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INTRODUCTION

" #In his first paper on abelian groups W , R. B. Warfield developed a1
duality theory for the class of torsionfree abelian groups of finite rank. He
showed that, given a subgroup A of the additive group ! of the rational

Ž .numbers, the functor Hom $, A defines a duality of the class of locally"

Ž .free End A -modules of finite rank into itself."

Let us denote by " the canonical homomorphism of an abelian groupG
Ž Ž . . Ž .G into its bidual Hom Hom G, A , A and by E the ring End G % !." " G "

" #Then Warfield duality relies on the fact W , Theorem 2 that a torsionfree1
Ž .group of finite rank G is A-reflexive i.e., " is bijective if and only if GG

Ž . Ž . Ž . Ž Ž .is locally free as an E -module, E & End A , and Ot G ' t A Ot GG G "

Ž . " # " #.is the outer type of G, t A is the type of A, see W or A .1
ŽNotice that an A-reflexive group G is obviously A-torsionless i.e., "G

. Ž .is injective and satisfies the condition E ( End A . The conditionG "

Ž . Ž . "Ot G ' t A is equivalent to the fact that G is A-torsionless W , Propo-1
# Ž .sition 3 and it implies that E ' End A ; moreover the additionalG "

Ž .condition E & End A ensures that G is a locally free E -moduleG " G
" #A, Theorem 1.15 . Hence Warfield duality can be rephrased in the fol-
lowing way: given any subgroup A of !, a torsionfree abelian group G is

Ž . ŽA-reflexive if and only if it is A-torsionless and E ( End A i.e., it isG "

Ž . .an End A -module ."

It is worthwhile to remark that the implication, G is A-torsionless
Ž .implies E ' End A , is typical in the context of abelian groups andG "

Ž " #.holds for Dedekind domains see Goe but not in a more general setting.

* Lavoro eseguito con il contributo de MURST, nell’ambito dei gruppi di recerca del CNR.
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" #Recently, J. Reid R tried to extend Warfield duality to modules over1
" # " #commutative integral domains. From his own R and Lady’s L results,2

he noted that Warfield duality holds for Dedekind domains. Moreover, he
proved a remarkable result: Warfield duality holds for integral domains R
satisfying the following two conditions for any fixed R-submodule A of Q
Ž .Q denotes the field of quotient of R :

Ž . Ž . Ž .1 Given a submodule X of A with End X & End A , theR R
induced homomorphism

Hom X , Q ! t Hom X , Q)AŽ . Ž .R R

Ž .is surjective t denotes the torsion functor .
Ž . Ž . Ž .2 All submodules X of A with End X & End A are A-R R

reflexive.

Ž . 1 Ž .Notice that condition 1 is equivalent to saying that Ext X, A isR
Ž .torsionfree as an R-module. Remark that the assumption End X &R

Ž .End A is too strong, since, over arbitrary domains, the class of A-tor-R
sionless modules satisfying this assumption is not closed under direct
summands, as we will see from an example in Section 3, and must be

Ž . Ž .substituted by the weaker assumption End X ( End A , i.e., X is anR R
Ž .End A -module.R

At this point it is convenient to introduce the following definition:

DEFINITION. A commutative integral domain R is called a Warfield
domain if, given any R-submodule A of the field of quotients Q of R, all

Ž .A-torsionless End A -modules of finite rank are A-reflexive.R

Ž . Ž .Reid wondered whether conditions 1 and 2 characterize Dedekind
domains; in the above terminology Reid’s question asks whether Warfield
domains are Dedekind domains. It is easy to find non-noetherian valuation
domains which are Warfield domains. Hence we reformulate Reid’s ques-
tion as follows: characterize Warfield domains.

In order to reach this characterization, Reid’s conditions for the selected
submodule A of Q have to be modified as follows:

Ž . Ž . 1 Ž .1# Given any End A -submodule X of A, Ext X, A is a tor-R E
Ž .sionfree E-module, where E & End A .R

Ž . Ž .2# All End A -submodules X of A are A-reflexive.R

Ž .The relevant modification added in condition 1# , namely the hypothesis
1 Ž . 1 Ž .that Ext X, A $and not Ext X, A $is torsionfree, is unavoidable; inE R

" #fact an example, appearing in Goeters’ paper Goe , shows that there exists
1 Ž .a Warfield domain R such that Ext X, A has a non-trivial torsionR

submodule.
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A partial answer to the above question was given very recently by
" #Goeters Goe , who restricted his investigation to the case of noetherian

domains R whose integral closure is a finitely generated R-module. By
" #using a famous result by H. Bass Ba , Goeters proved that such a

noetherian domain R is a Warfield domain if and only if every ideal of R
can be generated by two elements.

The aim of this paper is to investigate Warfield domains in the general
setting of integral domains. They are strictly connected with the reflexive

" # " #and divisorial domains studied by E. Matlis M and W. Heinzer H .1
ŽRecall that an integral domain is said to be reflexive respectively diviso-

. Žrial if all torsionless modules of finite rank respectively all fractional
. Žideals are reflexive in the above terminology, ‘‘torsionless’’ and ‘‘re-

.flexive’’ mean, respectively, R-torsionless and R-reflexive .
In fact, some results of this paper can be viewed as generalizations and

" #improvements of Matlis’ and Heinzer’s results in M , H .1

After some preliminary results in Section 1, in Section 2 we prove a
crucial result concerning the torsionfreeness of some modules of exten-
sions of two rank one modules over h-local domains.

In Section 3 we characterize A-reflexive domains by proving that they
Ž . Ž .are exactly the domains satisfying the two conditions 1# and 2# for the

fixed submodule A of Q.
Section 3 shows also that A-reflexivity is a property combining two

different features: the first one is A-divisoriality, which is a typical prop-
erty of commutative ring and ideal theory; the second one, namely the
torsionfreeness of some modules of extensions, is a typical homological
property of module theory, which is connected with some ‘‘injective type’’
properties of the factor module Q)A.

In Section 4 we investigate A-divisorial domains, generalizing and im-
" #proving some results by Heinzer H . Then, fusing the results obtained in

this and in previous sections, we reduce the investigation of A-divisorial
and A-reflexive domains to the local case. As an easy consequence we
deduce that R is a Warfield domain if and only if all of its overrings are
h-local and every localization of R at a maximal ideal is a Warfield
domain. This seems to be a decisive step, in view of the difficulties arising
when dealing with the global case.

In Section 5, we continue the investigation of local divisorial domains
using the results on rings with a unique minimal overring obtained in
" #GH .1

Section 6 is devoted to the proof of one of the main results of the paper,
namely that the class of Warfield domains coincides with the class of
totally reflexive domains, i.e., of those domains whose overrings are all
reflexive. The proof is based on the analysis of the structure of the integral
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closure of a totally divisorial domain, i.e., a domain whose overrings are all
divisorial.

In Section 7 we extend Goeters’ results to arbitrary noetherian domains,
proving that a noetherian domain is a Warfield domain if and only if all its
ideals are two generated. Here we use the powerful Bass!Matlis character-

" #ization of noetherian domains with two generated ideals Ba, M .2
Moreover, we characterize integrally closed Warfield domains: they are

Žexactly those Prufer domains which are almost maximal in Brandal’s sense¨
" #. Ž " #.Br and strongly discrete as defined in FHP . Hence this class of Prufer¨
domains can be viewed as the most appropriate generalization of the ring
of the integers, in the present context.

The paper leaves the question of characterizing Warfield domains in the
non-noetherian non-integrally closed case open; an example of such a
domain is given at the end of the paper. The results obtained in Section 6
give a rather detailed description of properties of Warfield domains that
could lead to a satisfactory characterization also in the general case.

1. PRELIMINARIES

We always denote by R a commutative integral domain with identity,
and by Q its field of quotients. Max R denotes the set of the maximal
ideals of R.

By an overring of R we will mean a ring S such that R * S * Q. If X
and Y are R-submodules of Q, then X : Y denotes the R-submodule of Q,

" ! 4defined as q + Q qY ' X .
We will mainly deal with torsionfree R-modules. A torsionfree R-mod-

ule M has a rank, which is simply the Q-dimension of M , Q.R
Rank one torsionfree R-modules are isomorphic to R-submodules of Q.

If such a submodule A satisfies qA ' R for some 0 " q + Q, i.e., R : A "
0, then A is a fractional ideal of R.

A submodule N of a torsionfree R-module M is said to be pure in M if
M)N is torsionfree.

We will use the following two facts.

Ž . " ! 41 If M is a torsionfree R-module, then M & ! M P + Max R .P
Ž " # .The proof of this fact goes exactly as the proof of Theorem 4.10 in G .

Ž .2 If M and N are R-torsionfree modules which are also S-modules
Ž . Ž .for an overring S of R, then Hom M, N & Hom M, N .R S

An R-module B is bounded if rB & 0 for some 0 " r + R.
We introduce now the following definitions.
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Given a fixed R-submodule A of Q, an R-module M is said to be
Ž .A-reflexi!e respectively A-torsionless if the canonical homomorphism

" : M ! Hom Hom M , A , A ,Ž .Ž .M R R

Ž .Ž . Ž . Ž Ž ..defined by " m f & f m m + M, f + Hom M, A , is an isomor-M R
Ž .phism respectively a monomorphism .

Obviously A-reflexive modules are A-torsionless and A-torsionless
modules are torsionfree.

In order to adapt our terminology to the one used in the literature,
R-torsionless modules will be simply called ‘‘torsionless.’’

We shall make frequent use of the long exact sequences containing
n Ž . "the functors Hom and Ext n ( 1 ; for their properties we refer to FS,R R

#Cap. III .
Some examples in Sections 2 and 3 will deal with abelian groups; we just

recall that " and ! will denote the ring of the integers and the field of
rational numbers, respectively. Moreover, for the notion of type of a

" #torsionfree rank one group and connected facts, we refer to F .
We recall now some notions of commutative ring theory. A valuation

domain is a domain whose ideals are totally ordered by inclusion. A
valuation domain is almost maximal if every proper quotient is linearly

Žcompact. A Prufer domain is a domain whose localizations at maximal or¨
.prime ideals are valuation domains.

A local domain is a domain with exactly one maximal ideal and it is not
necessarily noetherian. A domain is h-local if every non-zero prime ideal is
contained in a unique maximal ideal and every non-zero ideal is contained
in finitely many maximal ideals.

We introduce the following definitions. If A is a fixed R-submodule of
Ž .Q, we say that the domain R is A-reflexi!e respectively A-di!isorial , if

Ž . Ž .every A-torsionless End A -module of finite rank resp. of rank one isR
A-reflexive.

To avoid trivial cases, we will always assume 0 " A " Q.
In order to adapt our terminology to the one used in the literature,

R-reflexive and R-divisorial domains will be simply called ‘‘reflexive’’ and
‘‘divisorial,’’ respectively.

Ž .Recall that an ideal I of the domain R is divisorial if I & R : R : I ;
thus, in our terminology, divisorial ideals are exactly the R-reflexive rank
one R-modules.

A Warfield domain is a domain R which is A-reflexive for all A ' Q.
Some more definitions of particular domains connected with Warfield
domains, as order reflexive and totally reflexive domains, will be intro-
duced later on.
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For unexplained terminology and notions of module theory and of
" # " #commutative rings we refer to FS and to the books by Gilmer G and

" #Kaplansky K .

2. PROPERTIES OF h-LOCAL DOMAINS

The main result of this section is Proposition 2.5, in which we prove that
over an h-local domain R, the module of extensions of two rank one
modules, one included in the other, is torsionfree if and only if the module
of extensions of the localizations of the two rank one modules is torsion-
free for every localization at a maximal ideal of R.

Ž " #.We will make use of the following well known result see Goe .
1 Ž .LEMMA 2.1. Gi!en two R-modules X and Y, Ext X, Y is torsionfree ifR

and only if , for e!ery 0 " r + R, e!ery homomorphism f : X ! Y)rY has a
lifting homomorphism g : X ! Y such that f & % " g, where % : Y ! Y)rY is
the canonical projection.

LEMMA 2.2. Let R be an h-local domain, X and A be torsionfree
1 Ž .R-modules such that Ext X, A is a torsionfree R-module. ThenR

1 Ž .Ext X , A is a torsionfree R -module, for e!ery M + Max R.R M M MM

Proof. In view of the isomorphism of R-modules

Ext1 X , A - Ext1 X , AŽ . Ž .R M M R MM

Ž " #. 1 Ž .see Bou, Chap. X, Sect. 6 , it is enough to prove that Ext X, A is aR M
torsionfree R-module for every M + Max R. Fix an M + Max R and
consider a homomorphism f : X ! A )rA , where we can assume r + M,M M
otherwise f & 0. There is a commutative diagram

% "

A)rAA

" &'A "%M "

A A )rAM M M

where % and % are the canonical projections, and & is the composite ofM
the localization map ' at M and of the canonical isomorphismA ) r A
Ž . Ž .A)rA - A )rA . Since R is h-local, A)rA - . A)rA , whereM M M NN
N + Max R, hence there is a homomorphism ( : A )rA ! A)rA suchM M

1 Ž .that & "( is the identity map of A )rA . Ext X, A is torsionfree,M M R
hence by Lemma 2.1, the homomorphism ( " f : X ! A)rA can be lifted
to a homomorphism h: X ! A such that % " h & ( " f. Then, setting g &
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' " h, we have that % " g & f ; in fact we have % " g & % " ' " h &A M M M A
& "% " h & & "( " f & f.

We have also the following lemma that we will often use in the sequel.

LEMMA 2.3. Let R be h-local and X ' A ' Q. Then, for e!ery M +
Ž .Max R, A : X & A : X .M M M

Ž .Proof. Since A & ! A , we have that A : X & ! A : X &N + Max R N N N
Ž . Ž . Ž . Ž .! A : X & ! A : X & A : X % ! A : X . There-N N N N N M M N " M N N

fore we have

A : X & A : X % A : X R . 1Ž . Ž . Ž . Ž .!M M M N N M
N"M

But X ' A implies X ' A for every N + Max R, hence A : X ( RN N N N N
for all N ’s. Thus we have

A : X R ( R R & QŽ .! !N N M N Mž /
N"M N"M

" # Ž . Ž .by M , Theorem 22 . Hence by 1 we deduce A : X & A : X .2 M M M

The following corollary is an immediate but very useful consequence.

COROLLARY 2.4. Let R be h-local and A a submodule of Q. Then, for
Ž .e!ery M + Max R, End A & End A .M M

We can now prove the converse of Lemma 2.2 under the hypothesis that
X ' A ' Q.

1 Ž .PROPOSITION 2.5. Let R be h-local and X ' A ' Q. Then Ext X, A isR
1 Ž .torsionfree if and only if Ext X , A is a torsionfree R -module, for allR M M MM

maximal ideals M + Max R.

1 Ž .Proof. By Lemma 2.2, it is enough to prove that Ext X, A is torsion-R
1 Ž .free assuming that Ext X, A is torsionfree for all maximal idealsR M

M + Max R. Let us consider a homomorphism f : X ! A)rA. By Lemma
2.1, we have to show that f lifts to a homomorphism g : X ! A such that
% " g & f , where % : A ! A)rA is the canonical projection. First, let us
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assume that r is contained in a unique maximal ideal M of R, so that
A)rA - A )rA . Consider the commutative diagram with exact rowsM M

)*" " "Ž . Ž . Ž .0 Hom X , rA Hom X , A Hom X , A)rAR R R

"" "ji -
+ ," " " "Ž . Ž . Ž .Hom X , rA0 Hom X , A Hom X , A )rA 0,R M R M R M M

where the vertical maps are the injections induced by the localizations at
the maximal ideal M of rA, A, and A)rA, respectively. Since , is
surjective, in order to prove that ) is surjective, it is enough to show that

Ž .Hom X, A & Im + / Im j, or equivalently that A : X & rA : X /R M M M
A : X. Since we are dealing with torsionfree modules, the above equality
holds if the localizations at every maximal ideal N of R of the two-hand

Ž .sides coincide. If N & M we have, by Lemma 2.3, A : X & A : XM M M M
and

rA : X / A : X & rA : X / A : X & A : X ;Ž .M M M M M M MM

" #if N " M then, again by Lemma 2.3 and by M , Theorem 19 , we have2
Ž .that A : X & Q : X & Q andM N N

rA : X / A : X & Q : X / A : X & Q.Ž .M N N NN

" 4Let us assume now that M , M , . . . , M is the set of the maximal ideals1 2 k

of R containing r, so that A)rA - .k A )rA . We have the follow-M Mi&1 i i

ing commutative diagram with exact rows,

) A*" " "

Ž . Ž .0 Hom X , rA Hom X , A Hom X ,R R R

""

ž /rA

"ji -

kk k
+ A, M i

" " " "

0 0,Hom X ,Ž . Ž .Hom X , rA Hom X , A . R. .R M R Mi i ž /rAMi&1i&1 i&1 i

where the vertical maps i and j are the diagonal homomorphisms induced
by the localizations of A and of rA at the M ’s.ik Ž .As before, it is enough to prove that . Hom X, A & Im + /R Mi&1 I

Ž .Im j. Since all modules are torsionfree and Hom X, A can be identi-R Mi

fied with A : X we have to show that, for every maximal ideal N of R,Mi

k

A : X & rA : X / Im j . 2Ž . Ž .Ž . Ž .. . NM Mi iN N
i&14 sk i&1
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From what we prove above in the case k & 1, it is easy to see that, if
Ž .N & M for some i, then the left hand side in 2 becomes A : X .i M Mi i

" #. Q and the right hand side becomes rA : X . . Q /j M M jj" i j" ii i
Ž . " # Ž Ž . .Im j which is rA : X . . Q / % Im j , where % denotesM M M j i M ij" ii i i ik Ž .the projection of . Hom X, A onto its ith-component; hence theR Mi&1 i

Ž . Ž Ž . .equality in 2 holds since clearly % Im j & A : X .i M M Mi i i
Ž .Finally, if N " M for every i, then both sides of 2 coincide withik. Q .ii&1

Proposition 2.5 can be viewed as a generalization of the fact that,
over an h-local domain R, the R-module Q)A is injective if and only if

Ž .all its localizations Q)A at maximal ideals M of R are injective R -M M
Ž " #.modules see M , Theorem 2.4 . In fact, Q)A injective is equivalent to1

1 Ž .Ext I, A & 0 for all ideals I of R, which is equivalent to saying thatR
1 Ž . 1 Ž .Ext I, A is torsionfree, since Ext I, A is always bounded.R R

It is worthwhile to remark that neither Lemma 2.3, nor Proposition 2.5
holds if the assumption X ' A is dropped, as the following example shows.

EXAMPLE 2.6. Consider R & ", X the subgroup of ! of type
Ž .1, 1, . . . , 1, . . . and A & ", hence A # X. For every maximal ideal M of

1 Ž . 1 Ž .", Ext X , A & 0, since X & " . On the other hand, Ext X, A" M M M M "M " #is not torsionfree, by W , Theorem 3 . Moreover, A : X & 0 so that2
Ž .A : X & 0 and A : X & " for every maximal ideal M of ".M M M M

3. A-REFLEXIVE DOMAINS

One of the main characterizations of reflexive domains was given by
" #Matlis M , Corollary 2.2 : they are exactly the divisorial domains R1

such that Q)R is an injective R-module. The last condition is equiva-
1 Ž . 1 Ž .lent to Ext J, R & 0 for all ideals J of R. Recall that Ext J, R isR R

1 Ž .always a bounded R-module, hence Ext J, R vanishes if and only if it isR
torsionfree.

The main goal of this section is to generalize Matlis’ results to A-re-
flexive domains, where A is a fixed R-submodule of Q.

We start with some lemmas on A-torsionless R-modules.
Ž .Note that, if E & End A and M is an A-torsionless module, then MR

is not necessarily an E-module; however, if M is a torsionfree E-module,
then it is A-torsionless as an R-module if and only if it is A-torsionless as

Ž . Ž .an E-module, since Hom M, A & Hom M, A .R E
Moreover an A-reflexive module M satisfies the property E ( E,M

Ž .where E & End M % Q. This follows from the isomorphismM R
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Ž . Ž .Hom $, qA - q Hom $, A for all q + Q; hence an A-reflexive mod-R R
ule M is necessarily an E-module.

LEMMA 3.1. Let A be an R-submodule of Q and let M be a torsionfree
R-module of finite rank n. Then the following are equi!alent:

Ž .1 M is A-torsionless;
Ž . Ž .2 Hom M, A has rank n;R

Ž .3 each rank one torsionfree quotient of M is embeddable into A;
Ž . n4 there is an embedding of M into A .

Ž . Ž . Ž .Proof. 1 # 2 . This is obvious, since in general Hom M, A hasR
rank at most n.
Ž . Ž .2 # 3 . Assume, by way of contradiction, that N is a submodule of

M such that M)N is a torsionfree rank one module not embeddable in A.
Ž .Then Hom M)N, A & 0, and we get the exact sequenceR

0 & Hom M)N, A ! Hom M , A ! Hom N , AŽ . Ž . Ž .R R R

which gives a contradiction, since the last term has rank at most n $ 1.
Ž . Ž . Ž .3 # 4 . Let K 1 ' i ' n be pure submodules of M of corank one,i

such that ! K & 0. Since each M)K is embeddable into A, we have thei i i
embeddings M $ . M)K $ An.ii
Ž . Ž .4 # 1 . For each 0 " m + M there is a canonical projection % :i

n Ž Ž .. nA ! A such that % - m " 0, where - : M ! A is an embedding of Mi
into An. This shows that the canonical homomorphism " of M intoM

Ž Ž . .Hom Hom M, A , A is injective.R R

Ž .LEMMA 3.2. Let A be an R-submodule of Q and let E & End A . LetR
M be an A-torsionless E-module of finite rank and let N be a pure R-submod-
ule of M. Then N is an E-submodule and both M)N and N are A-torsionless.

Proof. The first claim is obvious. The last claim follows by considering
ranks in the exact sequence

0 ! Hom M)N, A ! Hom M , A ! Hom N , AŽ . Ž . Ž .E E E

Ž .and by using Lemma 3.1 2 .

One could wonder whether the class of A-torsionless E-modules of
finite rank is also closed under extensions. This is not true in general, as
the following example shows.

EXAMPLE 3.3. Consider any non-free subgroup A of Q such that
Ž . " # 1 Ž .End A & ". Then by Warfield W , Theorems 2 and 3 , Ext A, A is" 2 "
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a non-zero torsionfree group. Hence there exists a non-splitting exact
sequence

0 ! A ! X ! A ! 0.

The first part of the proof of Theorem 3.6 shows that if X is A-torsionless
than the exact sequence splits.

The following result provides a sufficient condition for an extension of
A-torsionless E-modules to be A-torsionless.

Ž .LEMMA 3.4. Let A be an R-submodule of Q and let E & End A . LetR
M be an E-module of finite rank and let N be an E-submodule of M, such that
both N and M)N are A-torsionless. If the exact sequence

0 ! N ! M ! M)N ! 0 aŽ .

1 Ž .represents a torsion element of Ext M)N, N , then M is A-torsionless.E

Ž . Ž " #.Proof. The exact sequence a is quasi-splitting see W ; i.e., there2
Ž .exist 0 " r + E and an E-submodule K)N of M)N containing r M)N

Ž .such that the exact sequence b of E-modules

0 ! N ! K ! K)N ! 0. bŽ .

Ž .splits. Then K - N . K)N , hence K is A-torsionless; since rM * K we
conclude that M is A-torsionless.

An immediate consequence is the following.

Ž .COROLLARY 3.5. Let A be a fractional ideal of R and let E & End A .R
Then the class of A-torsionless E-modules of finite rank is closed under
extensions.

Proof. Let N be a pure submodule of the E-module M such that both
N and M)N are A-torsionless. We can assume, without loss of generality,
that A ' R. Let m and n be the ranks of N and M)N, respectively. By
Lemma 3.1, N is embeddable into Am, hence into Rm, and M)N is
embeddable into An, hence into Rn. So we have an exact sequence of
R-modules

0 ! M)N ! Rn ! F ! 0,

where F is a finitely generated torsion module. We get the exact sequence

0&Ext1 Rn , N !Ext1 M)N, N !Ext 2 F , N !Ext 2 Rn , N &0Ž . Ž . Ž . Ž .R R R R
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1 Ž . 2 Ž .which shows that Ext M)N, N - Ext F, N is a torsion R-module.R R
1 Ž . 1 Ž .But Ext M)N, N is an R-submodule of Ext M)N, N , hence it isE R

torsion too, henceforth the claim follows by Lemma 3.4.

We can now prove the main result of this section.

Ž .THEOREM 3.6. Let A be an R-submodule of Q and let E & End A .R
1 Ž .Then R is A-reflexi!e if and only if it is A-di!isorial and Ext X, A is aE

torsionfree E-module, for all E-submodules X of A.

Proof. Assume that R is A-reflexive. Then R is obviously A-divisorial.
1 Ž .The proof that Ext X, A is a torsionfree E-module is partly similar toE

Ž . Ž . " #the proof of Theorem 2.1, 1 # 3 , in M . Let us consider an exact1
sequence of E-modules

0 ! A ! B ! X ! 0, cŽ .

where X is an E-submodule of A. If B is not A-torsionless, then Lemma
Ž . 1 Ž .3.4 shows that c represents an element of infinite order of Ext X, A . IfE

B is A-torsionless, then the canonical homomorphism

" : B ! Hom Hom B , A , AŽ .Ž .B R R

is an isomorphism, as well as

" : X ! Hom Hom X , A , A .Ž .Ž .X R R

Ž .The A-dual exact sequence of c gives rise to the exact sequence

0 ! Hom X , A ! Hom B , A ! K ! 0, dŽ . Ž . Ž .E E

where K is the appropriate cokernel. Since B is A-torsionless, by Lemma
3.1, the middle term has rank two, hence K has rank one. We have the
commutative diagram with exact rows,

" " " "

0 A B X 0

"" "" XB Ž .e
)"" "Ž . Ž .B* *K*0 X* *,

Ž . Ž . ŽŽ . .where in e , $ * denotes the A-dual Hom $ , A . Since " and "E B X
are isomorphisms, the map ) is onto and consequently there is an induced

Ž .isomorphism of E-modules * : A ! Hom K, A . Thus K is an A-tor-E
sionless E-module, by Lemma 3.1; therefore

K - Hom Hom K , A , A - Hom A , A & E.Ž . Ž .Ž .E E E



BAZZONI AND SALCE848

Ž . Ž .So the exact sequence d splits, thus also its A-dual sequence e splits,
Ž .and the original exact sequence c splits too. This concludes the proof that

1 Ž .Ext X, A is torsionfree.E
The proof of the converse is essentially Reid’s proof of Theorem 3.2 in

" #R , with some minor modifications.1
Assume that, for all E-submodules X of A, the canonical homomor-

Ž Ž . .phism " : X ! Hom Hom X, A , A is an isomorphism, and thatX R R
1 Ž .Ext X, A is a torsionfree E-module. We must show that " is anE M

isomorphism for all A-torsionless E-modules M of finite rank. We induct
on the rank of M, which is denoted by n. The case n & 1 is true by
hypothesis. Suppose n # 1 and the result true for A-torsionless E-mod-
ules of smaller rank. Let N be any proper non-zero pure submodule of M.
Then both N and M)N are A-torsionless by Lemma 3.2. From the exact
sequence

0 ! N ! M ! M)N ! 0 fŽ .

we obtain the commutative diagram,

0 0 0

" " "" " "Ž . Ž . Ž .0 Hom M)N, A Hom M , A Hom N , AE E E

" "
"" " " "Ž . Ž . Ž .Hom M)N, Q0 Hom M , Q Hom N , Q 0E E E

" """ " "Ž . Ž . Ž .t Hom M)N, Q)A0 t Hom M , Q)A t Hom N , Q)AE E E

" "" " "

C C C1 2 3

" ""

0 00

where the third non-trivial row contains the torsion part of the Hom’s,
since the Hom’s of the first row have the same rank as the corresponding
Hom’s of the second row. The C ’s are the appropriate cokernels of thei
respective columns. Since C and C are torsion submodules of1 3

1 Ž . 1 Ž .Ext M)N, A and Ext N, A , respectively, and these Ext’s are torsion-E E
free, by the inductive hypothesis, C and C are zero, hence C is also1 3 2
zero. By the Snake Lemma, the last map of the first row is surjective,
hence C is also zero. By the Snake Lemma, the last map of the first row is2

Ž .surjective, hence the dualizing functor Hom $, A is exact on the se-E
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Ž .quence f . Now we can conclude that the commutative diagram of E-mod-
ules with exact rows

0 0 0

" " "" " " "
0 N M M)N 0

"" """ "MN M) N" " " "Ž . Ž . ŽŽ . .N* *0 M * * M)N * * 0

" "

0 0

Ž . ŽŽ . .where $ * denotes the A-dual Hom $ , A , has the central verticalE
map " which is an isomorphism, by the Five Lemma.M

1 Ž .Remark. In the notation of Theorem 3.6, if Ext X, A is a torsionfreeR
1 Ž .R-module, then Ext X, A is also a torsionfree E-module, since it is anE
1 Ž .R-submodule of Ext X, A . This observation shows that the sufficiency inR

Ž . Ž .Theorem 3.6 holds under Reid’s hypotheses 1 and 2 quoted in the
Ž . Ž .Introduction, with the modification of the equality End X & End AR R

Ž . Ž .by the inclusion End X ( End A . However, the next example whichR R
" #appears in Goeters’ paper Goe , shows that there exists an A-reflexive

1 Ž .domain R such that Ext X, A has a non-trivial torsion part for aR
suitable E-submodule X of A.

EXAMPLE 3.7. Let R & " / i2" , where " is the ring of integers2 2 2
" #localized at 2. R is a local ring, with maximal ideal J & 2" i , generated2

by 2 and 2 i over R. Goeters proved that R is a Warfield domain, hence in
1 Ž .particular, J-reflexive. An easy calculation shows that Ext J, J is aR

Ž . " #non-trivial torsion R-module. Notice that E & End J & " i is theR 2
1 Ž .integral closure of R and, according to Theorem 3.6, Ext J, J & 0, sinceE

J is E-isomorphic to E.

Remark. The preceding Lemma 3.2 is needed to prove the sufficiency
Ž .in Theorem 3.6. Given A, an R-submodule of Q, and E & End A ,R

" #Proposition 3.1 in R states that the class of A-torsionless R-modules B1
of finite rank, such that E & E is closed under pure submodules andB
torsionfree quotients. This fact is not true, since this class is not closed
even under summands, as the next example shows. This observation makes

Ž . Ž .evident the reason why the assumption End X & End A in Reid’sR R
Ž .condition 1 quoted in the Introduction must be substituted by the weaker

Ž . Ž .assumption End X ( End A .R R

EXAMPLE 3.8. Let R be a valuation domain with two different non-zero
prime ideals P $ P. Then the torsionfree R-module B & P . P is obvi-1 1
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Ž .ously P-torsionless, and End P & R & E . On the other hand, P isR P B 1
P-torsionless but E & R % R .P P P1 1

Theorem 3.6 shows how A-divisorial domains are connected with A-re-
flexive domains. A-divisorial domains are investigated in the next section.
The results of the next section together with Proposition 2.5 will enable us
to reduce the investigation of A-reflexive domains, and consequently of
Warfield domains, to the local case. Thus we must postpone a relevant
result on A-reflexive domains, namely Theorem 4.8, to the end of the next
section.

4. A-DIVISORIAL DOMAINS AND REDUCTION TO THE
LOCAL CASE

" #In this section we will extend some of Heinzer’s results in H to
A-divisorial domains, where A is a fixed submodule of Q. Moreover we
will prove that the properties of being A-divisorial, A-reflexive, and
Warfield are local properties of a domain.

Ž .Let us denote by FF A the class of the nonzero A-torsionless submod-
ules of Q which are modules over the endomorphism ring of A. Obviously
Ž .FF A consists of those submodules X of Q such that A : X " 0 and

Ž . Ž .End X 0 End A .R R

LEMMA 4.1. Let R be an arbitrary domain and A an R-submodule
of Q.

Ž . Ž .1 For an arbitrary integral domain R, the class FF A is a lattice under
the usual operations of sum and intersection.

Ž .2 If R is an A-di!isorial domain, the correspondence X ! A : X is a
Ž .lattice anti-isomorphism of FF A .

Ž . " 4 Ž .3 If X is a subset of FF A such that X & ! X " 0, then* * *
Ž .X + FF A and, if R is an A-di!isorial domain, A : X & Ý A : X .* *

Ž . Ž .Proof. 1 Let X and X be in FF A ; then the claim follows from1 2
the relations

A: X / X & A : X % A : XŽ . Ž . Ž .1 2 1 2

A : X % X ( A : X / A : XŽ . Ž . Ž .1 2 1 2

End X / X ( End A and End X % X ( End A .Ž . Ž . Ž . Ž .R 1 2 R R 1 2 R

Ž .2 This is straightforward.
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Ž .3 The first claim is obvious; the proof of the second one is similar
" #to that of Lemma 2.1 in H , observing that Ý A : X is always contained* *

Ž .into A : X, hence it belongs to FF A .

LEMMA 4.2. Let R be an arbitrary domain, A and R-submodule of Q, and
Ž . Ž .E & End A . Then e!ery fractional ideal of E belongs to FF A ; the con!erseR

is true if and only if A is a fractional ideal of E.

Ž .Proof. Let J be a fractional ideal of E; then clearly End J ( E, andR
Ž . Ž .E : J " 0, so that A : J : A " 0 hence A : J " 0 and J is in FF A .

Ž .Conversely, let A be a fractional ideal of E, and let J + FF A . Then
Ž .End J ( E ensures that J is an E-submodule of Q, and A : J " 0 "R

E : A ensure that E : J " 0, so J is a fractional ideal of E.

As an example of a submodule A which is not a fractional ideal of
Ž .End A , consider the rational group R of the fractions with squarefreeR 1

Ž .denominators. Then End R & ", and " : R & 0.1 1

LEMMA 4.3. Let R be an A-di!isorial domain and M a maximal ideal
Ž . Ž .of End A & E. Then A : M )A is isomorphic, as an E-module, toR

E)M, hence A : M properly contains A and A : M & A / Ex, for any x +
Ž .A : M 1 A.

Ž . Ž .Proof. A : M, A, and E clearly belong to FF A . M belongs to FF A by
Ž .Lemma 4.2. By Lemma 4.1, the set of the modules in FF A between E and

M is in bijective correspondence with those between A : M and A, so
Ž .A : M )A is a simple E)M-module, hence it is isomorphic to E)M.

Ž .LEMMA 4.4. Let R be an A-di!isorial domain, E & End A , and B aR
non-zero proper ideal of E. Let M be a maximal ideal of E containing B. Then

" ! 4J & ! J B ' J ' E, J & M is not contained in M; hence B # J.* * *

" #Proof. The proof is similar to that of Lemma 2.3 in H . Note that E
is one of the J ’s; for each * , J & M implies A : M & A : J , hence* * *
Ž . Ž . Ž .A : J % A : M & A, by Lemma 4.3. Let x + A : M 1 A. We will*

show that x ' A : J, so A : M & A : J will imply that J & M, as we wanted
to prove. Assume, by way of contradiction, that x + A : J & Ý A : J* *
Ž Ž .. Ž .recall Lemma 4.1 3 . Then x + Ý A : J & A : J % ... % J ; but1' i' n * * *i 1 n

Ž . Ž .J % ... % J is one of the J ’s, say J , thus x + A : J % A : M & A,* * * * *1 n 0 0

a contradiction.

We can now prove one of the main results of this section. Recall that an
integral domain is said to be h-local if each non-zero prime ideal is
contained in a unique maximal ideal, and each non-zero proper ideal is
contained only in finitely many maximal ideals.
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Ž .THEOREM 4.5. Let R be an A-di!isorial domain. Then End A isR
h-local.

Ž .Proof. The proof that each non-zero prime ideal of End A is con-R
tained in a unique maximal ideal is similar to the proof of Theorems 2.4 in
" # Ž .H . Let E & End A and B be a non-zero proper ideal of E; assumeR
that M and M are two different maximal ideals of E containing B. From1 2

" 4Lemma 4.4 we know that J & ! J : B ' J ' E, J & M is not con-* * * * 1
tained in M ; choose y + J 1 M . Then y2 ' M , so B / Ey2 is one of the1 1 1

2 Ž . ŽJ ’s, thus it contains y. Let y & b / dy b + B, d + E . Then b & y 1 $*
. Ž .dy + B, with y ' B and 1 $ dy ' M since y + B * M ; therefore B2 2

" 4cannot be a prime ideal. Let M be the family of the maximal ideals of E*

containing B; the proof that this family is finite goes exactly as in Theorem
" #2.5 in H , since it depends only on the property of E proved in Lemma

4.4.

Ž .One could conjecture that, if R is an A-divisorial domain, then End AR
is a divisorial domain; if this were true, our Theorem 4.5 would follow from
Heinzer’s results. This is not the case: for instance, as we will show later, a
valuation domain R is L-divisorial for every non-zero prime ideal L, but

Ž .R & End L is a diviorial domain if and only if L - R , by Theorem 5.1L R L
" #in H .

Ž .We give now a generalization of Proposition 2.5 1 , proved by Matlis in
" #M , that will not be used later, but which is of independent interest.1

Ž .PROPOSITION 4.6. Let R be an A-di!isorial domain and E & End A .R
Ž .Then Q)A is an essential extension of . A : M )A, as an E-mod-M + max E

ule.

Ž .Proof. We know, from Lemma 4.3, that A : M )A - E)M, for all
Ž .M + Max E, hence . A : M )A is the socle of Q)A as anM + Max E

E-module. To show that this socle is essential in Q)A, let 0 " x & a)b /
A + Q)A, with a, b + E; since 0 " x, a does not belong to Ab. Consider

" 4the ideal J of E defined by J & q + E: qa + Ab ; this is a proper ideal,
since a ' Ab. Let M be a maximal ideal of E containing J; we show now
that the cyclic E-module generated by x has a non-zero multiple in
Ž . Ž Ž . . Ž .A:M )A i.e., that E a)b / A % A : M properly contains A. As-

Ž Ž . . Ž .sume, by way of contradiction, that E a)b / A % A : M & A. Then
"Ždualizing with respect to A and using repeatedly Lemma 4.1, we get A :

Ž .. #E a)b % E / M & E; but the first term in this equality coincides with
J, hence we obtain that M & E, a contradiction.

Our next goal is to prove that A-divisoriality is a local property.
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Ž .THEOREM 4.7. Let A be an R-submodule of Q with End A & E. TheR
following are equi!alent:

Ž .1 R is A-di!isorial.
Ž .2 E is A-di!isorial.
Ž .3 E is h-local and E is A -di!isorial for e!ery maximal ideal MM M

of E.

Ž . Ž .Proof. 1 % 2 . It is clear since R is A-di!isorial if and only if
Ž .A : A : X & X for every A-torsionless E-submodule of Q.
Ž . Ž .2 # 3 . In Theorem 4.5 we proved that E is h-local and by Corol-

Ž . Ž .lary 2.4 we have that End A & E and clearly End A &E M M R M
Ž .End A . Thus it remains to prove that if Y is an A -torsionlessE M M

E -submodule of Q, thenM

A : A : Y & Y .Ž .M M

Since there is an embedding of Y into A , we may assume that Y ' A .M M
Now let X & Y % A, then X & Y % A & Y % A & Y. X is an E-sub-M M M M

Ž .module of A and, by the A-divisoriality of E, we have that A : A : X & X.
Clearly, E is embeddable in X, hence A : X is embeddable in A; thus, by

Ž .Lemma 2.3, we obtain X & A : A : X and again by Lemma 2.3,M M M
Ž .A : X & A : X , since X ' A. This proves that Y is A reflexive.M M M M
Ž . Ž .3 # 2 . We must show that, if X is an A-torsionless E-module,

Ž .then A : A : X & X. We may assume X ' A: moreover E is embeddable
in X which yields A : X embeddable in A. By hypothesis E is h-local,
thus we may apply Lemma 2.3 twice to get

A : A : X & A : A : X & A : A : X .Ž . Ž . Ž .MM M M MM

for every maximal ideal M of E.
Now the hypothesis that E is A -divisorial ensures that A :M M M

Ž . Ž .A : X & X , for every maximal ideal M of E, hence A : A : X & X.M M M

Combining Theorem 4.7 with the results of Sections 2 and 3, we may
show that also the A-reflexivity is a local property.

Ž .THEOREM 4.8. Let A be an R-submodule of Q with End A & E. TheR
following are equi!alent:

Ž .1 R is A-reflexi!e.
Ž .2 E is A-reflexi!e.
Ž .3 E is h-local and E is A -reflexi!e for e!ery maximal ideal M of E.M M
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Ž . Ž .Proof. 1 % 2 . This is clear, since A-reflexivity must be checked on
Ž . Ž .A-torsionless E-modules of finite rank. 2 % 3 . This follows by apply-

ing Theorems 4.7, 3.6, and Proposition 2.5.

As an easy consequence of Theorem 4.8, we may prove that the property
of being a Warfield domain is a local property.

PROPOSITION 4.9. R is a Warfield domain if and only if e!ery o!erring of
R is h-local and e!ery localization of R at a maximal ideal is a Warfield
domain.

Proof. The necessity is clear, since it is easy to check that every
overring of a Warfield domain is a Warfield domain.

For the sufficiency, let A be an R-submodule of Q and let E &
Ž .End A . We must prove that R, or equivalently E, is A-reflexive. E isR

h-local by hypothesis, thus by Theorem 4.8, we may assume that E is a
local domain. Let N be the maximal ideal of E, then N % R is a prime
ideal P of R and R * E. If M is a maximal ideal of R containing P,P
then R * R * E. Thus E is an overring of R , hence it is a WarfieldM P M
domain and in particular it is A-reflexive.

5. SOME MORE RESULTS ON DIVISORIAL AND
TOTALLY DIVISORIAL DOMAINS

Recall that an integral domain is said to be divisorial if every fractional
Ž $1 .$1 $1ideal I of R concides with its double inverse I , where I & R : I.

" #In H , Heinzer characterized the integrally closed divisorial domains and,
" #in M , Matlis characterized noetherian divisorial domains.¨1

Ž " #.In the general case there are only partial results see GH .1
The aim of this section is to present some results on general divisorial

domains which will help in characterizing Warfield domains. The next two
lemmas are easy, but very useful.

LEMMA 5.1. Let I be an ideal of the di!isorial domain R, and let
T & I : I. Then R : T , the conductor of T in R, concides with II$1.

$1 Ž $1 . $1Proof. We have R : II & R : I : I and R : I coincides with I,
since R is divisorial, hence R : II$1 & I : I & T. This says that T is the
inverse of II$1 and, since T is clearly a fractional R-module, we obtain the
wanted conclusion.

LEMMA 5.2. Let I be an ideal of the di!isorial domain R. Then I : I & R if
and only if I is in!ertible.
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Proof. Assume I is invertible and let T & I : I. By Lemma 5.1, R : T & R
hence T & R. Conversely, let I : I & R, then, by Lemma 5.1, R : R & R &

$1II , hence I is invertible.

The next result follows immediately by Lemma 5.2, recalling that invert-
ible ideals over local domains are principal.

COROLLARY 5.3. Let I be an ideal of the di!isorial local domain R. Then
I : I & R if and only if I is principal.

As far as we know, the following immediate consequence of Theorem
4.7 does not appear in the literature.

PROPOSITION 5.4. A commutati!e domain R is di!isorial if and only if it is
h-local and R is di!isorial for e!ery maximal ideal M of R.M

Thus the problem of characterizing divisorial domains can be reduced to
the local case.

" #In H, M it is proved that if R is a divisorial local domain with maximal1
ideal M, then M$1)R is isomorphic to R)M and it is an essential
submodule of Q)R. We can prove the following:

LEMMA 5.5. Let R be a local domain with maximal ideal M such that
M$1)R is isomorphic to R)M and essential in Q)R. Then:

Ž .1 M is in!ertible if and only if R is a !aluation di!isorial domain.
Ž .2 If R is integrally closed, then R is a !aluation di!isorial domain.

Ž . Ž " # " #.Proof. 1 It is well known see H or M that a valuation domain is1
divisorial if and only if its maximal ideal is invertible. Thus we have only to
show that, if M is invertible, namely M & aR, for some a + R, then R is a
valuation domain. Assume q$1 + Q 1 R; we will prove that q + R.

$1Ž . $1Ž . $1q R / qR ( R and thus, by hypothesis, q R / qR 0 a R &
$1 Ž .M . Now, a R / qR 0 qR implies q & ar / qas, with r and s in R,

Ž .hence q 1 $ as & ar, thus q + R since 1 $ as is a unit in R.
Ž . Ž .2 By part 1 , it is enough to prove that M is invertible. Assume it

is not; then MM$1 & M hence M$1 & M : M & R is an overring of R1
" # " #and, as proved in H, Lemma 2.2 or M , Lemma 2.3 , R & R / R* for1 1

" #every element * + R 1 R, hence R & R * is integral over R, a contra-1 1
diction.

Ž .Remark. Lemma 5.5 1 shows that, in the investigation of divisorial
domains, the interesting case that remains to be studied is the case of a
local domain with non-principal maximal ideal M. Then, as noticed in the

Ž . $1proof of Lemma 5.5 2 , M coincides with M : M, the endomorphism ring



BAZZONI AND SALCE856

of M. Let us denote M : M by R ; then R satisfies the following1 1
properties:

Ž .1 R & R / R* for every element * + R 1 R, hence R is inte-1 1 1
gral over R.

Ž .2 M is the conductor R : R of R in R .1 1

Ž .3 R )R is a simple R-module and it is an essential R-submodule1
" #of Q)R; thus, in the terminology used in GH , R is a unique minimal1 1

overring of R.
Ž . " #4 R has at most two maximal ideals GH , Corollary 2.2 .1 1

The next results will illustrate another interesting property of the
domain R . Its proof appears, under different hypotheses, in the proof of1

Ž . Ž . " #implication 2 # 3 of Theorem 57 of M , we give it for the sake of2
completeness.

LEMMA 5.6. Let R be a local di!isorial domain with non-principal maxi-
mal ideal M and let R & M : M. An ideal I of R is an R -ideal if and only if I1 1
is not principal o!er R.

Proof. Let I be a non-principal ideal of R, then II$1 * M, hence
$1 $1Ž .R : II & R : I : I 0 R which yields R * I : I.1 1

We collect in the following theorem some facts about R which will be1
used in the sequel; some of these facts are known, but we sketch their
proofs for convenience.

THEOREM 5.7. Let R be a local di!isorial domain with non-principal
maximal ideal M and let R & M : M. Then one and only one of the following1
cases can occur:

Ž .1 R is local with maximal ideal M properly containing M. In this1 1
case M )M is simple both as an R-module and as an R -module, moreo!er1 1
M 2 * M and R : M & M .1 1 1

Ž .2 R has exactly two maximal ideals M and M . In this case1 1 2
M & M % M , M )M is simple both as an R-module and as an R -module,1 2 i 1
for i & 1, 2; R : M & M , for i " j. Moreo!er R is a Prufer domain, intersec-¨i j 1
tion of two !aluation domains V and V whose maximal ideals N and N1 2 1 2
satisfy M & N % N .1 2

Ž .3 R is local with maximal ideal M. In this case R is a !aluation1 1
domain.

Ž .Proof. By 4 in the preceding Remark, one of the above cases has to
occur.
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Ž .1 M )M is a non-zero R)M module properly contained in the two1
dimensional R)M-module R )M. Thus clearly M )M is simple as an1 1
R -module, consequently M 2 * M and R : M 0 M . But R : M is con-1 1 1 1 1
tained in R : M & R and by the hypothesis of divisoriality of R, it is1
properly contained in R . Hence it coincides with M .1 1

Ž . " #2 The first statement is proved in GH , Corollary 2.2 . The proof1
that M )M is simple both as an R and as an R module, is the same as ini 1
Ž .1 above. Clearly M * R : M and the equality holds since R : M # R .i j j 1

" # Ž .By Proposition 2.5 in GH the integral closure R of R or of R is a1 1
Prufer domain, intersection of two valuation domains V and V with¨ 1 2
maximal ideals N and N such that N % N & M. We prove now that in1 2 1 2
these hypothesis R & R . In fact, since N % N & M we have that M is1 1 2
an R-ideal, hence R * M : M & R and the claim follows.1

Ž . " # Ž3 By Proposition 2.6 in GH the integral closure R of R or of1
.R is a valuation domain V with maximal ideal M. Then, again, M is an1

R-ideal and thus R & R .1

Ž . Ž .Notice that in the cases 2 and 3 considered in Theorem 5.7, the
integral closure R of R is finitely generated as an R-module. The
remaining case, namely when R is local with maximal ideal properly1
containing M is more difficult to handle and will be studied in the next
section, but under the stronger hypothesis that R is totally divisorial.

6. WARFIELD AND TOTALLY REFLEXIVE DOMAINS

The aim of this section is to prove that the class of Warfield domains
coincides with the class of totally reflexive domains, whose definition will
be given below. Recall that an order of a domain R is an overring of R
which is finitely generated as an R-module.

Ž . ŽDEFINITION. 1 A domain R is said to be totally di!isorial resp. order
. Ž .di!isorial if every overring resp. every order of R is a divisorial domain.

Ž . Ž .2 A domain R is said to be totally reflexi!e resp. order reflexi!e if
Ž .every overring resp. every order of R is a reflexive domain.

In view of Proposition 5.4, we will still consider the local case. The next
two results are improvements of Theorem 5.7 under a stronger hypothesis
on R and will be useful tools in the investigation of Warfield domains.

" #Their proofs must be compared with the proof of Theorem 57 in M ,2
which characterizes commutative integral domains whose ideals are two
generated.
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PROPOSITION 6.1. Let R be a local order di!isorial domain with non-
principal maximal ideal M and let R & M : M. Let R be the integral closure1
of R. Then either R is a Prufer order of R with at most two maximal ideals, or¨

" 4R 0 ) R , where R is a chain of o!errings of R satisfying then n n n+ #

following properties:

Ž .1 For e!ery n, R * R and R )R is a simple R-module.n n/1 n/1 n

Ž .2 For e!ery n, R is local with maximal ideal M and there exists ann n
element a + R independent of n, such that M & aR .n n/1

Ž .3 T & ) R is a local domain with principal maximal ideal aT.n n

Ž . Ž .Proof. If R is as in case 2 or 3 of Theorem 5.7, then R & R and1 1
the first statement is proved. Otherwise R is local with maximal ideal M1 1

properly containing M. By hypothesis R is a divisorial domain too and, by1
Lemma 5.5 we may assume M is not principal, otherwise R & R . Define1 1

Ž .R as R : M & M : M ; applying Proposition 5.7 to the pair R , R , we2 1 1 1 1 1 2
Žobtain that either R coincides with the integral closure of R hence of2 1

. Ž .R and is a Prufer order of R hence of R with at most two maximal¨ 1

ideals, or R is local with maximal ideal M strictly bigger than M . Again2 2 1
as above, we may assume that M is not principal. Going on we find that2
either at a certain nth step R is the integral closure of R and is a Prufer¨n
order of R with at most two maximal ideals or, by induction, we obtain a
strictly increasing chain of overrings

R # R # R # ... # R # ...1 2 n

satisfying the following properties:

Ž .a R & R : M is a local order of R with non-principal maximaln/1 n n
ideal M properly containing M , for every n.n/1 n

Ž .b M & aR and M & aR for every n.1 n n/1

Ž .c R )R is a simple R-module for every n.n/1 n

Ž .a This is clear by the above construction.
Ž .b Since R is divisorial and M : M & R we get, by Corollary 5.3, that1 1

M & aR for some element a + R. By induction, assume M & aR for1 n n/1
every n. We have R & R : M , then R & R : M M &n/2 n/1 n/1 n/2 n n n/1

R : aM . Now R is finitely generated over R, hence divisorial and thus,n n/1 n
Ž . $1By Lemma 5.6 1 , R : aM coincides with a M , namely M &n n/1 n/1 n/1

aR .n/2
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Ž .c If n & 0 it is clear that R )R is a simple R-module. Let n ( 1;1
consider the exact sequence

0 ! R )M ! R )M ! R )R ! 0.n$1 n$1 n n$1 n n$1

Ž . ŽBy 3 in the Remark before Lemma 5.6, the first term is isomorphic as an
.R -module to R )R which is a simple R-module by inductiven$1 n n$1

hypothesis. The middle term is an R)M-module since MR & aR & M ,n n n$1
hence it is a two dimensional R)M-module. Consider now the exact
sequence

0 ! M )M ! R )M ! R )M ! 0.n n$1 n n$1 n n

M )M is a non-zero proper submodule of the two dimensional R)M-n n$1
module R )M , thus both M )M and R )M are R-isomorphic ton n$1 n n$1 n n
R)M. By construction, R )R is isomorphic to R )M as an R -mod-n/1 n n n n
ule, hence it is a simple R-module.

Ž . Ž . Ž . Ž . Ž .Properties a , b , and c clearly prove statements 1 and 2 in the
Ž .proposition. Let now T & ) R and let N & ) M . Then, by b above,n n n n

N & ) aR & aT and it is clear that T is a local domain with maximaln n/1
ideal N.

Ž .If R is totally divisorial, then condition 3 in the preceding proposition
can be improved:

PROPOSITION 6.2. Let R be a local totally di!isorial domain. Then the
integral closure R of R is a Prufer domain with at most two maximal ideals.¨
Moreo!er, either:

Ž .1 R is an order of R, or
Ž .2 R is a !aluation domain with principal maximal ideal; R & ) R ,n n
" 4 Ž . Ž .where R satisfies properties 1 and 2 of Proposition 6.1.n n+ #

Proof. If the maximal ideal M of R is principal, then the conclusion
follows by Lemma 5.5. If M is not principal, then by Proposition 6.1, we
only have to show that the domain T there defined is a valuation domain.
By the hypothesis of totally divisoriality of R, we get that T is divisorial,

Ž .hence by Lemma 5.5 1 , T is a valuation domain.

Remark. Proposition 6.2 says that if the integral closure R of the
totally divisorial domain R is not finitely generated over R then, in the

" #terminology used in GH , HL , R is a Jonsson-extension of R.´2

Next Proposition 6.5 is crucial to prove our main result, namely that a
totally reflexive domain is Warfield. For that we need some preparatory
lemmas.
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LEMMA 6.3. Let R be a local totally di!isorial domain and R the integral
closure of R. Then either R is a fractional ideal of R or for e!ery x + Q 1 R,
xR & xR / R.

Proof. Assume R is not a fractional ideal of R. Then, by Proposition
$16.2, R is a valuation domain and thus x & t + R. If we show that

tR / R & R, then the conclusion follows.
tR / R is an overring of R contained in R, hence if it is properly

contained in R it must be one of the orders R ’s defined in Propositionn
6.1. Now tR / R & R implies tR * R , hence R is a fractional ideal ofn n
R and thus also of R.n

LEMMA 6.4. Let R be a local totally di!isorial domain such that the
integral closure R of R is not finitely generated o!er R. Then, in the notations
of Proposition 6.1 the following hold:

Ž .1 For e!ery n, R & R / R+ for any + + R 1 R .n/1 n/1 n/1 n/1 n

Ž .2 If M denotes the maximal ideal of R, then R)M is isomorphic to
nR)M and R & R / a R for e!ery n.

Ž . n$m3 R : R & a R , for e!ery m ' n.m n n

Ž . Ž .4 If A is an R-submodule of Q such that End A & R, thenR
Ž .End AR & R , for e!ery n.R n nn

Ž . Ž .Proof. 1 By c in the proof of Proposition 6.1, R & R / R+n/1 n n/1
for any + + R 1 R . We induct on n. If n & 0 then R & R / R+ .n/1 n/1 n 1 1

Ž .Consider the element a+ ; by b in the proof of Proposition 6.1,n/1
a+ + M * R but a+ ' M . Now, if it were a+ + R thenn/1 n n n/1 n$1 n/1 n$1
a+ would be a unit of R contradicting the fact that a+ + M .n/1 n$1 n/1 n
Hence, by induction, R & R / a+ R and thus R & R / a+ R /n n/1 n/1 n/1
R+ & R / + R.n/1 n/1

Ž .2 Clearly MR & aR & M, hence R)M is an R)M-module. Let
now u be a unit of R; then u is a unit in some R , hence, by Propositionn

Ž .6.1 1 , u is congruent with a unit u of R modulo M . Thus u is congruentn
to u modulo M. We have so proved that R & R / aR and by induction we

neasily get R & R / a R.
Ž . Ž .3 This is proved by induction. The case n & 0 is clear R & R .0

Assume the statement true for every m ' n and consider R : R ; them n/1
case m & n / 1 is obvious. Assume m ' n, then R : R &m n/1
R : R R & an$mR : R & an$mM & an/1$mR .m n n/1 n n/1 n n/1

Ž . Ž .4 Clearly R * End AR & E . Assume R # E ; then E mustn R n n n n nn

contain R , since R )R is an essential R -submodule of Q)R .n/1 n/1 n n n
Thus there exists an element + + R 1 R such that + A * AR ,n/1 n/1 n n/1 n

n n Ž . n nhence a + A * Aa R . By 3 , a R * R and thus a + A * A. Now,n/1 n n n/1
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Ž . n Ž .since End A & R, we obtain that a + belongs to R. Using part 1 ,R n/1
n n n/1 Ž Ž ..we get a + R * R, namely a + a R by 3 which yields then/1 n/1

$1contradiction a + R .n/1

PROPOSITION 6.5. Let R be a local totally di!isorial domain. Let A be an
Ž .R-submodule of Q with End A & R. Then A is isomorphic to R.R

Proof. Assume first that R is a fractional ideal of R, then there exists
an element s + R such that sR * R. Consider the R-module AR. Clearly
AR is properly contained in Q and, since R is a Prufer domain with at¨

Ž .most two maximal ideals by Proposition 6.2 , then AR is a fractional
R-ideal. Hence there exists t + R such that tAR * R and thus, stA * R.

If R is not a fractional ideal of R, then it is a valuation domain, which is
a union of a strictly ascending chain of overrings R of R defined as inn
Proposition 6.1. Without loss of generality we may assume that A ( R.
Consider the subset C of # defined as

!C & n ( 0 A % R # A % R ," 4n n/1

0 + C, since R is an essential extension of R. We claim that C is finite.1
In fact, for every n + C, A contains an element + + R 1 R , thenn/1 n/1 n

Ž .A 0 R / R+ & R , by Lemma 6.4 1 . Hence if C were infinite wen/1 n/1
would obtain A 0 R. Lemma 6.3 ensures that A / R is an R-module,

Ž .hence we would get the contradiction End A 0 R.R
Thus C is finite, hence there exists an index n ( 1 such that A %0

R & A % R. We show now that A / R cannot be equal to Q.n0

Assume A / R & Q; then, if a is the generator of the maximal ideal of
$1 $1Ž .R, we have a A * A / R & ) A / R . We claim that a A * A / Rn n m

for some m + #.
Ž $1 .In fact End a A & R and repeating the arguments used above forR

the module A, we obtain that there exists an index m + # such that
$1 $1 $1 $1Ž .a A % R & a A % R . Now a A * ) A / R means a A &m n n

$1 Ž . Ž $1 . $1 Ž $1) a A % A / R & ) A / a A % R , hence a A & A / a An n n n
. $1% R namely a A * A / R . Now, clearly A / R * AR and thus wem m m m

$1 Ž . Ž .get that a + End AR contradicting Lemma 6.4 4 . Thus A / R is am
proper R-submodule of Q, hence it is a fractional ideal of R. This means

Ž .that there exists an element r + R such that r A / R * R.
Ž .Now A / R )R is R-isomorphic to A)A % R , hence r annihilatesn0

the module A)A % R or equivalently, rA * R . The overring R is ann n n0 0 0

order of R, hence it is a fractional ideal of R and thus A is fractional too.
By Corollary 5.3 it follows that A is a principal R-module.

We can now prove the main result of this section.
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THEOREM 6.6. Let R be a domain. Then R is a Warfield domain if and
only if it is totally reflexi!e.

Proof. We have only to prove the sufficient condition. Let A be an
Ž .R-submodule of Q and let E & End A . By hypothesis E is reflexive,R

hence h-local. By Theorem 4.8, we must prove that E is A-reflexive,
where E can be assumed to be local. E is clearly totally divisorial, hence
Proposition 6.5 yields that A is isomorphic to E, hence E is A-reflexive.

Remark. A consequence of Theorem 6.6 is that, in order to prove that
a domain R is Warfield, it is not necessary to verify that for every

Ž .R-submodule A of Q with E & End A , R is A-divisorial and thatR
1 Ž .Ext X, A is a torsionfree E-module for every E-submodule X of A, butE

it is enough to check that every overring S of R is divisorial and
1 Ž . ŽExt J, S & 0 for every ideal J of S or equivalently that Q)S is anS

.injective S-module .
" #As noted in the Introduction, Theorem 1.15 in A shows that, fixed a

rational group A, a torsionfree abelian group G of finite rank satisfying
Ž . Ž . Ž .E & E and Ot G ' t A i.e,. G is an A-torsionless E -module isG A A

Žnecessarily E -locally free i.e,. G , " is a free " -module, provided thatG p p
.pG " G . Using Proposition 6.5, we can suitably extend this result to

A-reflexive modules over general Warfield domains.

PROPOSITION 6.7. Let R be a Warfield domain, let A be a submodule of
Ž .Q, and E & End A . Then, gi!en an A-reflexi!e R-module B of finite rank n,

Ž .B is a submodule of a free E -module of rank n, for e!ery M + Max E .M M

Proof. If B is A-reflexive, then B is an E-submodule of A by Lemma
Ž n. n Ž .3.1. Then B is an E -submodule of A - A , for every M + Max E .M M M M

Ž .But A is an E -submodule of Q such that End A & E , by CorollaryM M M M
2.4 and since E is h-local, by Proposition 4.9. Now Proposition 6.5 shows
that A - E , hence B is an E -submodule of a free E -module ofM M M M M
rank n.

7. NOETHERIAN AND INTEGRALLY CLOSED
WARFIELD DOMAINS

In the first part of this section we characterize the noetherian Warfield
domains generalizing the result obtained by Goeters in the case of noethe-

" #rian domain with finitely generated integral closure Goe .
By Theorem 4.9 our investigation will be restricted mostly to the case of

a local domain. First we notice the following.

PROPOSITION 7.1. Let R be a totally di!isorial domain. R is of Krull
dimension one if an donly if R is noetherian.
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Proof. It is well known that a divisorial noetherian domain is of Krull
Ž " #.dimension one see M . For the converse, notice that a totally divisorial1

domain is h-local and every localization at a maximal ideal is totally
divisorial. Since an h-local domain with noetherian localizations is noethe-

Ž " #.rian see M , Theorem 26 , we may assume that R is a local domain.2
ŽMoreover, by Cohen’s Theorem if every prime ideal is finitely generated

.the ring is noetherian , it is enough to check that the maximal ideal M of
R is finitely generated. Assume M is not finitely generated. Consider the
integral closure R of R; M is an R-ideal. In fact M cannot be principal
over any one of the orders R ’s defined in Proposition 6.1, otherwise Mn
would be finitely generated over R, hence, by Lemma 5.6, M is an R-ideal.
It follows that R : R 0 M. Now R is a Prufer divisorial domain with at¨
most two maximal ideals and its dimension is the same as the dimension of
R, which is one. Thus R is a noetherian domain and M is finitely
generated over R. This implies that R cannot be finitely generated over R,
thus, by Proposition 6.2, R is a discrete valuation domain with maximal

n nŽ .ideal aR. By Lemma 6.4 3 , R : R & ! a R * ! a R & 0, thus M & 0,n n n
a contradiction.

The following lemma will be used to characterize the noetherian Warfield
domains.

LEMMA 7.2. Let R be an order reflexi!e domain. Then R is orderM
reflexi!e for e!ery maximal ideal M of R.

Proof. To prove that R is order reflexive for every maximal ideal MM
of R, we follow the same arguments used in the proof of the implication
Ž . Ž . " #2 # 3 of Theorem 57 in M .2

" #Let T be an order of R , namely T & R * , . . . , * where theM M 1 n
elements * ’s are integral over R and thus, multiplying by an elementi M
s + R 1 M, we may assume that they are integral over R. Consider the

" #R-order S & R * , . . . , * ; then T & S and, by hypothesis, S is reflexive,1 n M
hence h-local. Thus T & S is h-local too.M

To prove that T is reflexive it is enough to show that T is reflexive forL
Ž .every maximal ideal L of T Theorem 4.8 . Since S is finitely generated

over R, L is of the form N for a prime ideal N of S maximal withM
respect to N % R 1 M & ". Since S is finitely generated over R, N is a
maximal ideal of S, and, clearly T & S , hence T is reflexive.L N L

We state now the characterization of noetherian Warfield domains. The
" #next result should be compared with Goe, Theroem 2.1 ; the drastic

simplification of our proof is due to the fact that we can reduce to the
local case.

Ž .Notice that the noetherian domains satisfying condition 1 in the
" #next theorem, have been characterized by Bass and Matlis in Ba, M ,2

respectively.



BAZZONI AND SALCE864

THEOREM 7.3. Let R be a noetherian domain. The following are equi-
!alent:

Ž .1 E!ery ideal of R is two generated.
Ž .2 R is order reflexi!e.
Ž .3 R is totally reflexi!e.
Ž .4 R is a Warfield domain.

Ž . Ž . " #Proof. 1 % 2 . This is proved in M , Theorem 57 .2
Ž . Ž .2 # 3 . R is a reflexive noetherian domain, hence every overring of

Ž " #.R is noetherian, of Krull dimension one, and h-local see M , M , K . Let1 2
S be an overring of R; to prove that S is reflexive, we may assume that S
is a local domain, by Theorem 4.8. Let N be the maximal ideal of S;
consider the prime ideal P & R % N and a maximal ideal M of R
containing P. Clearly R * R * S.M P

By Lemma 7.2, R is order reflexive, hence we may assume that R is aM
local order reflexive domain.

Consider the integral closure R of R. R is a Dedekind domain and, if R
is an order of R, then R coincides with one of the rings R ’s defined inn
Proposition 6.1. If R is not finitely generated over R, then, even without
the hypothesis of totally divisoriality of R, we get that R coincides with the
domain T & ) R defined in Proposition 6.1. In fact, T is a localn n
noetherian domain with principal maximal ideal, hence it is a valuation
domain.

In any case, since each R is a unique minimal overring of R , wem/1 m
obtain that either S is one of the R ’s or S 0 R. We have so proved that Sm
is either an order of R or an overring of a Dedekind domain and thus in
both cases S is reflexive.
Ž . Ž .3 # 4 . This is by Theorem 6.6.
Ž . Ž .4 # 2 . This is obvious.

" #Remark. The Example 3.5 in HL in the case of characteristic p & 2, is
an example of a noetherian local domain with ideals at most two generated
Ž .hence a Warfield domain with non-finitely generated integral closure.

The second part of this section is devoted to characterize the integrally
closed Warfield domains.

Ž " #.It is well known see H that an integrally closed divisorial domain is an
h-local Prufer domain. Moreover we remark also the following fact.¨

LEMMA 7.4. Let R be an h-local Prufer domain. Then e!ery o!erring of R¨
is h-local.

Proof. The prime ideals contained in a fixed maximal ideal of R form a
" #chain; moreover, by Theroem 26.1, Cap IV in G , every maximal ideal of
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an overring of R is an extension of a prime ideal of R. These facts,
together with the h-locality of R, easily give the conclusion.

By the preceding proposition and Theorem 4.9, we can reduce our
investigation to the case of a valuation Warfield domain.

First of all we prove some general facts about A-divisoriality of a
valuation domain.

PROPOSITION 7.5. Let R be a !aluation domain and A an R-submodule
of Q. R is A-di!isorial if and only if A is isomorphic to a prime ideal of R.

Proof. Since we consider proper R-submodules of Q, every such an A
is a fractional ideal of R. Let R be A-divisorial. If A - R, then we know
that the maximal ideal M of R is principal, hence A - M. Thus, without
loss of generality we may assume that A is a proper ideal of R. Consider

# " # #the prime ideal A defined in FS, Cap I, n. 4 . We show that A - A . In
# " # #fact, if A +2 A , then, by Lemma 1.1 in BFS , we obtain A : A & A and

Ž #. # Ž .thus A : A : A & R ( A. But A is an A-torsionless End A -mod-A# R
ule, hence we have a contradiction to the A-divisoriality of R.

Conversely, let P a prime ideal of R; we must show that R is P-di-
Ž .visorial. By Theorem 4.7 this is equivalent to showing that End P & RR P

is P-divisorial. Hence we may assume that P is the maximal ideal of R.
Ž .Let I be any ideal of R; we must show that P : P : I & I. Clearly

Ž . $1I * P : P : I . Let r ' I, then I # rR implies I * rP, hence r + P : I.
$1Ž .Now r ' P : P : I , since rr ' P.

" #DEFINITION FHP . A Prufer domain is said to be strongly discrete if¨
every non-zero prime ideal is not idempotent.

It is now easily to characterize the totally divisorial valuation domains.

PROPOSITION 7.6. Let R be a !aluation domain. The following are equi-
!alent:

Ž .1 R is A-di!isorial for e!ery R-submodule A of Q.
Ž .2 E!ery ideal of R is isomorphic to a prime ideal of R.
Ž .3 E!ery non-zero prime ideal P of R is principal o!er R .P

Ž .4 R is strongly discrete.
Ž .5 R is totally di!isorial.

Ž . Ž .Proof. 1 % 2 . Every proper R-submodule of Q is isomorphic to an
ideal of R, hence the equivalence between the two conditions follows by
Proposition 7.5.

Ž . Ž . Ž . Ž .The equivalences 2 % 3 and 3 % 4 easily follow by Lemma 4.8,
" # Ž " # .Cap I in FS . See also FHP .
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Ž . Ž . " #5 % 3 . By H, Lemma 5.2 , a valuation domain is divisorial if and
only if the maximal ideal is principal, hence R is totally divisorial if and
only if every localization at a prime ideal P is divisorial.

It is well known, after Matlis results, that a valuation domain R is
reflexive if and only if the maximal ideal of R is principal and R is almost
maximal. Moreover, an overring of an almost maximal valuation domain is
almost maximal too. Thus, in view of the preceding results, the following
proposition is immediate.

PROPOSITION 7.7. Let R be an integrally closed local domain. The follow-
ing are equi!alent

Ž .1 R is a Warfield domain.
Ž .2 R is a strongly discrete almost maximal !aluation domain.
Ž .3 R is a totally reflexi!e domain.

Proof. As already noticed, a divisorial integrally closed domain is a
Ž . Ž . Ž . Ž .Prufer domain, hence 1 # 2 and 2 # 3 follow by Proposition 7.6¨

and the remark preceding this Theorem.
Ž . Ž .3 # 1 . This follows by Theorem 6.6.

" #Brandal Br gives the following definition.

DEFINITION. A commutative ring is almost maximal if every proper
homomorphic image of R is linearly compact.

" #Theorem 2.9 in Br states that an integral domain R is almost maximal
if and only if it is h-local and every localization of R at a maximal ideal is
almost maximal. Using this result we may state the following characteriza-
tion of integrally closed Warfield domains.

THEOREM 7.8. Let R be an integrally closed domain. The following are
equi!alent:

Ž .1 R is a Warfield domain.
Ž .2 R is h-local and R is an almost maximal strongly discrete !alua-M

tion domain, for e!ery maximal ideal M of R.
Ž .3 R is an almost maximal strongly discrete Prufer domain.¨
Ž .4 R is a totally reflexi!e domain.

Ž . Ž .Proof. 1 # 2 . This follows by Theorem 4.9 and Proposition 7.7.
Ž . Ž . " #2 % 3 . This follows by Theorem 2.9 in Br and Proposition 5.3.5 in

" #FHP .
Ž . Ž .3 # 4 . Every overring S of R is h-local, by Lemma 7.4. To show

that it is reflexive, it is enough to assume that S is local. But then S is a
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localization of R at a prime ideal, hence S is clearly almost maximal and
strongly discrete, thus it is reflexive, by Proposition 7.7.
Ž . Ž .4 # 1 . This follows by Theorem 6.6.

We give now an example of a non-noetherian and non-integrally closed
Warfield domain.

EXAMPLE. Let k # K be fields such that there are no intermediate0
fields between k and K.0

"" ##Let V & K / be the ring of the formal power series of / over K,
where / & " . " with the lexicographic order.

V is a maximal strongly discrete valuation domain of rank 2, hence V is
a Warfield domain. Let 0 # P # M be the only prime ideals of V.
Consider the domain R & k / M. Then R : M & V and R : V & M.0
Moreover V is the unique minimal overring of R and thus R is a Warfield
domain if and only R is reflexive. It is easy to check that R is divisorial
and using the fact that Q)V is an injective V-module and that V)R is a
simple R-module, one can verify that Q)R is injective as an R-module,
hence R is reflexive.
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