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Abstract. Let R be a locally finite-dimensional integral do-
main. It is proved that R[X],..., Xn] is catenarian for each
positive integer n if either gl. dim{R) =2 or R is a

going-down strong S-domain.

A1l rings considered below are (commutative integral) do-
mains. A ring R 1is said to be catenarian in case, for each
pair P« Q of prime ideals of R , all saturated chains of
primes from P to Q have a common finite Tength. Note that

each catenarian R must be locally finite-dimensional (LFD),
861
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in the sense that each prime ideal of R has finite height. In
[2, Lemma 2.3], we showed that if the polynomial ring R[X] is cat-
enarian, then R is a strong S-domain, in the sense in [11]. We
say that a (not necessarily Noetherian) ring R is universally
catenarian if the polynomial rings R[X],..., Xn] are catenarian
for each positive integer n . The most familiar examples of uni-
versally catenarian rings are arbitrary Cohen-Macaulay (C.M.) do-
mains (cf. [13, Theorem 31]); the Noetherian domains of (Krull)
dimension 1 (as a consequence of C.M., or by using Ratliff's
result [15, (2.6)] that a Noetherian ring R 1is universally
catenarian if and only if R[X] is catenarian); and the LFD Priifer
domains (cf. [14]1, [12], [1]). In [2], we axiomatically charac-
terized the class of all universally catenarian domains and
presented some new classes of universally catenarian rings.
Several of these classes involved going-down (GD) domains, in the
sense of [3] . Both one-dimensional domains and Priifer domains
are GD, and such a context is to be contrasted with a Noetherian
setting, since the prime spectrum of any GD ring is a tree [3] .

Our purpose here is to prove the following two results.

THEOREM 1. If R 1is a GD domain, then the following conditions

are equivalent:
(1) R s an LFD strong S-domain;
(2) R[X] is catenarian;

(3) R is universally catenarian.
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THEOREM 2. If R 1is a domain of global dimension 2, then R
is universally catenarian if (and only if) R is LFD .

The implication (2) = (3) in Theorem 1 may be viewed as a
GD-theoretic analogue of the above-mentioned result of Ratliff on
Noetherian rings. The special case of Theorem 1 for which
dim(R) = 1 has been obtained in [2, Corollary 6.3], along with
several other equivalents. [2, Corollary 6.7] obtained the case
of Theorem 1 for which R s an LPVD, in the sense of [6] .
Finally, we note that Theorem 1 was motivated by work of Hedstrom-
Houston [10, (2.4)-(2.6)] on finite-dimensional PVD's.

To place Theorem 2 in perspective, note first that domains
of global dimension 1 are Dedekind, hence universally catenarian
(by any of the three familiar criteria noted above). Moreover,
Noetherian domains of finite global dimension are also univer-
sally catenarian, because they are locally regular and hence C.M,
(cf. [11, Theorem 170]). Theorem 2 is plausible in view of the
Vasconcelos-Greenberg (cf. [16]) structure theory for LFD quasi-
local domains of global dimension 2. Any such is a pullback of
a diagram each of whose vertices is universally catenarian (a
field, a finite-dimensional valuation ring, a local Noetherian
domain of global dimension 2). However, no proof of Theorem 2
can hinge solely on pullback considerations. Indeed, as ex-
plained in [2, Remark 6.9], the examples in [4] lead to a family
F of one-dimensional PVD's such that (i) if R ¢ F , then

gl. dim(R) = 3 and R 1is a pullback of a diagram each of whose
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vertices is universally catenarian (two fields and a one-dimen-
sional valuation ring); and (ii) some, but not all, rings in F

are universally catenarian.

Proof of Theorem 1. (3) = (2) = (1) by the above remarks (even

without the GD assumption) . As for (1) = (3), all the proper-
ties in question are local, and so we may assume that R s
quasilocal, with maximal ideal M . Then n = ht(M) < = ; as
Spec(R) 1is a tree, its members can be depicted as

0=0Q, ; 0p-1 : cos ? Q ? Q=M.
If the assertion fails, [2, Theorem 6.2] assures that the inte-
gral closure of R is not a Priifer domain. Then, by combining
[9, Theorem 5] and [5, Corollary 2.4], there exist u in the
quotient field of R and distinct primes PO = P of R[u] such

that PN R=M (=PnR). Since Rc R[u] satisfies going-

0
down, there exists a chain of primes in R[u]

0=Pnan_.|t:...<:P-|<:P0

such that Pi nR= Qi for each i . Thus
1 with a, beR.
Then bX - a ljes in Q , the kernel of the surjective R-algebra
map R[X] + R[u] sending X to u . Thus ht{(Q) > 1 and,
since R[u] 2 R[X]/Q , dim{R[X]) >n + 2 . However, since R

is a strong S-domain, [11, Theorem 39] gives dim(R[X]) =

1+dim(R) =1 + n , the desired contradiction.
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Before proving Theorem 2, we record the following useful
topological result. It will be convenient to let C%X(x) denote

the closure of a point x in a space X .

LEMMA. Let Z be a closed subspace of a topological space X .
Let f: Z+Y be an inclusion map for Z viewed as a subset of
another space Y . Suppose that XnY =2 ., Set S =X Us Y.
let xeX\Z and y €Y\ Z such that y ¢ Ce(x) and

Cix(x) n Z s nonempty. Then:

(a) Czs(x) c sz(x) UCQX(X)nZ CQY(sz(x) nz.
(b) y e CayfCoy(x)n ).

Proof of Lemma. (b) 1is a trivial consequence of (a) since

Xn(Y\ Z) =0 . Moreover, (a) follows from the fact that, if
X] is a closed subspace of X and Y] is a closed subspace of
Y such that (X] niu Y] is closed in Y , then

X] Uflxlﬂz Y] is a closed subspace of S .

Proof of Theorem 2. Universal catenarity is a Tocal property and

global dimension does not increase under localization. Hence we
may assume that R is quasilocal, with maximal ideal M . With-
out loss of generality (cf. [16, Corollary 4.19]), R has a non-
zero prime p = pRP such that A = R/p 1is a regular local Noe-
therian two-dimensional domain, V = Rp 1is a valuation domain,
and p.d.A(k) =1, where k =V/p. Since A and V are each

universally catenarian, applying [1, Lemma 1] to the pullback
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R = ka A reduces our task to the following: given primes

Q] < 02 of R[X],..., Xn] such that

find a prime P of R[X],..., Xn] such that Q]<: Pc 02 and
PnR=p.
We may reduce to q, = M . For suppose that 95 M. Then

Rq is a quasilocal domain, of global dimension at most 2 ,
2

whose spectrum is a tree. Hence Rq is a valuation domain (cf.
2

[16, Theorem 2.2]). Thus the inclusion map
qu/ql qu - R[X],..., Xn]QZ/Q] R[X],..., Xn]Q2

is local and flat, and hence faithfully fiat. Accordingly, the
induced map on prime spectra is surjective, from which the
existence of the required P follows easily.

One also has the pullback description R/q] = V/q1 Xy A,
and (the valuation domain) V/q] has global dimension at most
2 (cf. [16, Theorem 2.1]). In view of the above information
about A, Vand k, [16, Corollary 4.19] yields
gl. dim(R/q])

n

2 . Replacing R by R/q] , we may therefore
reduce to q = 0.

A final reduction: 0 # Q] ¢ p# = pR[X],..., Xn] . Other-
wise, it suffices to choose P = p# .

The proof continues via‘the above lemma. Put
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= Spec(k[X],..., Xn]) » viewed canonically inside
X = Spec(V[X],..., Xn]) and Y = Spec(A[X],..., Xn]) . Take
x=Qv (= (Q])R/p) and y = Qzlp# ; evidently, x e X\ Z

and y e Y\ Z . We shall show next that Cﬂx(x) nZ is non-
empty; equivalently, that Q]V (= Q]V[X1,..., Xn]) satisfies

QY + ot # VDXpseoes X7 -

Indeed, if equality held, then

1€ 0V + o) nRIK..s X T,

forcing 1 € (Q]V n R[X1,..., Xn]) + p# c Q1 + p# <Q, . the de-
sired contradiction.

Next, observe that the pullback description R 2 ka A in-

duces R[X],..., Xn] 2 V[X],..., Xn] xk[X],..., Xn] A[X],..., Xn]

(cf. [1, Lemma 2]) . Accordingly, S 1is canonically homeomor-
phic to Spec(R[X;»..., X 1) and we identify these spaces (cf.
[7, Theorem 1.4]). Then x and y are identified with Q; and
Q, » respectively, and so the condition "y € Czs(x)" reduces
just to the hypothesis Q.l c 02 . In particular, the Temma
applies; so, by (b), y € CQY(CRX(X) nz.

It is straightforward to verify that Clx(x) N Z is the
variety in Z of the ideal (Q]V + p#)/p# . Moreover, since 7
is a Noetherian space, this variety has only finitely many mini-

Thus

mal points, say Zyseaes Zp »




16:41 7 January 2010

Downl oaded At:

868 BOUVIER, DOBBS, AND FONTANA
y € CZY(CQZ(Z]) U ... U C!LZ(Zm)) =y CQY(Clz(zi)) = UC!LY(Zi),

the Tast containment holding since order-theoretic reasoning
gives sz(z) c Czy(z) for each z ¢ Z . Hence y ¢ CQY(ZJ)
for some Jj . Viewing 25 as Pel-= Spec(k[x1,..., Xn]) c S
= Spec(R[X],..., Xn]) , we have PnR=p . Next, since y
is in the closure of z5 P/p# c Qz/p# ; that is, Pc Q2 .

Finally, since z is in the cited variety, (le + p#)/p# c

#
(PR\ p)/p , whence

Q1C(Q]V+p#)nR[X1,...,Xn]c:P nRIX s X5 P,

R\ P
completing the proof.

REMARK. An interesting alternate proof of Theorem 2 is available
jn case n =1 . It does not appeal to [7] . It begins with the
initial four paragraphs of the earlier proof and continues as
follows.

Let K denote the quotient field of R . As Q] Ties over
0,0Q = FK[X] n R[X] for some polynomial T in R[X] which is ir-
reducible in K[X] . Viewing matters over V , we may assume

that some coefficient of f is 1 , whence
= R = = N
QVIXI = @y R [X] = fKIX] n R)IX] = f Ry[X]

the last equality via [8, Corollary 34.9] .
Now set 8] = (Q] + p#)/p# , viewed as an ideal of
# o . ~ .
R[XJ/p"™ = A[X] . Me claim gradeA[X](Q]) =1 . To see this,
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consider elements G} = Gi + p# € a] (with G, € 01 for

i =1,2) . Choose g; € R[X] and c; € R\ p such that
N -1 . e e

Gi = fgici Since gzc]ﬁ] = g]céGz , 1t will follow that

{G&, Gz} is not a regular sequence. To see this, we offer an

indirect proof. Suppose {Gi, Gé} is regular. Then

§éEi = Géﬂ' for some suitable H e R[X] , and so

S

. .
9,01¢, = G ¢, = F g, ¢y

|C2=92fH.
By the supposed regularity, GE'# 0 , whence EE'# 0 and cancel-

lation leads to E;EE = fH , a nonzero constant. Thus, by com-
paring degrees, deg(f) = 0 ; that is, f € R + p# . As we have
seen that some coefficient of f is a unit in V , it follows
that the constant coefficient, say r , of f lies in R\ p .

Then

P e e+ Xp RIXD) €1 + Xp Ry[XT = 1+ xp RIX]  RIX]

whence 1r"1

f € K[XJf n R[X] = Q;, so that 1 ¢ Qp *+ XpRIX] < Qy,
the desired contradiction. This proves the claim.

Now, since A 1is regular local, the classical unmixedness
thearem obtains in A[X] (cf. [13, Theorem 31]), and so
rank(al) =1 (cf. [11, Theorem 136]) . Hence aé = Qz/p# must
contain a height 1 prime a = Q/p# which is minimal over a%.
Clearly Qe Q, .

If 6 is not extended from A , then 6 nA=0, in which

case QN R=p, so that choosing P = Q suffices. It remains
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only to treat the case of extended a = {q/p) ALX] . where

q ¢ Spec(R) properly contains p . In fact, given the above re-
ductions, this case cannot arise. To see this, it will suffice
to show that Rq is a valuation domain, for then

Q1Rq c (q Rq)Rq[X] would Tead via [11, Theorem 68] to Q1Rq = 0,
y=0c p# , the desired contradiction. To see that Rq is
valuation, note first that ht(g/p) §_ht(6) ; then Rq is a
quasilocal domain with treed spectrum and global dimension at
most 2 , whence another appeal to [16, Theorem 2.2] completes

the proof.
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