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GROUP RINGS R [ G ]  WITH 3-GENERATED IDEALS 
WHEN R IS ARTINIAN 

Soutid AMEZIANE HASSANI 

De'partement de Mathe'mutiques, Faculte' des Sciences Sui'ss, 

Universite' S. M. Ben Abdelluh, F ~ s ,  Morocco. 

Marco FONTANA 

Dipartimento di Matemtica, Terza Universitii degli Studi di Ronm, Italy. 

Salah-Eddine KABBAJ 

De'partement de Mathimutiques, Faculte' des Sciences Dhar Al-Mehraz, 

Universite' S. M. Ben Abdelluh, F ~ s ,  Morocco. 

Let R be a commutative ring with identity. If an ideal I of R can be generated 

by n elements, then we say that I is n-generated. I f  every ideal of R is n-generated, 

we say that the ring R has the n-generutor property; when R has this property then the 

Krull dimension of R is zero or one [S, Chapter 3, Q; 1, Theorem 1.2, p. 511. 

Considerable interest has been shown in rings with the n-generator property (see 

for example [C], [Mc], [OV], [S]. [Shl]) and in the prohlem of determining when a 
group or monoid ring has the n-generator property, either in general or for a specific 

choice of n , see [AM]. [MI]. [M2], [ORV], [OV] and [Sh2]. 

In this paper, we consider the problem of determining when a group ring R[G] 

has the 3-generator property, if R is an Artinian principal ideal ring or R has the 2- 

generator property. 

From the restriction on K ~ l l  dimension, we have 

1 2 dim R[G] = dim R + a , 

Copyr~ghc 19% by Marcel Dekker. Inc 
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1254 AMEZIANE HASSANI. FONTANA, AND KABBAJ 

where a denotes the torsion free rank of G and dim R denotes the Krull dimension of 

R . Since, under our assumptions, dim R 5 1 . we have a = 0 or I . If a = 0 ,  then 

G must be a finite group. If a = 1, then G = 2 @ H , where H is a finite Abelian 

group and Z denotes the group of the integers. 
Since the case a = 1 was considered in [OV, Theorem 5. I], this paper concerns 

the case a = 0 ,  i. e. the case of a finite Abelian group G . 

All rings and groups considered in this paper are commutative and the groups are 

written additively. We refer to [G2] for elementary properties of group rings. If p is a 

prime integer, then the p-Sylow subgroup of the finite Abelian group G is denoted by 

GP . 
If I is an ideal in R , then p ( I )  denotes the number of the elements of a 

minimal set of generators of I .  
We recall that, if R = R1 @ R2 @ ... @ R, is a direct sum of rings, then R has 

the n-generator property if and only if each Ri has the n-generator property. If R is 
an Artinian ring, then R = Rl @ R2 @ ... @ R, ,  where each Ri is a local Artinian ring. 

Therefore, in this case, R[G] has the n-generator property if and only if Ri[G] has the 

n-generator property for each Ri . 
If R is an Artinian ring, in order to determine when the group ring R[G] has the 

n-generator property, by the previous remarks it suffices to consider the cases where R 

is a field or R is an Artinian local ring which is not a field. 

In this paper, we prove the following: 

Theorem. Let R be an Artinian ring with the 2-generator property and let G be a 

finite abelian group. Then R[G] has the 3-generator property if and only if R = 
R I  f3 ... @R, where each (R,, Mi) is a local Artinian ring with the 2-generator 

property, subject to: 

(A) Assume R, is afield of characteristic p # 0 ,  
(i) if p = 2 then Gp is a honwnwrphic image of 2 / 2 2  f3 2 / 2 2  @ 2 / 2 2  o r  

2 / 2 2  f3 212'2 , where i 2 0 ; 
(ii) if p = 3 then Gp is a hommorphic image of 2 / 3 2  f3 Z13i2 , where 

i 2 0 ;  

(iii) if p > 3 then Gp is a cyclic group . 
(B) Assume (R,, Mj) is a principal ideal ring which is not afield Ifthere exist a 

prime integer p such that pl Ord(G) and p E Mi, then 

(i) Case: p = 2 , 
(a) when Mf = 0 then Gp is a cyclic group o r  Gp = 2 / 2 2  f3 2 1 2 2  ; 
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GROUP RINGS R[GJ 

(b) when M f #  0 ,  then Gp is a cyclic group. 

More precisely, if M: # 0 then 
(b') Gp = Z l 2 Z  whether 2 6  MF ; 

(b") Gp = Z/2 'Z  where I I i 5 2 , whether 2 6  Mj\M/2. 

(ii) Case: p = 3 , 

(a) Gp is a cyclic group and 

(b) when M: # 0 ,  then 
(b ' )  Gp = Z 1 3 2  whether 3 6  M: ; 

(b") Gp = Z/3 iZ  where 1 I i I 2 whether 36 Mj\Mj2 . 

(iii) Case: p > 3 . 
(a) Gp is a cyclic group and 
(b) when M: # 0 ,  then p 4 M: and 

(b') Gp = Z l p Z  whether p~ Mj2\M: ; 

(b") Gp = Z / p i Z  , where 1 I i 1 2 ,  whether p c  M,\M?. 

( C )  Assume (R,. Mi) has the 2-generator property but is not a principal ideal 
ring. I f  there exist a prime integer p such that plOrd(G) and p c  Mj , then 

(i) Case: p = 2 , 
(a) Gp s a cyclic group and Mj2 is a principal ideal; moreover, 

(b) when M: # 0 ,  then Gp = Z / 2 Z  . 
(ii) Case: p 2 3 , 

(a) G,, is a cyclic group and Mi2 is a principal ideal; moreover, 
(b) when Mj2 # 0 ,  then Gp = Z / p Z  and Mj2 c @) c M, . 

5 1. The coefficient ring of R [ G ]  is an Artinian principal ideal ring 

In the present section, we assume that R is an Artinian principal ideal ring and 

G is a finite A k l i a n  group . In this situation, we intend to charaterize when the group 

ring R[G] has the 3-generator property, proving the statements (A) and (B) of the 

Theorem. 

Remark 1.1. (1) Assume that F is a field of characteristic p and that G is  a 

torsion group. If p = 0, then F[G] is a principal ideal ring. If p # 0 . then FIG] is  a 

principal ideal ring if and only if thep-Sylow subgroup of the finite abelian group G is  

cyclic [G2, Theorem 19.141. 

(2 )  Let R be a special principal ideal ring (i. e. a local principal ideal ring with 

nilpotent maximal ideal). Assume that R is not a field and that G is a finite group of 
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1256 AMEZIANE HASSANI. FONTANA. AND KABBAJ 

order m . Then R[G] is a principal ideal ring if and only if m is a unit of R [G2, 
Theorem 19.151. 

Proposition 1.2. [OV, Example 2.61. Let F be afield of characteristic p + 0 and G 

a finite abelian group then F(Q has the 3-generator property ifand only if 
( i )  when p = 2 ,  then Gp is a h o m m r p h i c  image of 2 1 2 2  @ 2 / 2 2  @ Z R 2  

or 2 / 2 2  @ 212'2 where i 2 0 ; 

(ii) when p = 3 ,  then G,, is a hommorphic i m g e  of 2 / 3 2  @ 2 / 3 i 2  where 

i > O ;  

(iii) when p > 3 , then G,, is a cyclic group. H 

Proposition 1.3. Assume that G is a non trivial finite 2-group, (R. M) is a local 

Artinian principal ideal ring which is not a field and 2 6 M . Then R[G] has the 

3-generator property ifand only if 
(a) when W = 0 then G is a cyclic group or G = 2 / 2 2  @ 2 / 2 2  ; 

(b) when + 0 ,  then G is a cyclic group. 

More precisely, if h@ + 0 ,  then 
(b') G = 2122  , whether 2 E M2 ; 

(b") G = 2 / 2 i 2  , where 1 S i S 2 ,  whether 2 E hi\ ML. 

Before giving the proof of Proposition 1.3, we need two preliminary results. 

Lemma 1.4. Let R be a ring, G a cyclic group ofjinite rank m . g a generator of 
G and a an element in R . If a( l  - X ~ ) E  (1 - Xg)ZR[G] then a = Am for some 

A€ R . 

Proof. Since a ( l  - X ~ ) E  (1 - Xb)ZR[G] then a ( l  - Xg) = P(1 - Xd)2 for some 

p E R[G] , i. e. (1 - Xs) (a  - P(l  - Xg)) = 0 . Therefore. a - P( l  - Xa)E 

A n n ~ [ ~ ] ( ( l  - Xg)) which is equal to (1 + Xg + ..... + X("-l)g)R because R[G] is a 
free R-module (generated by (1, X8. ...., X(m-l)8)). Then a - P(1 - X8) = A(1 + X8 + 
..... + X(m-')a) for some A E  R . Multiplying both sides of this equation by 
( 1  + XI + ..... + X(m-l)g) , we obtain that a( l  + XI + ..... + X(m-lk) = A(l + X8 + 
..... + X(m-l)z)Z. Again by the fact that R[C;I is a free R-module it is easy to verify that 

(1 + X8 + ..... + X(m-l)a)z= m(l + Xa + ..... + XW-lk). 

From the previous relations, we deduce that a = hn . H 

Lemma 1.5. Assume that (R, M) is a local Artinian principal ideal ring and G is a 
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GROUP RINGS R[GJ 1257 

jinire cyclic group. Let N be the n~uxinud ideal of the local ring R[G] . Then R[G] 

has rhe 3-generator property if and only if N , NZ a d  NJ are 3-generated. 

Proof. Let M = rR and g a generator of G ,  then we know that R[G] is local with 

maximal ideal N = (r. 1 - Xg) [G2, Theorem 19.1 and Corollary 19.21. Suppose that 

N , N2 and P are 3-generated. We need to prove that each ideal I of RIG] is 3- 

generated. By [Shl, Corollary 4.2.11, i t  suffices to consider the case where I Q W . 
Let x E I\W . By [ K ,  Theorem 1591, p (NI(x)) = p(N) - 1 = 2 - 1 = 1 . Therefore the 

ring R[G]I(x) is principal , hence p(ll(x)) = 1 . thus p(I) I 2 . We conclude that 

R[G] has the 3-generator property. W 

Proof of Proposition 1.3. 
(*) , (a) . By assumption G = 212'12 @ Z/2'22 @ ... @ 2 / 2 ' ~ Z  where 

0 < tl I t2 I .... I I,. If R[G] has the 3-generator property, then the homomorphic 

image (RLM)[G] does also. By Proposition 1.3 (i) (or by [OV. Corollary 2.21) s S 3 . 
Firstly, we show that the case s = 3 is not possible. 

Since R is local ring with residue field of characteristic 2 (because 2 6  M) and 

G = 212'12 €B 2 / 2 %  @ Z/2 '~i?  is a finite 2-group, then R[Z/2'lZ @ Z/2'22 $ 

ZI2'3i?] is local with maximal ideal N := (r, 1 - Xg. 1 - Xh, 1 - Xk) where r generates 

M in R and g (respectively: h, k ) is a generator of 2/2'12 (respectively: 2/2'22 , 
2212'32) [G2, Theorem 19.1 and Corollary 19.21. By [N, (5.3) p. 141, the 3 generators 

of N can be chosen among the elemenls of the given set of generators of N . 
If N = (r,  I - Xg, I - Xh)  , then by applying the augmentation map 

R[<k>][<g>@<h>] -+ R[<k>] , we have 1 - Xk E (r) in R[<k>] . This forces r to 

be a unit of R : a contradiction. 

The argument for N = (r, 1 - Xg, 1 - Xk) and N = (r. I - Xh, 1 - Xk) is similar. 

If N = (1 - Xg, 1 - Xh. 1 - Xk) , then applying the augmentation map 
R[<g>@<h>@<k>]  -+ R to r = a ( l  - Xz) + b(l - Xh) + c( l  - Xk) where a, b, c E 
R[<g> @ <h>@ <k>] , we obtain r = 0 contradicting the hypothesis that R is not a 

field. 

If s = 2 , then G = 212'12 @ 2/2'2Z = < g >  @ < h >  where 0 < tl I tz . If 

R [ < g >  @ < h > ]  has the 3-generator property, then the homomorphic image 
(R/M)[<g> @ <h>] does too. By Proposition 1.2 (i) (or by [OV, Proposition 2.1 (a)]) 

G = 2 / 2 z  @ i212jZ . with i 2 1 . 
Assume i > 1, then necessarily R[Z/2Z @ 2 / 4 2 ]  has the 3-generator property. 

Consequently fl is 3-generated, where N := (r, 1 - Xg, 1 - Xh) . r generates M in R 
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1258 AMEZIANE HASSANI, FONTANA, AND KABBAJ 

and g (respectively, h ) is a generator of Z l 2 2  (respectively, 2 / 4 2  ) . We note that 

N2 = (r(1 - X8), r ( l  - xh) ,  ( I  - Xg)(l - xh). (I  - xg)', (I  - x ~ ) ~ )  
because we are assuming MZ = O . Moreover, as < g >  = 2 / 2 2  and 2 6  M . then 

(1 - X8)Z = 1 - 2x8 + X28 = 2(1 - X8) E (r(1 - Xg)) . therefore 

N~ = (r(1 - X"), r ( l  - xh) ,  (1 - X8)(1 - xh) .  (1 - xh)'). 
Suppose that r(l  - XK) is a redundant generator of the 3-generated ideal @. By 

applying the augmentation map R[<g)][<h)] -t R[<g>] to the equality 

r ( I  - X8) = ar(1 - x h )  + b(I - Xg)(I - xh)  + ~ ( 1  - xhlZ 
where a ,  b, c E R [ < ~ >  @ <h) ]  . we obtain that r(l  - X8) = 0 in R[<g>] , thus r = 0 

in R : a contradiction. Therefore r ( l  - Xg) must appear in a party of 3 generators of 

N2. The argument for r ( l  - Xh) is similar; so also r(l  - Xh) must appear in a party of 3 

generators of NZ . 
If (1 - Xh)2 is redundant, then by applying the augmentation map 

R[<h)][<g>] --t R[<h)] to the equality 

(1 - xh)' = ar(1 - x h )  + br(1 - Xs) + c( l  - Xg)(l - x h )  
where a,  b, c E R[<g>  @ < h > ]  , we obtain (1 - Xh)2 = 1 - 2Xh + XZh E rR[<h)] . 
This forces r to be a unit in R : a contradiction. Then (I  - xh12 must appear in a 

minimal set of generators of NZ . 

The previous argument shows that, if R[G] has the 3-generators property, then 

N~ = (r(1 - X8), r ( l  - xh) ,  (1 - xh12) . By passing to the homomorphic image onto 
(R/M)[<g> @ <h>],  we obtain that 

(1 - Xg)(l - x h ) €  (( 1 - xh12 ) in K[<g) C3 < h > J  , 
where K := R/M is a field of characteristic 2 (since 2 6  M ). Then, in @ <h)] 
we have (1 - X8)(1 - Xh) = a ( l  - Xh)2 , where 

a := a@ + agXs + ag+hX8+h + ~ g + ~ ~ X b ' + ~ ~  + u8+3hXx+3h + ahXh + a2hX2h + QhSh 
since a basis for the free K-module K[<g> @ (h)]  is given by (p, Xg, Xg+h, Xg+zh, 

Xg+3h, Xh. XZh. X3h) . Moreover. in K [ < g >  @ < h > ]  . (1 - Xh)2 = 1 - 2Xh + Xzh = 

1 + . After setting the corresponding terms equal, from the coefficient of p, we 

obtain 1 = a0 + azh and, from the coefficient of XZh , we obtain 0 = a o  + a z h  : 

a contradiction. 
Therefore NZ is not 3-gcnerated in R[Z /2 i?  @ 2 / 4 2 ]  , consequently 

R[2 /2Z  @ Z / 4 2 ]  does not have the 3-generator property. 

By  the previous argument. we conclude that s 5 2 and if s = 2 then 

G cz 2 / 2 2  @ Z / 2 2 .  

(e) , (a) . Suppose that G = 2 / 2 2  @ 2 1 2 2  and MZ = 0. 
W e  know that R [ 2 / 2 2  @ Z / 2 2 ]  is a local ring with maximal ideal N := 

(r, 1 - X8, 1 - Xh) , where r generates M in R and < g )  @ < h >  = Z / 2 2  €I3 2 1 2 Z  

[G2, Theorem 19.1 and Corollary 19.21. 
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Step I. We claim that N , NZ and fl are 3-generated. 

We note Lhat 

N2 = (r2, r ( l  - Xg), r(1 - X"), (1 - Xx)(l - Xh), (1 - ~ 8 ) ~ .  (1 - Xh)2) = 

= (r(1 - Xg), r(1 - Xh), (1 - Xg)(l - Xh)) 
since r2 = 0 (because M2 = 0 ) , (I - Xg)2 = 1 - 2x8 + X ~ K  = 2(1 - Xg) E (r(l - XZ)) 

and (1 - Xh)2 = 2(1 - XI') E (r(l - Xh)) (hecause 2 E M and 2 is the order of g and 

h ). 
By a similar argument, it can he proven that 

2(,1 - X8). r2(1 - Xh), r ( l  - XK)(l - Xh), r ( l  - X X ) ~ ,  (1 - X Z ) ~ ( ~  - Xh), N3 = ( r  , r 

(1 - XK)(l - ~ h ) 2 ,  r(l  - Xh)2) = (r(l - Xg)(l - Xh)) . 
Step 2. Let I he an ideal of R[G] , then I is 3-generated. 

By [Shl, Corollary 4. 2.11, i t  sufCices to consider the case where I c N 2 .  
Let x E I \#. Since x E N , then hy [K, Theorem 1591 

(13 .1 )  p(NI(x)) = p(N) - 1 = 3 - 1 = 2 .  

Now, we claim that 
( 1.3.2) p((Nl(x))2) 5 2 . 

Since p(NI(x)) = 2 , thcn 

N = (r, x, 1 - XZ) or N = (r, X, 1 - Xh) or N = (x, I - Xg, 1 - Xh) . 
We denote hy the class of z E R[G] modulo ( x )  . - -  
If N = ( r , x ,  1 -Xx) then N l ( x ) = ( r  . I-Xg) and 

- -  
(NI ( X I ) ~  = (@+ (X))/(.X) = (( r , r(1- ~ 8 ) .  (I  - xg12)  = ( ( d l  - Xg) ) 

(because rz = 0 and (1 - Xg)2 = 2(1 - X8) E (r( l  - X8) ) . Therefore. in this case, 

obviously p ((NI (x))2) 5 2 . 
The argument for N = (r, x. 1 - Xh) is similar. 

If N = (x. I - X8, I - Xh) then -- 
(NI(x))~ = (@+(x))l(x) = (r( l  -Xg) r(l - x h ) ,  (1 - X W  - x h ) ) .  

Since r c N then there exist A, p ,  v in R [ G ]  such that r = Ax + p(1  - XZ) + 
V(l - Xh) . 

If p is a unit, then 
(I - x8) = p.lr - p - l h  - p-Iv(1 - Xh) 

thus, recalling that 9 = 0 , 
r(1 - XX) = - p - ' k r  - p-Ivr(1 -XI') 

hence r(l - X t )  E (41 - x h ) )  . Therefore, in this case, p((N/(x))*) 1 2 . 

If p is not a unit (i. e. N 1, we have 
r( l  - Xg) = Ax(l - XK) + p ( l  - Xg)* + V(1 - Xg)(l - x h )  . 

Since 2 E M = (r) then 2 = a r  , where cr E R , whence (1 - ~ 8 ) ~  = 2(1 - X8) = 
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1260 AMEZIANE HASSANI. FONTANA, AND KABBAJ 

~ r (  l - Xg) . Therefore: 
(1 - ap)r( l  -Xg) = k ( l  - Xg) + v(l - Xg)(l - Xh) 

thus 

d l  - X ~ ) E  ((1 - XW - x h ) )  

because (1 - u p )  is a unit in R[G] (since R[G] is local ring and p~ N ). We 

conclude that p ( ( N I  ( x ) ) ~ )  I 2 . 

By (1.3.1) and (1.3.2) and by [Mc, Theorem 1, (6) 3 ( I ) ]  the ring 

R[G]l(x) has the 2-generator property. Consequently I l (x)  is 2-generated, whence I 
is 3-generated. We  conclude that R['2/22 CB212'21 has the 3-generator property. 

In order to complete the proof of ((e) , (a)) suppose that MZ = 0 and G = 
212 'Z , where 1 I i . Then R[G] has the 2-generator property by [OV, Proposition 

4.61. 
(a) , (b) . Assume that R[G] has the 3-generator property and that f l f  0 .  

Suppose that G is not cyclic. Then the homomorphic image R [ Z I 2 2  @ 2 / 2 2 ]  of 

R[G] has the 3-generator property. Consequently NZ is 3-generated, where N is the 
maximal ideal of R [ 2 / 2 2  @ 2 / 2 2 ]  and N = (r, 1 - Xg, 1 - Xh) , with M = (r) and 
<g>CB<h> = 2 / 2 2  $ 2 1 2 2 .  

We  note that 

N2 = (r2,  r ( l  - Xt), r(1 - Xh), (1 - Xg)(l - Xh), ( I  - X8)2, (1 - Xh)2) = 
= ( r 2 ,  r(1 - Xg), r(1 - Xh), (1 - Xg)(l - Xh)) 

(because (1 - X I ) ~ E  (r(1 - X8)) and (1 - Xh)Zc (r(1 - Xh)) , since the order of g and 

h is 2 and 2~ M = (r)). As we noticed before, the 3 generators of N2 can be chosen 

among the given generators of N 2 .  
If r2 is redundant in the set of generators of fl, then 
r2 = ar(1 - Xg) + br(1 - Xh) + c(1 - X8)( 1 - Xh) where a, b, c e  R[<g) CB<h)]. 

By applying the augmentation map R[<g) CB <h)]  + R to the previous equality, we 

obtain that r2 = 0 contradicting our hypothesis that MZ + 0 
If r(l - Xg) is redundant in the set of generators of @, then 

r ( l  - Xg) = ar2 + br(1 - Xh) + c(l  - X8)(l - Xh) . 
w h e r e  a, b, C E  R [ <  g > CB < h > ]  . By applying the augmentation map 

R[<g)][<h>] -t R[<g)] to the previous equality, in R[<g>] we obtain that r(1 - X8) 

= r z ( a  + pX8) where a, R ; thus r = r z a ,  i. e. M2 = M = rR,  whence, by 

Nakayama's Lemma, M = 0 : a contradiction. 

The argument for r ( l  - Xh) is a similar, thus r ( l  - Xh) must also appear in a 

party of 3 generators of fl. 
If ( I  - Xg)(l - Xh) is redundant in the set of generators of N2, then 

(I - Xg)(l - Xh)€ (r2, r ( l  - Xg), r ( l  - Xh)) s rR[<g>  CB < h > ]  . Since R[<g) CB <h)]  

is a free R-module, this condition yields 1 E (r) : a contradiction. 
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The previous argument shows that ( r2 ,  r ( l  - Xg), r(l - Xh), ( 1  - X g ) ( l  - Xh))  is  

a minimal set of generators of N 2 ,  whence we reach the contradiction that 

R[Z/2Z @2/2%]  does not have the 3-generator propeny. 

W e  conclude that if Mz # 0 and if R[G] has the 3-generator property thcn 

G must be a cyclic group. 

Let g be the generator of G . We know that R[G] is a local ring with maximal 

ideal N = ( r ,  1 - Xg) where r  gcnzratcs M [G2, Theorem 19.1 and Corollary. 19.21. 

Since, by hypoyhesis, R[G] has the 3-generator property then N ,  @ and fl are 3- 

gcnerated. We note that: 

N2 = (r2, r( l  - Xb'), ( I  - Xd)2) and h" = (r3, r2(1 - Xs), r(1 - X8)2, (1 - Xg)3) . 

It is clear that N ,  @ and N3 are 3-generated if M' = 0. 
(b') . Suppose iVf # 0 and 26 W . In order to conclude that G - '2/2'2 , it 

suffices to prove that R['2/4Z] docs not have the 3-generator property, since R[Z l2Z]  

has the 3-generator property (in fact, it has the 2-generator property by [OV. Proposition 

4.61). 

W e  claim that, in R [ Z / 4 Z ]  , h" =(r3, r2(1 - Xg), r(1- X8)2, (I - X X ) ~ )  may not 

he generated by 3 elements, where '214'2 = <g> and M = ( r )  . 
By contradiction, suppose that fl is  generated by 3 elements. Since @ = (9) 

# 0 and the order of g is strictly bigger than 3 , it is clear that r3 and (1 - X B ) ~  must 

appear in a party of 3 generators extracted from the given set of generators of fl . 
If rZ(1 - Xg) is  redundant, then r2(1 - X ~ E  (r3,  r( l  - X Z ) ~ ,  (1 - Xg)3) . By 

pussing to the homomorphic image onto (Rl(r3))[<g>] , in this ring we have r2(1 - Xg) 

= b(1 - Xg)2 where b~ (R/(r3))[<g>] . By Lemma 1.4, we have r2 = 4d for some 
A E  Rl(r3) . Since 2~ M 2 ,  w e  have r2 = 0 in Rl(r3) i. e .  ( r2 )  = ( r3 )  in R : a 

contradiction. 

If r( l  - xg12c (2. r2(1 - X8), (1 - xg13) , by passing to the homomorphic onto 

( ~ l ( r ~ ) ) [ < g > ]  , in this ring w e  obtain that r(l - x B ) ~  = a(1 - Xg)3 ,  where a E 

(~ / (? ) ) [<g>]  . Consequcntly. in ( ~ / ( r ~ ) ) [ < g > ]  we have 

r(l - x ~ ) ~  = u(1 - xgl4  = u(1 - 4Xg + 6~~~ - 4~~~ + x ~ ~ )  = 
= 2 4 1  - 2x8 + 3X2g - 2X%) (since the order of g is 4 ) 

= 0 (because 2~ W = (r2)) . 
Since (Rl($))[<g>] is a frtx Rl(r2)-module and the order of g is strictly bigger than 3 ,  

this equation holds for r  = 0 in Rl(r2) i. e. r = r* in R , whence r  = 0 : a 

contradiction. 

The previous argument shows that is not 3-generated because r3, r2(1 - X8), 

r(l - X X ) ~  and ( 1  - Xg)3 must appear in a minimal set  of generators of N3. Thus 

R[Z/4'2] does not have the 3-generator property. 
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1262 AMEZIANE HASSANI. FONTANA, AND KABBAJ 

(b") . Suppose that R [ G ]  has the 3-generator property. M3 + 0 and 
2~ MlM. In order to conclude, it suffices to prove that R[Z /8Z]  does not have the 

3-generator property. Let N be the maximal ideal of R[Z/8Z]  , we already know that 

N = ( r  1 - X )  , N~ = (r2.  r ( l  - XK), (1 - xg)?) and 
N' = (r3 , r2(1 - Xg), r ( l  - ~ 8 ) ~ .  (1 - x813) . 
Suppose that R[Z/8Z]  has the 3-generator property, then in particular a set of 3 

generators can be extracted from the given sct of generators of N" . 
Since @ =  (r3) # 0 and the order of g is strictly bigger than 3 , it is clear that 

r3 and (1 - X Z ) ~  must appear in each system of 3 generators extracted from the original 

set of generators of N" . 
If N3 = (r3, r ( l  - Xg)2, (1 - Xg)3) , by passing to the hornornorphic onto 

(Rl(r3))[Z18Z], we obtain that r2(1 - XK) = u(l  - X X ) ~  where U E  (Rl(r3))[Z/8Z] . By 

Lemma 1.4 we have r2 = 8A for some AE Rl(r9  . As 2 6  M = (r) . then (r2) = (r3) , 

therefore r2 = 0 : a contradiction. 
Let hn = (r3, r2(1 - Xg), (1 - Xg)3). Since (2) = (r)  because 26 M\M2, by 

passing to the homomorphic onto (Rl(r2))[Z/8Z] , we have 2(1 - X g ) k  ((1 - Xb)3) . 
We know that (Rl(rz))[Z/8Z] is Rl(r2)-module free, generated by (Xkg : 0 I k I 7). 

Therefore 2(1 - Xg)2 = (a0 + alX8 + ... + a7X78 )(I - X B ) ~ ,  where a(€  Rl(r2) . By 

setting corresponding terms equal, we obtain the following equations: 

X0 a o -  as + 3a6 - 3a7 = 2 
Xg -3ao + a, - a6 + 3a7 = 0 

XZg 3 ~ - 3 a ~ + a ~ - a ~  = 2  

X38 -a0 + 3al  - 3a2 + a3 = 0 
X4g -a1 + 3a2 - 3a3 +ad = 0 

X5g -a2 + 3u3 - 3a4 + as = 0 
X6g -a3 + 3a4 - 3as + a6 = 0 

X78 -a4 + 3aS - 3a6 + a7 = 0 . 
After resolving this system, we obtain 2 = 0 in Rl(r2) , i. e. 2 6  M2 : a contradiction. 

We conclude that R[Z/8Z]  does not have the 3-generator property. 
( s )  , (b) . Assume that M2 + 0 and thus G is a cyclic group. We want to 

show that R[G] has the 3-generator property. We recall that R[G] is a local ring [G2, 

Theorem 19.1 and Corollary 19.21 with ideal maximal N = (r. 1 - X8) , where r 
generates M and G = <g> . 

Step 1. We claim that N. Nz and hn are 3-generated. 

We  note that: 

N2 = (r2, r ( l  - Xg). (1 - Xg)2) and N" = (r3, r2(1 - XX), r ( l  - X8)2, (1 - X8)3) . 
If IW = 0 ,  then it is clear that N, N2 and M are 3-generated. 
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( b ' )  . Assume that M3 # 0 and 2 ~  M2 thus G = 2 / 2 2  . In this situation, 

RIG] has the Zgenerator properly [OV, Theorem 4.1 (b, 2)]. 
(b")  . Assume that M3 + 0. 2 s  M\h@ and G = i?l42 . 

For R [ Z / 4 Z ] ,  we have 

N =  (r. 1 - X K ) ,  ~ ~ = ( r ~ , r ( l - X K ) , ( l - ~ g ) ~ )  and 

N~ = ( r 3 ,  r2(1 - XX), r( l  - ~ 8 ) ~ .  ( 1  - ~ 8 ) ~ )  = ( r 3 ,  r(l - ~ 8 ) ~ .  ( 1  - ~ 8 ) ~ )  

because r2(1 - X ~ ) E  (r(1 - x ~ ) ~ ,  ( 1  - ~ 8 ) ~ )  . As a matter of fact. 

1 = ( 1  - XK + X K ) ~  = 1 + 4(1 - X q S x  + 6(1 - X K ) ~ X ~ X  + 4(1 - X8)3X8 + ( 1  - X X ) ~  

i. e. 4(1 - XA')X% = - 6(1 - X8)2X2K - 4(1 - X X ) ~ X X  - ( 1  - X K ) ~  

therefore 4(1 - X ~ ) E  (2(1 - X X ) ~ ,  ( 1  - Xg)3) . Since (R.  M )  is local, M = ( r )  and 

2 €  M \ w  then r = 2u where u is a unit in R . Consequently, r2(1 - XX)E (r(1 - Xg)2, 

(1 - x q 3 )  . 
Step 2. Each ideal in R[G] is 3-generated. 

This statement follows from Step 1 and Lemma 1.5. W 

Proposition 1.6. Let (R,  h4) be a local Artinian principal ideal ring not afield, p a 
prime integer, p 2 3 , G is a non trivialfinite p-group and p e  M . Then R[G] has the 

3-generator properly ifand only if 

( 1 )  Case p = 3 ,  

(a)  G is a cyclic group; and 

( b )  when @+ 0, then 
(b ')  G = Z / 3 Z ,  whether 36 M2; 

(b")  G = 213 '2 ,  with 1 I i I 2 . whether 3 E M\M . 
( 2 )  Case p > 3 , 

(a)  G is a cyclic group; and 

(b )  when M3 # 0 . then p r  M3 and 

(b') G = Z l p Z ,  whether p~ W\fl ; 
(b")  G = ZIpiZ , with l 5 i 5 2 ,  whether pe  M \ M .  

We establish first a lemma which will be used later several times. 

Lemma 1.7. Let R be a ring, C a cyclic group offinite rank m , g a generator of 
G and a an element in R . Suppose that m is odd. If a ( ]  - X X ) ~ E  ( ( 1  - X X ) ~ )  in 

R[G] , then a = Am, for some AE R. 

Proof. Since a(1 - X ~ ) Z E  ( ( 1  - X K ) ~ )  then a ( l  - X X ) ~  = P(1 - X X ) ~ ,  for some 

PE R[G]  , i. e. a( l  - Xg) - P(1 - X K ) ~ E  A n n ~ [ c ]  ( 1  - XX) = ( 1  + XK + ... + X ( m - l ) ~ ) R  

(cf. also the proof of Lemma 1.4) . Therefore 
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( 1 7 . 1 )  a ( l  - X8) - P(l - X8)2 = A'(1 + X8 + ..... + X(m-l)g) , for some A'E R.  

Since p is an element of the free R-module R[G] . then P = bo + blX8 + ... + 
bm.lX(m-l)8 , where bit R for each i . By setting in (1.7.1) the corresponding terms 

equal, we obtain the following equations : 
a = A' + bo - 2b,,., + b,,.2 

-a = A'+ bl - 2b0+ b,.~ 

0 = A 1 + b 2 - 2 b 1 + b o  

0 = I f + b 3 - 2 b 2 + b l  

0 =A'+ b,,,.~ - 26 ,,,. 2+ b ,,,. 3 .  

After multiplying these equations by ( m  - 1)/2, -1 + (m - 1)/2, ... , 1, 0, -1, ... , 
- (m - 1)/2 respectively and adding the resulting equations, we have a = m(bm.2 - bm.l) . 
Take A:= bm.2 - bm.1 . W 

Proof of  Proposition 1.6. 
(1) Case: p = 3 .  (*) . 
(a). By contradiction suppose that G is not cyclic. Since we are supposing that 

R [ q  has the 3-generator property, then also its homomorphic image R[Z/3Z Q Z n Z ]  

does. Let N := (r, 1 - XE, 1 - Xh) , where r generates M in R and <g> Q < h >  = 
2 / 3 2  @ 2 / 3 2 .  Then Nz and N3 are 3-generated in R[<g> Q<h>] . We note that: 

N2 = ( 6 ,  r(l - Xg), r(1 - Xh), (1 - X8)(1 - Xh), (1 - X8)2, (1 - Xh)2) . 
We know that N2 can be generated by 3 elements chosen in the previous set of 

generators of fl [N. (5.3) p. 141. 

If (1 - Xg)2 is redundant, then in particular (1 - X8)2 = ar2 + br(1 - Xg) + 
cr(1 - Xh) + d( l  - Xg)(l - Xh) + e(1 - Xh)2, where a, b, c, d, ee R[<g> Q < h > ]  . By 

applying the augmentation map R[<g>][<h>] + R[<g>] , we have ( I  - Xg)2 = 1 - 
2x8 + $ 8 ~  rR[<g>] , since the order of g is strictly bigger than 2 , we reach easily a 

contradiction. 

The argument for (1 - Xh)2 is similar. Consequently (1 - X8)Z and (1 - Xh)2 

must appear in a party of 3 generators extracted from the given set of generators of fl . 
If (1 - Xg)(l - X ~ ) E  (r2, r(1 - Xx), r(1 - Xh), (1 - Xg)Z, (1 - Xh)2) , by passing 

to the homomorphic image K[<g) CB < h> ] , where K := Rl(r), we obtain that 

(1 - Xg)(l - Xh) = a(1- Xg)2 + b(l - Xh)* where a, b e  K[<g> Q <h)]  . Therefore 

(1 - Xg)*(l - Xh) = a ( l  - X8)3 + b(1 - XX)(l - Xh)2, hence in K[<g> Q<h>]  we have 

( 1 . 6 1  (1 - X8)2(1 - X") = b(l - XX)(l - Xh)', 

because < g >  = Z / 3 Z  and the characteristic of K is 3 . Since b = bo + bgX8 + 
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b,+hX~+h + bK+21tXk'+2h + b2KX2g + b2K+hX2b'+h + b2,+2hX2k'+2h + bhXh + b2hX2h, then 

after setting in (1.6.1) the corresponding terms equal. we obtain the following system: 

1 = bo - b2K + 2b28+2h - b2K+h - 2b2h + bh 

-2 = b, - bo + 2bzh - bh - 2bg +2h + bg+h 

2 = bK+h - bh + 260 - b2h - 2bK + b8+2h 

1 = b28 - bK + 2bg+2h - bK+h - 2hg+2h + h g + h  

- 1 = h g + h  - b,+h + 268 - bK+2h - 2b2g + h K + 2 h  

- 1 = bh - b2g+h + 2b2, - b2,+2h - 2b0 + b2h 

0 = bb+2h - b2h + 2bh - bo - 2bg+h + bK 

0 = h1+2h  - bb+2h + 2bK+h - bg - + b2, 

0 = b2h - h K + 2 h  + 2b21 +h - hl- 2611 + bo 
It is easy to see that, in the field K of characteristic 3 , the previous system has no 

solutions: a contradiction. Therefore (1 - Xg)(l- Xh) must appear in a minimal set of 3 

generators of fl . 
If N2 = ((I - XK)(l - Xh). (1 - Xg)2, (1 - Xh)2) , then particular r2 = a(1 - Xg)2 

+ b(l  - Xh)2 + c(1 - X8)(1 - Xh) where a, b, c E R[<g> @ <h>]  . By applying the 

augmentation map R[<g> @ <h>] -+ R we have r2 = 0 .  

The previous argument shows that if fl# 0, then fl may not be 3-generated, 
consequently R[<g> @ <h>] does not have the 3-generator property : a contradiction. 

Therefore G must be a cyclic group. 

If fl = 0 . then we look at N3,  we notice that 
fl = N2N = ((1 - XK)(l - Xh)). (1 - X Z ) ~ ,  (1 - ~ h ) 2 ) ( r ,  1 - X8, 1 - x") = 

= (r(1 - Xg)(l - Xh). (1 - Xg)2(1 - Xh), (1 - Xg)(l - Xh)2, r(1 - Xg)2, 

(1 - Xg)3, r ( l  - Xh)2, (1 - ~ h ) 3 )  = 
= (r(1 - Xg)(l - Xh), (1 - Xg)2(1 - Xh), (1 - Xg)(l - Xh)2, r(1 - Xg)2, 

-3(1 - XqXK, r(1 - Xh)2. -3(1 - xh)xh) . 
Since 3 €  (r) and (1 - X X ) ~ ( ~  - Xh), (1 - Xg)(l - Xh)2e rR[<g> @ < h > ]  , then it is easy 

to show that at least one between (1 - Xg)2(l - Xh) and (1 - Xg)(l - Xh)2 must appear 

in a party of 3 generators extracted from the original set of generators of N3.  Since g 
and h have the same role, by passing to the homomorphic image K[<g> 63 <h>] 

where K = Rl(r) , we obtain again the equation (1.6.1), which is not solvable in K .  

Therefore, both (1 - Xg)2(1 - Xh) and (1 - Xg)(l - Xh)2 must appear in a party of 3 

generators of P. 
Now, suppose that -3(1 - Xs)Xf E (r(1 - Xa)(l - Xh), (1 - Xg)2(1 - Xh), 

(1 - Xg)(l - Xh)2, r (1 - Xa)*, r(1 - Xh)2, -3(1 - ~ h ) ~ h )  , then by applying the 

augmentation map R[Z/3Z @ 2 / 3 Z ]  = R[<g>][<h>] + ~ [ < g > ]  , in the last ring we 
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1266 AMEZIANE HASSANI. FONTANA. AND KABBAJ 

have 

-3(1 - Xg)X(: = (ao + olXg + u2X2g)r(l - X X ) ~ ,  where ao, u l ,  azc  R. 

Thus, after setting the corresponding terms equal, we obtain among other equations the 

following: 

(1) 0 = r(ao + ol - 202) 

(11) 3 = r(u0 - 2u1 + 02) 

We note that (11) - (I) yields 3 = r(-3ul + 3oz) = 3r(-a l  + a 2 )  = 0 , where the last 
equality holds because 3 6  (r) and r2 = 0. Therefore, ch(R) = 3 hence: 

hn = ( r ( l  - X8)(1 - Xh), (1 - Xb)2(1 - Xh), (1 - Xb)(l - Xh)2, r ( l  - X8)2, r ( l  - ~ h ) 2 ) .  

Suppose that r ( l  - Xs)2 does not appear in a party of 3 generators extracted from 

the original set of generators of N 3 .  By applying the augmentation map 

R[<g>][<h)] + R[<g)] , in R[<g)] we have r(1 - Xg)2 = 0 .  This forces r = 0 in 

R : a contradiction. 

The argument for r (1  - Xh)2 is similar. Therefore,  we conclude that 
(1 - X8)2(l - Xh), (1 - Xg)(l - Xh)Z, r(1 - X8)z and r ( l  - Xh)Z must appear in a minimal 

set of generators of p: a contradiction. 

We  proved that -3(1 - X8)X8 must appear in a party of 3 generators extracted 

from the original set of generators of N3 . 
Similarly, we can prove also that -3(1 - Xh)Xh must appear in a party of 3 

generators chosen among the given generators of N3 . 
Now, we may conclude that N3 is not 3-generated, because the elements 

(1 - Xg)2(l - Xh), (1 - Xg)(l - Xh)2, -3(1 - Xg)Xb and -3(1 - Xh)Xh must appear in a 

minimal set of generators of N3.  Consequently. G is cyclic also when M.2 = 0 . 
(b') . Suppose that @ #  0 and 36  Mr. 
The conclusion will follow if we prove that R [ Z / 9 Z ]  does not have the 3- 

generator property. By contradiction, suppose that the ideal 

N3 = (r3, r2(1 - Xz), r ( l  - X K ) ~ ,  (1 - X8)3) 

is 3-generated in R[ZI9i?] , where r generates M in R and g is a generator of 

2 / 9 Z  . 
It is clear that r3 and (1 - X K ) ~  must appear in a minimal set of generators 

extracted from the original set of generators of N3, since W # 0 and the order of g is 

strictly bigger than 3 . 
If r2(1 - X8)e (r3, r ( l  - X K ) ~ ,  (1 - Xg)3) . By passing to the homomorphic 

image onto (RI(r3))[ZI9Z] , in this ring we obtain that r2(l - Xg) = P(1 - Xg)2, where 

PE (Rl(r3))[Z/9Z] . By Lemma 1.4, in the ring Rl(r3) we have that r2 = 9A , for 

some AE Rl(r3) . Since, we are assuming 3 s  M2 , then M2 = M3 . whence (by 

Nakayama's Lemma) ML = 0 . contradicting the hypothesis M3 # 0.  
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The previous argument shows that, when R[Z/9Z] is 3-generated then N3 = 
(r3, rZ(1 - XX), (1 - X X ) ~ )  , hence r ( l  - X X ) ~ E  N3.  Therefore, passing modulo 

r 2 R [ Z / 9 Z ]  , in this quotient ring we obtain r ( l  - X X ) ~  = p ( l  - X X ) ~  w h e r e  

(Rl(r2))[Z19Z] . By Lemma 1.7, r = 9A for some A E  Rl(r2) i. e. r = 0 in Rl(r2) , 

since 3~ fl . We deduce that (r) = (r2) in R : a contradiction. 

In conclusion, we proved that, if @ # 0 and 3 6  M2, R[Z/9Z] does not have 

the 3-generator property. 
(b") . Suppose that @ #  0 and 3 6  M \ W .  
We note that the condition that 3 6  M\M2 (i. e. (3) = (r) = M ) implies the 

conclusion, if we prove that R[Z/27Z] does not have the 3-generator property. By 
contradiction, suppose that R[Z/27Z] has the 3-generator property. In particular, the 

ideal fl is 3-generated, where N := (3, (1 - Xx)) is the maximal ideal of R[Z/27Z] 

and g is a generator of 21272 . We note that: 

Nz = (9, 3(1 - Xx), (1 - X X ) ~ )  and fl = (27. 9(1 - Xx), 3(1 - Xg)2, (1 - Xg)3) . 
Since @ # 0 and the order of g is strictly bigger than 3 . then 27 and (1 - Xg)3 

must appear in a minimal set of 3 generators extracted from the given set of generators of 

N3.  

If 9(1 - Xg) is redundant, passing modulo 27R[Z127Z] , then, in the ring 
(R/(27))[Z/272] we obtain 9(1 - Xg) = P(1 - X8)2 (where PE (Rl(27))[Z/272]). By 

Lemma 1.4. we have 9 = 27A for some A 6  Rl(27). Therefore, 9~ (27) in R , hence 

W = h@ : a contradiction. 

Since we are supposing that R[Z/27Z] has the 3-generator property then the 
previous argument implies that N3 = (27. 9(1 - X8). (1 - Xg)3) . i. e. 3(1 - X g ) k  fl . 
Passing to the quotient ring modulo 9R[Z/27Z] , we obtain 3(1 - X X ) ~  = P(1 - Xg)3, 

where PE (R1(9))[Z/27Z] . By Lemma 1.7, we have 3 = 27A for some AE Rl(9) , 

whence M = hf-' : a contradiction. 

In conclusion. R[Zl27Z] does not have the 3-generator property. 
(1) Case p = 3 . (+) . 
(a) . Assume that G is a cyclic group. We want to show that R[G] has the 3- 

generator property. Since R[G] is a local ring [G2, Theorem 19.1 and Corollary 19.21 

with ideal maximal N := (r,  1 - Xg) . where r generates M and G = <g> , by Lemma 

1.6 it suffices to prove that N ,  /Vz and Puo are 3-generated. We note that: 

N2 = (r2, r ( l  - Xg), (1 - Xg)2) and fl = (r3, rZ(1 - Xf), r(l  - Xg)2, (1 - Xg)3) . 
It is clear that N , N2 and fl are 3-generated when M3 = 0 . 

Suppose that (b) holds, i. e. @ # 0 . 
(b') . In case 3~ w. we need to prove that fl is 3-generated in R[Z/3Z] . 
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1268 AMEZIANE HASSANI, FONTANA. AND KABBAJ 

We note that (1 - Xg)3 = -3(1 - XqXr  e (rz(1 - Xs))  , hence N3= (r3, rZ(1 - Xx),  

r( l  - X8)2) . 
(b") . In case 3~ M\M2, the conclusion will follow if we prove that fl is 3- 

generated in R[i?lpZZ] , with p = 3 . We note that: 

where C(x, y )  := (:) , and x and y are integers with x > 0 and y 2 0. 

- ( 1  - x8)3( ~f c@2, i ) ( l  - x8)(i - 3)x(p2 - 1 +1)8 , 

hence p2(1 - X8)e @(l  - X8)2, ( 1  - Xb)3), because p divides C@2, i )  , for i 2 2 . 
Since p c M\M2 , i. e. @) = M = ( r )  , we have rZ(1 - X8) E (r(1 - Xg)2, (1 - X8)3) . 
Then IP = (r3, r( l  - X8)2, ( 1  - X8)3) . 

(2) Case p > 3 . (a) . 
By [OV, Proposition 3.51 we have that G is a cyclic group (i. e. (a)) and, when 

W # 0, then G = ZlpiZ with i  2 2 (i. e. part of (b)). 
We show that R[Zlp2Z]  does not have the 3-generator property when pe IW. 
By contradiction suppose that p e  M2 and that the ideal fl = (r3, rz(l  - Xg), 

r(l - X8)2, (1  - Xq3)  is 3-generated in R [ Z l p 2 Z ]  . We know that in this case N) can 

be generated by 3 elements chosen among the elements of the given set generators of fl. 
Since flit 0 and the order of g is strictly bigger than 3, then, it is clear that r3 and 

( 1  - X8)3 must appear in a minimal set of generators of N) . 
If rZ(1 - X8)e (6, r(1 - X8)2, ( 1  - X8)3) , then, by passing to the homornorphic 

image onto (Rl(r3))[Zlp2iZ] , in this ring we have rZ(1 - Xg) = P(1 - X8)2 where 

PE (Rl(r3))[Zlp2Z] . By Lemma 1.4, we have r2 =p2A for some I c  Rl(r3) . Since 

p l M2, we have r2 = 0 in Rl(r3) i. e. @ =  M3 in R : a contradiction. 

Since we are supposing that N3 is 3-generated, then the previous argument 
shows that N3 = (r3, r2(1 - Xb), ( 1  - Xb)3) , i, e. r( l  - X 8 ) 2 ~  N3 ,  by passing to the 

homomophic image onto (Rl(r2))[Zlp2Z] , in this ring we have r( l  - X Z ) ~  = a(l - X E ) ~ ,  
where a e  (R l ( r z ) ) [Z lp2Z]  . By Lemma 1.7, we have r =pZI , for some I c  Rl(r2) , 
whence r = 0 in (RI(r2)). i. e. M = in R : a contradiction. 

The previous argument shows that, if p~ M2,  then fl is not generated by 3 

elements, hence R [ Z l p 2 Z ]  does not have the 3-generator property. 
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In order to complete the proof of part (b) , we assume p~ @. We show that 

R[ZlpZ] does not have the 3-generator propcny. 

With the same argument as before. we can conclude that r3 and (1 - X X ) ~  must 

appear in a minimal set of 3 generators of fl= (r3, r2(1 - Xg), r(l - Xg)2, (1 - XxI3) . 
If r2(1 - X ~ ) E  ( 9 ,  r ( l  - X8)2, (1 - X X ) ~ )  then, by passing to the homomophic 

image onto (Rl(r3))[ZlpZ] , in this ring we have r2(1 - Xs) = a ( l  - Xg)2 , with 

a €  (Rl(r3))[ZlpZ]. Since pe M3, by Lemma 1.4 we have r2 = 0 in ~ l ( r ~ )  , i. e. 

M2 = IW : a contradiction. 
If r(l  - X K ) ~ E  ( 9 ,  rZ(1 - Xg), (1 - Xg)3) , then, by passing to the homomophic 

image onto (Rl(r2))[ZlpZ] , in this ring we have r ( l  - Xg)* = b( l  - Xg)3 with 

b~ (Rl(r2))[ZlpZ] . By Lemma 1.7, we have r =pA for some Rl(rZ) and since 

p~ IW, then we reach a contradiction. 
In conclusion, when p~ M3. fl is not 3-generated, consequently R[ZlpZ]  

does not have the 3-generator property. 
(2) Case: p > 3 .  (+=). 

(a)  . Assume that G is a cyclic group. Since R[G] is a local ring with 
maximal ideal N := (r, 1 - Xg) where r generates M and G = <g) [G2, Theorem 

19.1 and Corollary 19.21 then, by Lemma 1.5, it suffices to prove that N ,  fl and fl 

11 is clear that N ,  fl and fl are 3-generated when M3 = 0 

(b) . Suppose M3 f 0. 
(b") . With the same argument as for the case p = 3 , we prove that R[Zlp2Z] 

has the 3-generator property, when p~ M\MZ. 
(b') . Suppose that p~ M2\@. In this case, M2 = ( 6 )  = @) , i. e. p = ur2 

where u is a unit of R . We need to prove that fl is 3-generated in R[ZlpZ] . We 

note : 

Proof of the Theorem: (A) and  (B). 
If R is an Artinian principal ideal ring, then R = Ri @ ... @ R, + where each 

(R,, Mj) is a local Artinian principal ideal ring [J ,  Vol. 11, Theorem 7.151. It is easy to 
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see that R[G] has the n-generator property if and only if each R,[G] has the n-generator 

property. 
(A) . If R, is a field then it  suffices to apply Proposition 1.2 (and Remark 1.1 

(1)). 
(B) . Assume that Rj is not a field. It is proved in [G2, Theorem 19.151 that 

Rj[G] is a principal ideal ring if R, is a principal ideal ring and the order of G is a unit 

in Rj. Therefore, we can suppose that there exists a local Artinian principal ideal ring 

Rj in which the order of G is not a unit. For simplicity, we denote (R,. Mj) by 

(R, M I .  
Since the order of G is not a unit in R , then 

Ord(G) = pflp';'...pye M , where pi is a prime integer. 

Therefore, there exists p~ (p l ,  p2, ... , p,) such that pe M, whence p is the 

characteristic of R/M. Let G = Gp @ H ,  where H is a finite group and pkOrd(H) . 
(a) . If R[G] has the 3-generator property, then its homomorphic image 

R[Gp] does also. Now, it suffices to apply Propositions 1.3 and 1.6. 
(*) . For the case G = Gp , it suffices to apply Propositions 1.3 and 1.6. For 

the general case, R[G] = R[H][Gp] . We notice that R[H] is an Artinian ring [G2, 
Theorem 20.71. Since the order of H is a unit in R , then R[H] = A 1 @ ... @ Aq 

where each (Ai, N i )  is a local Artinian principal ideal ring, 1 I i l q . [G2, Theorem 

19.151. Furthermore, MR[H] is equal to the nilradical of R[W by [G2, Corollary 
9.181. 

We claim that, for k 2 2 , Mk = 0 implies that N! = 0 ,  for each i . 
As a matter of fact, for k = 2 ,  let z e  ~f then, without loss of generality, 

z = xy where x, y e  Ni = Nil(A;) (A, is an Artinian ring). Henceforth, there exists 

n > 0 such that xn = yn = 0, thus (0, ... . 0, x ,  0, ... , O), (0, ... , 0, y, 0, ... . 0 ) e  

Nil(R[H]). We conclude that (0, ... , 0, xy, 0, ... . 0 ) s  (Nil(R[H])Z) = (MR[H])Z = 

@R[w = 0 .  then z = xy = 0 . A similar argument applies for k 2 3 . 
Therefore for each i , Ai[Gp] has the 3-generator property by Propositions 1.2, 

1.3, and 1.6. Hence R[G] has the 3-generator property. W 

2. The coefficient ring of R[G]  has the 2-generator property 

Let G be a finite ahclian group and R a commutative ring. In this section we 

assume that the coefficient ring R of the group ring R[G] has the 2-generator property. 

We will show the statement (C) of the Theorem. 
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Proposition 2.1. Let p be a prime integer and G a non-trivial finite p-group. 

Assume that (R, M) is an Artiniun locul ring with the 2-generatorproperry, but R is not 
a principal ideal ring, and that p G M . Then R [ q  has the 3-generator property if and 

only if 
(i) Case: p = 2 , 

(a) G is a cyclic group mnd M2 is a principul ideal; moreover, 

(b) when M2 f 0 .  then G = 2/22? . 
(ii) Case: p 2 3 , 

(a) G is u cyclic grorlp and h& is a principul ideal; moreover, 
(b) when M2 f 0, then G = Z l p Z  und M2 c ( p )  c M . 

P r o o f .  
(*) . Since (R. M) has the 2-generator property but it is not a principal ideal 

ring, then M = (u, v) , with u, v E R , is not a principal ideal [Gl ,  Ex. 8, p. 331. 
If G = Z l p Z @ Z / p Z  , then it is easy to see that the maximal ideal N of R[G] 

is minimally generated by 4 elements; more precisely. N = (u, v, 1 - Xg. 1 - Xh), 
where < g >  @< h > = Z l p Z  @ Z l p Z  (cf. also [G2, proof of Theorem 19.11). The 

previous argument shows that G is a cyclic group, for each p Z 2 . 
Let G = ZlpiZ , i 2 1 , and let g be a generator of G . 
Since h@ = ( ~ 2 ,  v2, IN) is 2-generated, if IW is not principal, then we can find 

a minimal set of two generators of M2 , extracted from the given set ( ~ 2 ,  v2, UV) . 
Therefore we can assume either M2 = (u2, v2) or fl = (u2, uv) , since u, v have the 
same role. For simplicity, we write W = ((I, b) where a = u2 and b e  (v2, uv) . 

Since R[G] has the 3-generator property and G is cyclic, by passing to a 

quotient group, we can assume that R[ZlpZ] has the 3-generator property. 

Let N = (11, v, (1 - Xg)) he the maximal ideal of R [ Z I p Z ]  , with < g >  = 
Z l p Z ,  then N2 = (a, b, u(1 - Xg), v(1 - Xg), (1 - XX)*) . Since R[< g >]  has the 3- 

generator property, then N2 possedes a minimal set of 3 generators extracted from the 

given one. 
If a does not appear in a minimal set of generators, then 
a = & + p ~ ( l - X ~ ) + y v ( l - X g ) + & 1 - x 8 ) ~  where a . p , y . & R [ < g > ] .  

By applying the augmentation map, we have a c  (b) in R : a contradiction. 

The argument for b is similar. Then a and b must appear in a minimal set of 3 
generators of NZ . 

(i) : Case: p = 2 . 
(a) . Assume that fl= (a, b) is not principal. We have 

(1 - X X ) ~  = 2(1 - X ~ ) E  ( ~ ( 1  - xa), ~ ( i  - xg)) , 
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1272 AMEZIANE HASSANI, FONTANA, AND KABBAJ 

because 2€ M = (u, v )  . Then, it is easy to see that @ = (a, b, u(1 - Xg), v ( l  - Xf)) . 
If NZ = (a ,  b, v( l  - Xx)) then. passing to the quotient ring modulo vR[G] , we 

obtain u(1 - X f )  = Au2 , where AE (RI(v))[G]  . Since (RI (v ) ) [G]  is a free Rl(v)- 

module, then necessarly we have U E  ( r r 2 )  in Rl(v) , hence u = 0 in Rl(v) . This fact 

implies that M = (u, v) = ( v )  : a contradiction. 

If NZ = (a ,  b, u( l  - Xg)) then, passing to the quotient ring modulo uR[G] . we 
obtain v ( l  - X8) = 0 or v ( l  - X ~ ) E  (v2) in ( R l ( u ) ) [ G ]  , according to b = uv or 

b = v2 .  Since (RI(u))[G]  is a free Rl(u)-module, in both cases we have v = 0 in 

Rl(u) , whence M = (u, v )  = ( r r )  : a contradiction. 

In conclusion, i f  p = 2 ,  then I!& is principal. 

( i i )  : Case: p 1 3  . 
(a) . Since the order of g is strictly bigger than 2 , it is clear that (1 - Xf)l 

must appear in a minimal set of 3 generators extracted from the given set of generators 

of fl . Therefore, if R[G] has the 3-generator property then 

= ( a ,  b ,  (1 - X X ) ~ )  . 
Since u(l  - X ~ ) E  N2 then, passing to the quotient ring modulo h@, we obtain 

that u(1 - X f )  = c(1 - X X ) ~ ,  where ce (RIM2)[G] . By Lemma 1.5, in R/M2 we have 

u = Ap for some AE (WM2) . This forces pc M w  and to be invertible in R / f l .  
As a matter of fact, if u = 0 in R/h@ then u s  fl = (a, b) . In this case, it is easy to 

see that M =(u,  v )  = ( ~ 2 ,  v )  = (u3 ,  V )  = ... = ( v )  , since R is an  Artinian ring. 

Therefore, we contradict the fact that M is not a principal ideal. 

The previous argument shows that (u) = (p) in RhP 
In a similar way, we can prove that ( v )  = (p) in WW. Therefore (u )  = ( v )  in 

the quotient ring R/M2, thus u = a v  + + @ with a, 0, YE R . This fact implies 

that M = ( u .  V )  = ( ~ 2 ,  v )  = ( u 3 ,  v )  = ... = ( v )  , since R is  an Artinian ring: a 

contradiction. 

The previous argument shows in both cases ( ( i )  and ( i i ) )  that @ is a principal 

ideal. 

( b ) .  Now. we want to prove that if M 2  # 0 then, for every prime p . 
R[Zlp2Z]  does not have the 3-generator property. 

Let M2= (a)  , 'Qlp2Z = < g >  and let N = (u,  v .  (1 - Xg)) be the maximal 

ideal of R [ Z l p 2 Z ]  . By contradiction, assume that R [ Z l p 2 Z ]  has the 3-generator 
property. In particular, the ideal NZ = (a, u(1 - Xg) ,  v ( l  - X f ) ,  (1 - Xg)l) possesses a 

minimal set of 3 generators, extracted from the original set of generators. 
Since fl f 0 and the order of g is strictly bigger than 2 , it is clear that a 

and (1 - X g ) 2  must appear in a minimal set of 3 generators. 
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If N 2 =  ( a ,  u(1 - X8), (1 - X8)Z) then, passing to the quotient ring modulo 

( a ,  u ) R [ < ~ > ]  , we have v(l - X8) = t ( l  - X X ) ~  where t~ (R l (a ,  u ) ) [ < g > ]  . B y  
Lemma 1.5, in Rl(a,  u) we have v =p2A,  for some AE (Rl(a, u)) . Since p2e M2 
= ( a )  , then v = 0 in R l (a ,  u) . Therefore (u, v) = (u, a )  , and this implies that 

(u. v) = (u) , because R is an Artinian ring: a contradiction. 
With a similar argument, we may prove that NZ contains properly (a, v(l  - Xg), 

(1 - x q 2 )  . 
In conclusion, we proved that, if M 2  f 0 .  R[ZlpZZ]  does not have the 

3-generator property, for each p . 
In order to conclude the proof of (b) in case (ii) , we start to prove 

Claim 1: R [ Z l p Z ]  does not have the 3 generator property, when M 2  # 0 , 

p~ M2 and p 2 3 .  

By contradiction, we can assume that, fl= ( a ,  u(1 - Xg), v(l - Xt), (1 - X E ) ~ )  

is 3-generated, having a set of 3 generators extracted from the given one. 
If u(1 - X ~ ) E  (a, v(l  - Xg), (1 - Xg)*) then. by passing to the homomorphic 

image onto (Rl(a, v) ) [ZlpZ]  and by using Lemma 1.5, we have U E  (v, a )  , since 

pe @= ( a )  . Therefore (u, v) = (v, a )  = (v) : a contradiction. 

Since u and v have the same role, we may conclude that u(1 - Xg) and 

v(l - Xt) must appear in a minimal set of 3 generators extracted from the original set of 

generators of N2. 
As fl# 0 and the order of g is strictly bigger than 2 , it is clear that also a 

and (1 - Xg)2 must appear in a minimal set of 3 generators of hQ : a contradiction. 

In conclusion, we proved that R[ZlpZ]  does not have the 3-generator property, 
when h@ # 0 and pc MZ 

Claim 2: Assume that M2 # 0 and R [ Z l p Z ]  has the 3-generator property. 
then @ c @ ) c M .  

W e  know (Claim 1) that, in this situation, p E M\M i. e. p = cu + dv where c 

or d is a unit in R . Therefore M = @, u )  (respectively, M = @, v) ) if d 

(respectively, c ) is a unit in R . Since in a local Nwtherian ring every set of generators 
contains a minimal set of generators [N, (5.3). p. 141. then we may assume @ = (a) . 
where ae (p2, pno. $) and a0 = u (respectively, ao = v ) if d (respectively, c ) is  a 

unit in R . 
W e  can assume that M = (a;) , otherwise the conclusion is obvious. W e  note 

that: 
N = (u, v, (1 - Xg) and fl= (a;, u(1 - Xg), v(l - XX), (1 - Xg)2) . 

Moreover: 
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1 = (1 - x8 + x8)P = xP6  + p ( l  - x8)x@.l)8 + 
+ (I - x6)2(C: C@, i)(l - X#)i-ZX@- ik )  . 

Since Ord(<g )) = p, then 

(CU + dv)(l - Xs) = p ( l  - X6) = - ( I  - ~ 8 ) 2 ( C :  C@, i)(l  - X Z ) ~ - ~ X @ - J +  l)g) . 
If d is a unit in R , we have : 

v(I - Xs) = - d-lcu(1 - X6) - ( I  - ~ 8 ) 2 ( C ;  d-lC@, i)(l - Xg)~-2X@-i+l)g) . 
If c is a unit in R . we have: 

u( l  - ~ 6 )  = - c - l d v ( ~  - ~ s )  - ( I  - X~)Z(  C; C-~C(P. i ) ( l  - X B ) J - ~ X @ - ~ + ~ ) B )  . 
Therefore, N2= ((16, u(1  - Xg), (1 - X8)2) , if d is  a unit in R or N2= (a;, 

v(l - Xg), (1 - X X ) ~ ) ,  if c is a unit in R . 
Assume that d is a unit in R. In this situation a0 = u , therefore: 

N3 = NZN = (u2, u ( l  - X8), (1 - X8)2)(u, V ,  (1 - Xd)) = 
= ( ~ 3 ,  ~ ( 1  - x q ,  ~ ( 1  - XV, (1 - x q 3 )  

because we proved above that v(l - X6)e (u(1 - X8). (1 - X8)2) , that v e  @, u)  and 

that p u e  MZ = (u2) . whence u2ve (pu2, u3) = (143) . 

If u( l  - X8)2 is redundant then, by passing to the homornorphic image onto 
(R/(u2))[ZlpZ] and by applying Lemma 1.8, we have u = Ap for some A e  R442) . 
If AE M / M ,  then we have u e  MZ whence M  = (u, v) = (1.42, v )  = (v) : a contradiction 

(because M  is not a principal ideal). Therefore A is a unit in R/@. Consequently, 

since W = (uZ) , then 
p = flu +wu2 for some W E  R and P E  R such that P + MZ = A-1, 

whence M = (u, p )  = (u) : a contradiction. The previous argument shows that 

u( l  - X8)2 must appear in a minimal set of generators of #. 
Claim 2, case 1: Assume M3 z 0 . 
It is clear that u3 must appear in a minimal set of generators of N3 . 
Moreover, for p > 3 . it is easy to see that also ( I  - Xa)3 must appear in a 

minimal set of generators of N3 . 
For p = 3 . we know that (1 - X6)3 = -3Xa( l  - Xa). If (1 - X 8 ) 3 ~  ( ~ 3 ,  

u2(1 - Xg), u(1 - Xg)2) , then 3(1 - X6)e u R [ Z / 3 Z ]  . Since R [ Z / 3 Z ]  is  a free 

R-module, we have 3 6  (u), whence M = (u, 3) = (u) : a contradiction. 

The previous argument shows that if d is a unit in R , then N3 = (u3, 
u ( l  - XgI2, (1 - X6)3) . Since u2(1 - X8)e fl then, by passing to  the homomorphic 

image onto (Rl(u3))[ZlpZ] and by using the Lemma 1.5, in Rl(u3) w e  have u2 = Ap 
for some he  Rl(u3) . Therefore, u 2 ~  (y, u3) , hence @, u2) = @, u3) = ... = @) , 

because R is an Artinian ring. Whence u2e @), thus MZ C @) . 
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Claim 2, case 2: Assume M3 = 0 .  
We suppose, by contradiction, that W = (uz) Q @) . Since p2e M2 = ( ~ 2 ) .  

then there exists an element a E M such that p2 = au2 = 0 (because M2 Q @) and 
M3 = 0 ) . Moreover, pu E W = (u2) , thus there exists b e  M such that pu = bu2 = 0 

(because MZ Q @) and @ =  0 ) . Therefore p2 = pu = 0. 
Let I : = @ + @ ) .  
Since d is a unit. we proved already that @= (u2, u(1 - Xf), (1 - X K ) ~ )  , thus 

I = @, 442, u(1 - XX). (1 - X X ) ~  . 
Weclaim that p(I) = 4 .  

Assume that p(1) 1 3 . Since the order of g is strictly bigger than 2 , it is 

clear that (1 - X X ) ~  must appear in a party of 3 generators (extracted from the original set 

of generators) of the ideal I .  
Suppose that p (respectively, u2)  is redundant then p e  (u2, u(1 - Xf), 

(1 - Xf)z) (respectively, U ~ E  (p, u(1 - XX), (1 - Xf)2) ) . By applying the augmentation 

map R[G] 4 R we have p E (u2) = M2 (respectively, M2 = ( ~ 2 )  c @) ) . This is 

absurd because p e  M \ W  (respectively, MZ Q @) ) . Therefore p and u2 must 

appear in a party of 3 generators (extracted from the original set of generators) of the 

ideal I. 
Therefore u(l - Xf) E (p, u2. (1 - Xf)Z) . After passing to the quotient ring 

modulo (p, u2)R[G] , we obtain in ( R  I @ ,  $))[GI that u(1 - Xf) = A(1 - XB)~)  where 

Ac R I @ ,  uZ))[G] . By Lemma 1.5, in R I @ ,  u2) . we have u = p p  for some 

p E R I @ ,  u2) . Therefore in the ring R , u l (p. u2) , whence @, u) = (p, u2) = 

@, u3) = ... = @) . This is absurd, because M = @, u) is not principal. We conclude 

that MZ c @) . .. We recall that if c is a unit in R . then a0 = v , M2 = (v2) and N = (v2, 
v(l - Xf), (1 - XX)2) . Mututis ntumndis, by a similar argument as before we can prove 

that MZ C @) . 
(*) . In the present situation, we know that R[G] is a local ring with maximal 

ideal N = (u, v, 1 - XX) where u and v are the generators of M and g is a generator 

of the cyclic group G [G2, Theorem 19.21. 

Step I :  We claim that N . NZ and N3 are 3-generated. 
If W = (a)  . then 

Nr = (a, u(1 - x q ,  v(1 - Xf), (1 - X8)2) 

NJ = (au,  a ( l  - Xs), u(l - Xs)2, v(1 - X8)2, (1 - Xf)3) . 
It is clear that N , NZ and are 3-generated, if @ =  0 . 
Assume M2 # 0 , hence G = ZIpZ . 
(i) : Case: p = 2 . 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
6
 
7
 
J
a
n
u
a
r
y
 
2
0
1
0



1276 AMEZIANE HASSANI, FONTANA. AND KABBAJ 

We note that ( I  - X8)z = 2(1 - X&)E ( ~ ( 1  - Xl).  v ( l  - Xg)) , hecause 2 6  M = 

( u ,  V )  . Therefore, N2 = ( a ,  r r ( 1  - XX), v( l  - Xg)) and N3 = ( a u ,  a(1 - Xg)) , thus 

N.  NZ and Nf are 3-generated. 

( i i )  : Case: p 1 3 . 
Since y E M\M2 then p = cu + d v .  where c or d is a unit in R . . We may assume that d is a unit in R . By an argument used above, we can 

prove that v ( l  - X ~ ) E  ( ~ ( 1  - XA'), ( 1  - X I I ) ~ )  , whence Nz = ( a ,  u ( l  - Xg), ( 1  - Xg)Z) 

is 3-generated. Moreover, N3 = (atc, a ( l  - Xg), u( l  - X Z ) ~ ,  (1  - X8)3) . 
By hypothesis, M2 = (a) c (p) c M .  By a routine argument, we can prove that 

p( l  - X X )  = - ( 1  - X # ) ~ ( C :  C(P, i)(l - X ~ ) l - 2 X @ - ' + l ) ~ )  . 
Since PIC@, i )  , for i = 2 ,  ....., p - 1, then p(1 - Xg) = pA(l - XgIz - Xs(l - Xg)p for 

some AE R[G] .  From the fact that MZ c @) c M = (u ,  v)  , we deduce that : 

a(1 - X ~ ) E  @ ( l  - X8)2, ( 1  - Xg)3) (u(1 - Xg)2, v(1 - X Z ) ~ ,  (1 - X X ) ~ )  . 

Moreover, since we are assuming that d is a unit of R, we already observed 
that v(1 - X ~ ) E  ( ~ ( 1  - Xg), (1  - X X ) ~ )  . Hence. a ( l  - X ~ ) E  ( ~ ( 1  - Xg)Z, ( 1  - X X ) ~ )  , 

thus N3 = ( a u ,  u(1 - Xg)2, ( 1  - X8)3) is 3-generated. .. If c is a unit in R , then rnututis rnutundis we can prove that f l  and Nf are 

3-generated. 

Step 2 : Let I be an ideal of R[C]  , we claim that I is 3-generated. 

By [Shl. Corollary 4. 2.11, it suffices to consider the case where I a NZ . 
Let x e  I\@. then 

(2 .1 .1)  p  ( N / ( x ) )  = p ( N )  - 1 = 2 [ K .  Theorem 1591. 

We claim that: 
(2.1.2) P ( W J ( X ) ) ~ )  5 2 . 

Since N = (u ,  v. 1 - Xg) and p ( N / ( x ) )  = 2 , then 

N = (u ,  v,  x )  or N = (u ,  x ,  1 - Xg) or N = ( v ,  X ,  1  - Xg) . 
+ Assume M 2  = 0 .  
If N = (u ,  v. X )  then ( N / ( X ) ) ~  = (0) , thus p((NI(x))Z)  S 2 . 
If N = (u ,  x, 1 - Xs) . then in the ring R[G]IxR[C] we have: 

( N ~ ( X ) ) ~  = ((1 - ~ g ) ' ,  'G) 
thus p( ( N / ( x ) ) ~ )  < 2 . 

The argument for N = (v ,  x ,  1 - Xs) is similar. 

+ Assume M2 # 0 .  

(i) : Case: p = 2 . 
If N = (u,  V ,  X )  , then in the ring R[G]lxR[G] it is trivial that --- 

N I ( X )  = ( u, ;) ( N I ( X ) ) ~  = ( U 2 .  U v  , v 2 )  = ( a )  
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I f  N = (u,  X ,  1 - X I )  , then it is easy to see that -- 
(N/(x) )z  = ( ~ 2  + ( X I ) / ( ~ )  = (a .  ~ ( 1  - X I ) ,  ~ ( 1  - X I ) )  

Since V E  N ,  then there exist A, p, ye R[G] such that 

I f  y  is a unit in R[G] , then ( 1  - XI) = y -1v - y - l L  - y -1p , thus 

v(l  - X I )  = y-'v2 - y-IAuv - y -1pvx 

whence (Nl(x))Z= (a) and, obviously. p((NI(x))Z) I 2  . 
I f  y  is not a unit in RIG] , since by hypothesis 2 E M = ( u ,  v ) ,  then 

2 = cu + dv . with c. d in R . 
From (2.1.3) we have: 

~ ( 1  -Xg )  = A u ( ~  - x x ) + p ( l  - ~ 8 ) + ' ) ( 1  -xS12= 

=h ( 1  - X g )  + w ( l  - X8) + 23(1 - X 8 ) -  

= h ( 1  - X K ) + w ( l  - X S ) + ' ) ( c u + d v ) ( l  - X I )  

thus 
( 1  - M v ( l  - X I )  = (A  + .)r)(u(l - X8)) + p ( l  - XS). 

Since ( 1  - yf) is a unit in R[G] , because R[C] is a local ring and y is not a unit in - - 
R[G] , then. in the ring R[G]IxR[G] , v(1- Xg) E ( ~ ( 1 -  ~ 8 ) )  . Therefore 

(Nl(x))Z = (z, u(1 - X g ) )  
hence p ((Nl(x))2) 1 2 . 

The argument for N = (v, x. 1 - X8) is similar. 

(ii) : Case: p 2 3 . 
Let p = cu + dv. 

We assume that d is a unit in R . since c or d is a unit in R . 
In this situation N = (u, v, 1 - X8) = (u,p.  1 - Xs) . Since p(Nl(x)) = 2 , then 

N = ( u , p , x )  or N = @ , x ,  1 -Xa)  or N = ( u , x ,  1 - X 8 ) .  - - - 
If N = (u,  p, x )  . then obviously (Nl(x))2 = (i, i ) 2  = ( U 2 ,  p2, u p )  = ( a ) ,  

hus p((NI(x))2) 1 2  . - -  
If N = @. x ,  1 - XI) then, in the ring R[G]lxR[G] , N / ( x )  = ( p ,  ( 1  - X 8 ) )  -- 

and ( N / ( x ) ) ~  = ( P 2 ,  p(l - X I ) ,  ( 1  - ~ 8 ) ~ )  = (7, ( 1  - ~ 8 ) ~ )  because we have 

already shown that p(l - Xa) E ( 1  - Xx)ZR[G] . Therefore, also in this case, 

P ( ( N I ( X ) ) ~ )  5 2 . 
I f  N = (u ,  x. 1 - XE) , then it is easy to see that ( N ~ ( x ) ) ~  = ( a ,  u(1 - X I ) ,  

(1 - ~ 8 ) ~ )  . Since p E N , then 
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Assume that (R, M) has thc 2-generator property hut it is not a principal ideal 

ring. Since the order of C  is not a unit in R  , then 
Ord(G) = p;'p;l...p:'~ M . whcre pi is a prime integer. 

Thercfore, thcre exists p~ ( p l ,  p 2 .  ... , p,)  such that p~ M ,  whence p is the 

characteristic of R/M . Let G  = C,@H , whc~l: H is a finite group and pkOrd(H). 

(a). If R [ C ]  has the 3-gcncrator property, then the homomorphic image 

R[Gp] does also, whence the conclusion follows from Proposition 2.1. 

(c=). For the case G = Gp . it suCfices to apply Proposition 2.1. For the 

general case C  = G p  @ H , then R[G] = R [ H ] [ G p ]  . We notice that R[H] is an 

Artinian ring [G2. Theorem 20.71. Since the order of H is a unit in R  . then R[H] has 

the 2-generator property [OV, Proposition 4.51 thus R[N = A ,  &, ... @ A ,  where each 

( A , ,  N,) is a local Artinian ring with the 2-generator property, I 2 i 5 q . Furthermore, 

MR[W is equal to the nilradical of R[H] [G2, Corollary 9.181. 
We know that, when k 1 2 ,  M". 0 implies ~f = O for each i (cf. the proof 

of (A) and (B)). Therefore, for each i , A,[Gp ] has the 3-generator property by 

Remark 1.1 and Propositions 1.2, 1.3, 1.6 and 2.1 . Hence R [ C ]  has the 3-generator 

property. W 
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