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COMMUNICATIONS IN ALGEBRA, 18(11), 3889-3903 (1990) 

GORENSTEIN CONDUCIVE DOMAINS 

David E. DOBBS 
Department of Mathemetics 

University of Tennessee 
Knoxville, TN 37996-1300, USA 

Valentina BARUCCI and Marco FONTANA 
Dipartimento di Matemalica, Istiluto "Guido Castlnuovo" 

Univcrsid di Roma "La Sapicnza" 
00185 Rorna, Italia 

Let R be a (commutative integral) domain with quotient field K . As in [ l l ] ,  
we say that R is a conducive domain in case the conductor (R : V) := 
( u  E K : uV C R ) is nonzero ior each overring V ?t K of R . (Conducive 
domains were introduced implicitly in [8, Theorem 4.51 and studied subsequently 
in [ l l ]  and [6].)  As shown in [ I  I ] ,  familiar examples of conducive domains 
include the classical D +M construction (in the sense of [18, Appendix 111) and 
pseudo-valuation domains (in short, PVD's), in the sense of [20]. Noetherian 
conducive domains are particularly tractable. Indeed, if R is Noetherian and 
conducive, then R is local and of (Kr~111) dinlension at most 1 ([I 1, Corollary 2.71; 
see [5, Theorem 2.21 for a generalization to the Archimedean case). Moreover, if 
R is Noetherian and conducive, then each overring of R is Noetherian and 
conducive. In particular (apart from the trivial case R = K ), the integral closure of 
R is a DVR which is a finitely generated R-module (cf. [6, Theorem 6 and 
Corollary 71); and each overring of R is analytically irreducible. This last fact 

Copyright O 1990 by Marcel Dekker, Inc. 
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3890 DOBBS,  BARUCCI ,  AND FONTANA 

allows us to apply work of Kunz [23] on symmetric (value-)semigroups, with 
which we assume familiarity. Recently, basing their work on [23], Friiberg- 
Gottlieb-Haggkvist [17] have characterized the Gorenstein domains in a particular 
class of Noetherian conducive domains. Our chief interest here is to generalize [17, 
Theorem]. 

The authors of [I71 considered the following type of Noetherian conducive 
domain R : the integral closure of R is R'= k [ [ X j ]  where k is a field, k C R , 
and (R : R3 = XZnk[[X]] for some positive integer n ; they proved that R is 
Gorenstein i f  and only if R is maximal with the given conductor. The examples in 
[17] (and 123, Theorem]) reveal the importance of their third assumption. While 
also retaining the second assumption (in the form that R coritains the residue class 
field of R '  ), we obtain the desired generalization in Theorem 4. By using 
cotnpletions and flatness (at the level of [9]) in conjuction with [17, Theorem], we 
show how to generalize to the case in which R'  is an arbitrary (not necessarily 
complete) DVR. 

It is, however, not possible to generalize [17, Theorem] to arbitrary Noetherian 
conducive domains. Indeed, Remark 9 (b) shows, in the absence of the hypothesis 
k C R , that a Noetlierian PVD need not satisfy the conclusion of Theorem 4. This 
is developed as an applicatiori of Proposition 6. In the latter result, we characterize 
the Gorenstein domains among the Noetherian conducives, as an application of 
work of Ferrand and Olivier [I51 on rninimal homomorphisms. Moving beyond 
the local case to what might be termed the "locally conducive" Gorenstein domains 
case, we show in Proposition 10 that quadratic orders of algebraic integers are 
Gorenstein and determine which of these are GPVD's. (GPVD's are a type of 
locally conducive domain introduced in [I21 and [13].) We close with a number of 
relevant nonlocal examples. 

Now we fix notation from this point until the end of Remark 5 ,  as 
follows: R is a Noetherian conducive domain with (unique) maximal ideal M ; 
V := R' (is a DVR) with maximal ideal N := nV ; k := VIN ; and I := (R  : V).  

We begin by stating a result of Kunz, contained in the first paragraph of the 
proof of [23, Theorem]. First, recall from [17] that if S is a numerical semigroup, 
then g(S) denotes the largest integer which is not contained in S ; and v(R)  
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GORENSTEIN CONDUCIVE DOMAINS 3891 

denotes the value-semigroup of R , where v is a (discrete rank 1) valuation 
associated to V . 

LEMMA 1 (Kunz [23]). Assume that k C R . If n := g(v(R)) , then 
I = N"+' . . 

The next result accomplishes half our main goal of generalizing [17, Theorem]. 
First, we recall two results. Since R is Noetherian and conducive, it is 
analytically irreducible, so that [23, Theorem] applies to it; the upshot in case 
k C R is that R is Gorenstein if and only if v(R) is a symmetric semigroup. 
Also, by a result of Roquette [28] (which is also given in [23, page 748]), if R is 
Gorenstein, then QR(V/I) = 2QR(RII) (Roquette's proof depends on the standard 
fact [22, Theorem 2221 that R is Gorenstein if and only if each of its nonzero 
ideals is divisorial.) 

PROPOSITION 2. Assume that k C R . If R is Gorenstein, then there is 
no strictly larger ring T such that R c T c V  and (T : V) =I. 

Proof. Since R is Gorenstein, v ( R )  is symmetric. Now suppose that 
(T : V) = I for some ring T such that R C T CV. By the earlier remarks, T is 
Noetherian and conducive. Hence, since (T : V) = (R : V) , it follows from 
Lemma 1 that g(v(T)) = g(v(R)) . Therefore, by an observation in [17, page 
16221, we may conclude v(R) = v(T) , in view of the symmetry of v(R) and the 
inclusion v(R) C v(T) . In particular, v(T) is symmetric, and so T is 
Gorenstein. The above-cited result of Roquette now gives the equations: 

QR(VII) = 2QR(R/J) and QT(VII) = 2QT(TIn . 
Let d := dimRIM(TINnT) . Since k C RIM C TI(NnT) C VIN = k canonically, 
we have d = 1 . Hence: 

QR(V/I) = QRII(VII) = d.QTII(VII) = Q1{V/I) 
and, similarly, QR(TII) = Q7.(TII). It follows that: 

212 ~ ( R l l )  = QR(V//) = Q r(V//) = 2Q7.(T/0 = 2!2~(1'/1) 
and so QR(R/f) = QR(T/I) . Thus: 

QR(T/R) = l?~((TlI)/(Rlf) ) = QR(T/I) - BR(R/I) = 0, 
and so TIR = 0 , whence T = R , to complete the proof. W 
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3892 DOBBS, BARUCCI, AND FONTANA 

Before giving our main result, we collect some useful information and 
* 

techniques. Henceforth, denotes completion in the M-adic topology. 

L E M M A  3. R^ is a Noetherian conducive domain with maximal ideal M  ̂ = 
h MR^ ; the integral closure of is p , which is a complete DVR; and ( R  : V) = 

? . I f  I  = nn+lV , then ? = nn+l p . 
Proof. By [9, Proposition 8 (i), page 2041, R  ̂ is Noetherian with maximal 

ideal M  ̂ = M E  . We turn now to V^ . It is well known that the completion of V 
in the N-adic topology is a complete DVR with maximal ideal generated by n. 

h 

We note next that the canonical map from V into this completion is an 
isomorphism; that is, 

is an isomorphism. This follows via a cofinality argument: 
(&'"')"+I = I m  C M m V  . 

In the same way, we may identify the completions of I  in the M-adic topology 
h h  

and in the N-adic topology; a similar comment holds for V I I  . Moreover, we 
have canonically that: 

We return to the assertion about R^ . Consider the pullback diagram: 

as in [6, Theorem 61. Since R  ̂ is a faithfully flat R-module [9, Proposition 9, 
page 2061, appying the functor X^ @R - yields another pullback diagram. By [9, 
Theorem 3, page 203; and Corollary 1, page 2041, we see that the vertices of the 

h h h h h  h A h  

new pullback diagram are canonically R , V , R l I  = R 1  I  , and V I I  = V / I  ; 
h h  - 

that (R : V) = (R : V) = 7 ; and that 7 = KV , a finitely generated R^-module. 
In particular V^ = R^' . Since 7 canonically contains I ,  it is nonzero, and so 
applying [6, Theorem 61 to the new pullback diagram yields that R  ̂ is a conducive 
domain. The proof is complete. 
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GORENSTEIN CONDUCIVE DOMAINS 

We next give our generalization of [17, Theorem]. 

TIIEOREM 4. Assume that k C R  and that I = N m  for some even 
positive integer m . Then R  is Gorenstein i f  (and only i f )  there is no strictly 
larger overring T such that R C T C V anti (T : V )  = I . 

Proof. Proposition 2 takes care of the parenthetical assertion. Conversely, 
suppose that R  is maximal as a subring of V having conductor I . We claim that 

A 

R  ̂ is maximal as a subring of V having conductor 7 . 
Indeed, suppose that B  is a ring such that C B  C p and (B  : c) = 7 . 

Put A := B n V . Of course, R  C A C V , and so I C ( A  : V) . We next 
establish the reverse inclusion. In fact, 

_Z A h  

(A  :V)C(A : V ) = ( A  :v)=(R^A :?)c(B : p ) = ?  
6 

whence (A : V) C 7 n V = I (the last step following since V is a faithfully flat V- 
module). Hence (A : V) = I  and so, by the hypothesis on R  , we have A = R ; 
that is, B n V = R . 

Consider b  E B . Let i be a positive integer. Since V  is dense in V^ , there 
.--.- 

exists v  E ( b  + N h i )  n V  . (One could just as well take v  E (b + M IV ) n V since 
the proof of Lemma 3 showed that the M-adic and the N-adic completions of V 
may be identified.) As N^ is the maximal ideal of ? , is a DVR and I = Nm 

h 

(by hypothesis), we have = N  rn ( cf. also Lemma 3). Taking i = m leads to 
v ~ b  +Nhm=b  + ? ;  

write v = b + e ,  with ~ E ? c ~ c B  . Hence V E B ~ V = R .  Thus 
A h  

b = v  - e €R + R  = R ,  
A 

and we have proved the claim, namely that B = R  . 
A h  h 

The residue field of V^ is V I N  = V I N  = = k , which is canonically 
contained in ( R , R^, and) V^ . Since is a complete DVR, it follows that 
p = k [ [ X ] ]  (cf. for instance [lo, Theorem 6.31). Since 7 = Grn , the above claim 
allow us to apply [17, Theorem]. The upshot is that (the Noetherian conducive 

A 

domain) R is Gorenstein. Therefore, by [26, Teorema 41, R  is Gorenstein. The 
proof is complete. . 

REMARK 5. (a) The last part of the proof of Theorem 4, namely that 
A 

A = R implies that B = R , may also be carried out as follows. We have 
canonical isomorphisms: 
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DOBBS,  B A R U C C I ,  AND FONTANA 

n - - 
the last one holding via [9, Remark 1,  page 181. Now V @ R R  r V G V 

canonically contains B @RE since R  ̂ is R-flat. Thus, the displayed 

isomorphisms can continue with B @np = BR^ (via [9, Proposition 10, page 
341, which applies since K^ is R-faithfully flat). In other words, R^ is identified 

n 

with B R = B , as desired. 
(b) In  view of the role of [23] in the above work, it seems useful to make the 

following remark. A domain D is Noetherian and conducive if and only if D is 
(Noetherian) local, dim(D) 6 1 and D is analytically irreducible. 

We remind the reader that for the rest of tile paper, the previous 
notatiorr (R, M, etc.) is no longer fixed. 

In the following Remark 9 (b), we shall show that the conclusion of Theorem 4 
fails if we omit the hypotheses k C R and 1 = Nm for some even integer m . 
The most natural way to omit these hypotheses is to take R to be a PVD. Recall 
that PVD's have tractable pullback descriptions [2, Proposition 2.61. The 
Noetherian upshot is this (cf. [2, Corollary 3.291, (6,  Theorem 61) : R is a 
Noetherian PVD if and only if R n V xk kg, where (V, N) is a DVR, k := VIN, 
and kg c k is a finite-dimensional field extension. Necessarily in this situation, 
we have that N is (also) the maximal ideal of R , V = (N : N) = R' , and kg = 
RIN . 

We next use the conductors to develop a characterization of Gorenstein 
conducive domains that does not have the restrictive hypotheses of Theorem 4. 
Since any DVR is Gorenstein, we focus on the case R t R' . 

PROPOSI'I'ION 6. Let R be a Noetheriarz conducive domain with maximal 
ideal M . Assume that R is not integrally closed. Put E := (M : M) and 
ko := RIM . Then the following conditions are equivalent: 

(1) R is Gorenstein; 
( 2 )  Q R(E/R) = I ; 
(3) dimb(E/M) = 2 ; 
(4) either EIM z ko[X]/(X2) as a ko-algebra or EIM is a two-dimensional 

field extension of ko . 
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G O R E N S T E I N  CONDUCIVE DOMAINS 3895 

Proof. Note that E z EndR(M) . Hence, by [15, Proposition 4.71, (1) is 
e<uivalent to QR(EIR) I 1 . However, if R is Gorenstein (not integrally closed, 
by hypothesis) then QR(EIR) + 0 , that is, E + R . Indeed, since R + R' , we 
see in this case via [21, final paragraph] that E is a minimal proper overring of R . 
Thus, (1) e=, (2) . 

The equivalence of (2) and (3) results from the following calculation of 
lengths: 

QR(E/R) = Qko(EIR) = dinlko((E/M)lko) = dimb(EIM) - 1 . 
Since (4) * (3) trivially, it suffices to show that (2) * (4). Assume (2) . 

Hence there is no R- module contained strictly between R and E . In particular, 
the inclusion map R s E is a minimal homomorphism, in the sense of (151. By 
[15, Lemrne 1.4 (i)] ko .=+ EIM is also a minimal homomorphism. According to 
[15,  Lemme 1.21, (4) will follow once we show that EIM is not isomorphic to 
kox ko as a ko-algebra. This, in turn, holds since E (and hence EIM ) is local. 
The proof is complete. W 

We proceed to analyze the dichotomy in condition (4) of Proposition 6 

REMARK 7. (a) Put R := k + X2k + X4k + X6kl[X]], where k is a field. 
Evidently, R '  = k[[X]] and (R : R') = X6k[[X]] , Hence R is a conducive 
domain. Moreover, R is Noetherian (by Eakin's Theorem, cf. [25, Theorem 3.7 
(i)], since R' = R[X] ). In fact, R is Gorenstein by [23, Theorem], since v(R) 
is a symnletric semigroup. (This last assertion may be seen via [23, Lemma]: 
g(v(R)) = 5 , (0, 2, 4 )  C v(R) , and (1, 3, 5)  C N\v(R) .) In particular, R is 
the kind of domain considered in Theorem 4 (and [17, Theorem]). 

Moreover, R satisfies the first possibility in condition (4) of Proposition 6. 
To see this, first note that the maximal ideal of R is M := X2k + X4k + X6k[[X]] , 
so that E = (M : M) = k + X2k + X4k[[X]] . Then EIM = k [ ~ ]  , where E := 
X5 + M . Observe that ~2 = XI0 + M = 0 , whence EIM r k[X]/(X2) , as 
asserted. 

(b) Now assume that R is as in Proposition 6 and satisfies the second 
possibility in condition (4) . We shall show that R is not of the kind considered 
in Theorem 4 (and [17, Theorem]). Indeed, we show that R is a PVD. (Hence, 
arly Gorenstein domain of the kind in Theorem 4 must satisfy the first possibility in 
condition (4) .) 
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3896 DOBBS, BARUCCI, AND FONTANA 

Let V := R' . It suffices to show that E = V .  We notice that E is local one- 
dimensional Noetherian domain, and M is also the maximal ideal of E . Since 
(M : M )  = E , then by [4, Theorem 1.81 it is easy to conclude that E = E' = R'  = 
= V . The proof is complete. 

It is convenient to record the PVD case of Proposition 6 ((1) a (4)). 

COROLLARY 8. Let R be a Noetherian PVD with maximal ideal M and 
canonically associated valuation ring V := (M : M) = R' . Then R is Gorenstein if 
and only if [VIM : RIM] 1 2 . W 

REMARK 9. (a) It seems worthwhile to record an example of a (non- 
integrally closed) Gorenstein PVD. In view of Corollary 8, one natural example is 
R + XC[[X]]. 

(b) Let (R, M) be a Noetherian PVD with V := R' such that [VIM : RIM] = 
p , an odd prime. (A concrete example with p = 3 is given by R := 
Q + X Q ( ~ ~ ) [ [ X ] ]  . It is interesting to note that a similar construction was 
introduced in [3] for other purposes.) By Corollary 8, R is not Gorenstein. 
However, R is maximal as a subring of V with given conductor to V . Indeed, 
there is no ring strictly between R and V (since any such ring would induce a 
field strictly between RIM and VIM ). I n  particular, the "if" assertion of 
Theorem 4 fails if we omit the hypotheses " k c R and I = Nm for some even 
integer m ". 

It is wellknown that a domain is Gorenstein if and only if it is locally 
Gorenstein [19, Th. 9.61. Accordingly, it is of interest to move beyond the 
conducive case and consider "locally conducive" Gorenstein domains. A natural 
family of locally conducive domains is given by the LPVD's (and GPVD's) 
introduced in [12]. We turn to these next. 

We assume familiarity with the definitions of LPVD (locally pseudo-valuation 
domain) and GPVD given in [12]. We also assume the fact that each GPVD is an 
LPVD [12, page 1561; and that the converse is false, even for one-dimensional 
Noetherian domains [12, Example 3.41. 

Example 11 will exhibit nonlocal Gorenstein domains, some of which are 
GPVD's (hence, locally conducive), others being non-locally conducive. To do 
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G O R E N S T E I N  C O N D U C I V E  DOMAINS 3897 

this, we use quadratic orders of algebraic integers. Recall that each nonmaximal 
such order is unique expressible as Z[nwd] , where d is a squarefree integer, 
n 2 2 is an integer, and ,- 

Of course, Z[wd] is the (Dedekind, hence Gorenstein) maximal order of ~ ( d d )  . 
PROPOSITION 10. Let R := Z[nod] , where d is a squarefree integer 

and n 1 2 is an integer. Then: 
(a) R is Gorenstein; 
(b) R is a GPVD i f (and  only i f )  R is an LPVD. 
Proof. (a) Each nonzero ideal I of R is a modcle of ~ ( d d )  , in the sense 

of [I]. Indeed, I satisfies the conditions of [ I ,  Theorem 6, page 2261; for if 
0 + r E I , then (r,  rnwd) is linearly independent over Q . In particular, I is a 
2-generated ideal of R  . Thus if P E Spec(R) , each ideal J of Rp is 
2-generated (since J = ( J  nR)Rp) .  By  a result of Bass and Matlis (cf. [7, 
Proposition 6.41, [24, Theorem 13.2, page 120]), Rp is Gorenstein. Hence, so is 
R .  

(b) We adapt some techniques developed to study GPVD's in [12]. Since R 
is an LPVD, it is seminormal. In  particular, it is "seminormal in" T := Z[W*] , in 
the sense of [29]. Thus, by [29, Lemma 1.31, 1 := (R : T)  is a radical ideal of T .  

According to [14, Theorem 2.51, it remains only to show that 
Spec(q -> Spec(R) is an injection. If M is a maximal ideal of R , then RM 
is a Noetherinn PVD; hence the integral closure of RM is a DVR (cf. [2, Corollary 
3.301). It follows easily that T cannot have distinct primes contracting to M . 
The proof is complete. rn 

In view of the above "ubiquity" result, it is interesting to note that a cubic order 
of algebraic integers need no[ be Gorenstein. An explicit example of this has been 
given by M. Picavet-L'Herniitte [27, pages 28-30]. Also with regard to 
Proposition 10 (b), it should be noted that the ring R  in [12, Example 3.41 can be 
arranged to be a (one-dimensional) Gorenstein LPVD which is not a GPVD . 
(Simply take n = 2 in the definition of Ki .) 
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3898 DOBBS, B A R U C C I ,  AND FONTANA 

EXAMPLE 11. (a) There exists a Gorenstein nonlocal GPVD (hence locally 
conducive domain) of the form R = Z[nodj . Indeed, it suffices to take n to be an 
odd rational prime p and d a squarefree integer such that the Legendre symbol 
(d/p) = -1 . (For instance, take p = 3 , d = 2 ; or p = 5 , d = 3 .) 

For the verification, observe that R is Gorenstein via Proposition 10; R is 
nonlocal since Max(R) -- Max@) is surjective, by integrality; and R is a GPVD 
by 114, Theorem 2.51. 

(b) There exists a Gorenstein nonlocal non-locally conducive domain of the 
form R = Z[nwd] . Indeed, i t  suffices to take n = 2 and d a squarefree integer 
such that d 1 (mod 8). (Then R = Z[2wd] = ~ [ d d ]  .) 

As in the proof of (a), we see that R is Gorenstein and nonlocal. By 
Proposition 10 (b) and (14, Remark 2.61, R is not LPVD (cf. also [13, Example 
41). However, R is seminormal, by applying [14, Corollary 4.51. It is known 
(cf. [ l l ,  Corollary 2.91 or [6, Corollary 111) that a Noetherian seminormal 
conducive domain must be a PVD. Hence, some localization of R is not 
conducive, to complete the proof. 

For the sake of completeness we give next the analogue of Example 11 for 
Noetherian nonlocal non-Gorenstein domains. 

EXAMPLE 12. (a) There exists a Noetherian nonlocal non-Gorenstein 
GPVD (hence, locally conducive domain). For instance, consider the polynomials 
fl := X4 + X3 + X 2  + X + 1 and f2 := X2 + X + 1 , both of which are irreducible 
over Q . Put Ki :=Q[X] /Cf, ) . It suffices to take R to be the pullback of the 
canonical surjection Q[X] - K 1  x K 2  and the inclusion Q x Q L) K 1  x K2 . 

By a standard "gluing" argument (cf. [16, Theorem 1.4]), the map 
Spec(Q[X]) -- Spec(R) is a bijection, indeed, a homeomorphism and an order- 
isomorphism. In particular, R is nonlocal. Note also that R and Q[X] are one- 
dimensional domains sharing a nonzero radical ideal I := f&Q[X] . Hence, by 
definition (cf. [12, Theorem 3.1]), R is a GPVD. 

Consider a nonzero P E Spec(R) , with N the unique prime of Q [ X ]  lying 
over P . As in the proof of Proposition 10 (b), we have R p  2 Q[XIN if I Q P . 
If I C P , then N is either ( f l )  or (fi) . Let Pi denote the corresponding 
primes of R . By standard isomorphism theorems, RIPi r Q . Since Q[X] is a 
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Dedekind domain, [12, Proposition 3.61 now yields that R is Noetherian. 
Moreover, Rp, is a PVD with canonically associated valuation ring QIX](fl)  (by 
[12, page 1561) and a four-dimensional induced extension of residue class fields. 
Hence, by Corollary 8, Rp, is not Gorenstein; thus neither is R . 

(b) Arguing as in (a), we may produce also a Gorenstein nonlocal GPVD (cf. 
also Example 11 (a)). It suffices to take the pullback of the surjection 
C[X] -. C[X]/(X2 - X) s C x C and the inclusion R x R c. C x C  . 

(c) Finally, we exhibit an example of a nonlocal, non locally conducive, non- 
Gorenstein, Noetherian one-dimensional domain (cf. also Example 11 (b)). 

Let ~ ' L I  k be a proper inclusion of fields of characteristic zero and let X be 
an indeterminate over k . Suppose that 3 S [k : k l  < w . Set T := k[X] , 
Mo := (X) , M I  := (X - I )  , N := (X - 2) . We consider the following rings, 
viewed as pullbacks in the obvious ways: 

R : = ( f e T :  f ( O ) = f ( l )  and f ( 2 ) ~ k ' ) ,  
R1 := [ (Q E T M ,  n T M ,  : ~ ( 0 )  = ~ ( 1 )  ) and R2 := { (Q E TN : ( ~ ( 2 )  E k' ) . 

It is easy to see that R 4 T is finite, having as conductor the ideal 
I := Mo n M I  n N . By [16, Theorem 1.4 and Proposition 1.81 R is a one- 
dimensional Noetherian domain. A direct calculation shows that M o n  R = 

M I  n R . Set m := Mo n R and n := N n R . It is clear, from the universal 
mapping property of pullbacks, that R,, c R1 and R, c R2 . 

We next prove the reverse inclusions. If Q E R 1  then, by applying the 
Lagrange interpolation formula, it is possible to find a E R \ m such that acp E R . 
(Indeed write Q = ulv with u , v E T and v(0) # 0 ,  v(1) # 0 .  If (~(0) = ~ ( 1 )  
# 0 ,  put a := av where a E T satisfies a(0) = u(1) , a(1) = u(0) , a(2) = 0 ; if 
~ ( 0 )  = ( ~ ( 1 )  = 0 , put a := bv where b E T satisfies b(0) = v(1) , b(1) = v(0) , 
b(2) = 0 .) Thus R ,  = R1 . 

By a similar argument, one can prove that R, = R2 . (Suppose cp = ulv E R2 
with u , v E T , v(2) # 0 and ( ~ ( 2 )  E k' . Then (av)cp E R , where a E T 
satisfies a(0) = a(1) = 0 and a(2) = llv(2) .) 

By Remark 5 (b), R1 is non-conducive, because R1' = T M ,  n T M ,  is not a 
valuation domain; and (the Noetherian PVD) R2 is non-Gorenstein by Corollary 
8, because [k : k l 2  3 . Hence R is a domain with the announced properties. 

We have already given an example of a nonlocal, locally conducive Gorenstein 
domain (cf. Example 11 (a)). Such a domain satisfies locally the second possibility 
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in condition (4) of Proposition 6, i.e. it is locally a PVD. We close with a class of 
examples of nonlocal, locally conducive, non necessarily LPVD, Gorenstein 
domains. 

EXAMPLE 13. (a) Let C be a semilocal principal ideal domain, P  a 
nonzero prime ideal of C and V := Cp . Let R be a Gorenstein conducive 
domain with integral closure equal to V and suppose that R satisfies the first 
possibility in condition (4) of Proposition 6. Set A := R n C . We claim that the 
canonical map Spec(C) + Spec(A) is a homeomorphism and moreover that, for 
every Q E Spec(C) , if Q # P  , then A q  = CQ , where q  := Q n A , and if 
Q  = P ,  then A p = R ,  where p  := P n A  . 

By construction, I := (R : V) = (PCP )", where n 5 2 , because R is not a 
PVD. Since Pn c I C R and Pn C C, we have P n  C R n C = A , thus 
Pn C (A : C). Consider (0) + q E Spec(A) . If Pn Q q  then (A : C) Q q  , hence 
by  [16, Theorem 1.4, (c)] there exists exactly one prime Q E Spec(C) above q  
and, moreover, Aq = C Q .  If q 2  P n 3 p n ,  then q  2 p .  

If q  = p  , first notice that there is only the prime P  of C over p  . (In fact, 
if P ' E  Spec C a n d P i n A  = p ,  then P ' I  Pn, so P ' x P  hence P ' = P  .) We 
want to show now that Ap = R . Trivially Ap C R , because R is a local 
overring with the maximal ideal over p  . For the opposite inclusion, set S := A \p 
and notice first that, since P is the only prime of C disjoint from S , then S-IC 
coincides with V . Now, let x be an element of R . Since R c V = S- lC  , 
there exists s E S such that xs E C . Since x E R and s E S c A c R , we 
have X S E  R .  Thus X S E  C n R  = A .  

To prove our claim it suffices to show that p  is a maximal ideal 
of A . Suppose p  C m E Spec(A) , and set T := A \m . Notice that 
T- 1C = n (CQ : Q  E Spec(C) , Q  disjoint from T ) and that T-1R = T-lAp = 
Ap = R . Thus if Q ,  , ..., Qr are the primes of C disjoint from T and different 
from P  , we have Am = T -lA = T - lC n T -lR = CQ, n ... n C Q I n  R . Now 
the set of non-units in Am is: 

mAm = (QICQ, n A m  ) u ... u (Qr C Q , ~ A ~ )  u @Ap n Am) . 
If qi := Qi n A  (for i = 1, ..., r ) then, after intersecting the previous equation 

with A ,  weget m = q l u  ... u q r u p .  Since m # q i  (infact, p Q q i ) ,  for 
i =  1 ,..., r, we have m = p .  
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Since A is semilocal and locally Noetherian, we deduce easily that A is 
Noetherian. In conclusion, if C is not local, A is a (one-din~ensional) nonlocal 
locally conducive Gorenstein domain, but it is not an LPVD because Ap = R is 
not a PVD. 

(b) The construction in (a) can be generalized in the following way. Let C be 
a semilocal principal ideal domain. Set C = V l  n ... n V ,  , where (Vi , N i )  is a 
DVR, for i = 1 ,..., s . Fix j I s . For each k = I ,..., j , let Ak be a Gorenstein 
conducive domain with integral closure equ;ll to V k .  Arguing as in (a), one can 
show that A : = A I  n . . . n A j  n V,,, n...n V ,  is a semilocal one-dimensional 
Noetherian domain with maximal ideals Pi := Ni n A (i = 1, ..., s ), such that 
Ap,=Ak,  for k = 1 ,..., j and Ap, = V i  , for i = j t l ,  ..., s . Such a domain A 
is a nonlocal, locally conducive Gorenstein domain; and it is an LPVD or a non- 
LPVD depending on the choice of the Gorenstein conducive domains Ai . 
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