutandis we can prove that N2 and M are
3-generated.

Step 2 : Let I be anideal of R[G], we claim that / is 3-generated.

By [Shl, Corollary 4. 2.1], it suffices to consider the case where I ¢ N2 .

Let xe I\N?, then
(2.1.1) H(N/(x)) = u(N)- 1 =2 [K, Theorem 159].

We claim that;
(2.1.2) pN/(x)NH <2.

Since N ={u,v,1-X¢) and u(N/(x)) =2, then

N=@,v,x) or N=(Q@x,1-X8) o N=(vx,1-X5).

¢ Assume M2=0.

If N=(u,v,x) then (N/(x))2=(0), thus p((N/(x)?)<2.

If N=(u,x,1-X8), thenin the ring R[G)/xR[G] we have:

NI = ((1-X8), w(d-X5)

thus p((N/(x))H<2.

The argument for N = (v, x, | - X&) is similar.

¢ Assume M2#0.

{(i): Case: p=2.

IfN= (u,v,x), thenin the ring R{G)/xR[G] it is trivial that

M@ =(v) W= (ka2 =(a)
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therefore p((N/(x))2)<2.
If N=(u, x,1-X¢), then itis easy to see that
NI = (N2 + () = (@, u(l =X5), v(1-X¢))
Since ve N, then there exist A, 4, ye R[G] such that

(2.1.3) v=Au+ ux+Al-Xs).
If yisaunitin R[G], then (1 -X&)= y-lv - y-1Au- y-lux , thus
u(l -X8)= y-tuv - y-1Au2 - y-lpux and

v(1-X8)= y-1v2 - y-13uv - y-luvx
whence (N/(x))2= (@) and, obviously, u((N/(x))2)<2.
If 7 is not a unit in R{G], since by hypothesis 2 € M = (u, v), then
2=cu+dv, with ¢,d in R.
From (2.1.3) we have:
v(1 - X8) = Au (1 - X8) + px(1 - X&) + K1 - X¢)2 =
= Au(1-Xg) + ptx(l - X8) + 211 - X8) =
= Au (1 - X8) + pux(1 - X&) + Hcu + dv )(1 - X¥)
thus
(1 - whv(l - X8) = (A + 1) (] - X&) + ux(1 - Xs).

Since (1 - ) isaunitin R[G], because R[G] is alocal ring and 7y is not a unitin
R[G]. then, in the ring R[GVxR[G], v(1-X¥) e (u(l —X‘)) . Therefore

Wi = (2, u(l-X%))
hence H((N/(x))H) <2.

The argument for N = (v, x, | - X&) is similar.

(ii) : Case: p23.

Let p=cu+dv.

» We assume that d isaunitin R, since ¢ or d isaunitin R.

In this situation N=(u, v, 1 - X&) = (4, p, 1 - X8). Since u(N/(x))=2, then

N=(@u,p,x) o N=(@,x,1-X8) or N=(u=x1-Xs),.

If N=(u,p.x), then obviously (W/(x)2 = (&, p)2 = (W2, p?, wp) = (a),
thus p((N/(x)))<2.

If N=(p,x, 1-Xe) then, in the ring R(GVxR[G]. N/(x) = (p. (1-x%))
and Wi = (P2, pa-x%, (1-x8)°) = (p. (1-Xx%)*) because we have
already shown that p(1 - X8) € (1 - X#)2R[G} . Therefore, also in this case,
RN/ 2.

If N=(u,x,1-X5), then itis easy to see that (N/(x))2= (&, u(l-X%),

(1.)(8)2). Since pe N, then
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(2.1.4) p=Au+ pix + Al - X8) where A, 4, ye R[G] .
If A is aunit, then w(l - X&) = A-1p(1 - X8) - A-1ux (1 - X&) - A 1K1 - X#)2
Since p(l - X&) € (1 - X8)2R[G] then, in the ring R[G}/xR[G], u(l—')r(") €
((1-x2)) . Therefore (N/(0)2= (@, (1-X2)°), thus ((N/(x))) <2 .
If yisaunit, then (1 - X&) =y-1p-y1Au-ylux and thus
u(l - X&) = y-tpu - y-'Au? - y-lpxu
then, in the ring R[G)/xR[G] , u(l_—X-Z’-) € (E ;7) S (@). Therefore, also in this

case, (N/(0))2= (@, (1-X%)?) . whence p((N/(x)D)<2.

If both A and ¥ are not units, then A,ye N = (u,x,1- X*). From (2.1.4)
we deduce immediately that there exists A%, 4, ¥” and 8’ in R[G] such that

p =AU+ wx+ yu(l - X8) + 8(1 - X¢)2.

By hypothesis, M2=(a) c (p) € M, then there exists me M such that @ = mp .
Moreover u2e M2 = (), thus there exists '€ R such that u2=a'a.
Therefore

a=mp=Ama'a+ nx+ ymu(l - X&) + §m(1 - X8)2
hence

(1-Ama’)o = p'mx+ ymu(l - X8) + &m(1 - X¢)2
with A’ma’ € MR[G] € N. Since (1 - A’ma’) is a unitin R[G] then, in the ring
RIGVxRIG], & € (u(1-X%), (1-X%)?) . From this fact, we deduce that (N/(x))2 =

(u(t=x%), (1-x8)"), whence p((N/(x)?)<2.

We have proved that N/(x) and (N/(x))? are 2-generated in R[G]}/(x),
therefore by [Mc, Theorem 1, (6) = (1)] the ring R[G]/(x) has the 2-generator
property. Consequently, the ideal I/(x) is 2-generated, thus 7 is 3-generated. This

concludes the proof that R[G] has the 3-generator property, when d isa unitin R .
e If ¢ isaunitin R, mutatis mutandis we can conclude that each ideal / of
R[G] is 3-gencrated. W

Proof of Theorem: (C).

We recall that, if R is an Artinian ring, then R = R;®...®R;, where each
(R,. M, ) is a local Artinian ring. Moreover, it is well known that R[G] has the
n-generator property if and only if each R{G] has the n-generator property. By using
[G2, Theorem 19.15] and [OV, Proposition 4.5], we know also that R;[G] has the 2-
generator property if R, has the 2-generator property and the order of G is a unit in
R,. Suppose that there exists j, 1<j<s, such that the order of G is not a unit in R,.
We denote simply by (R, M) the local ring R, M;).
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Assume that (R, M) has the 2-generator property but it is not a principal ideal

ring. Since the order of G isnota unitin R, then

Ord(G) = p)'py*---pi'e M , where p; is a prime integer.
Therefore, there exists pe {py.p2, ..., pi} such that pe M, whence p is the
characteristic of RZ/M . Let G =G,®H, where H is afinite group and prOrd(H) .

(=). If R[G) has the 3-gencrator property, then the homomorphic image
R[G,] does also, whence the conclusion follows {rom Proposition 2.1.

(). Forthe case G =G, , itsuffices 10 apply Proposition 2.1. For the
general case G =G,®H , then R[G}=R[H]}{G,]). We notice that R[H] is an
Artinian ring [G2, Theorem 2().7]. Since the order of H is a unitin R, then R(H] has
the 2-generator property [OV, Proposition 4.5] thus R{H] = A; @ ... @ A, where each
(A, Ni) is alocal Artinian ring with the 2-generator property, ! <i<¢g. Furthermore,
MR[H] is equal to the nilradical of R[H] [G2, Corollary 9.18).

We know that, when k22, M*=0 implics N¥ =0 foreach i (cf. the proof
of (A) and (B)). Therefore, for each i, A;{G,] has the 3-generator property by
Remark 1.1 and Propositions 1.2, 1.3, 1.6 and 2.1 . Hence R[G] has the 3-generator
property. N
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