From References: 3 From Reviews: 0

Article

MR2183514 (2006h:13002) 13A15 (13G05)

Fontana, Marco (I-ROME3); Picozza, Giampaolo (I-ROME3)

Semistar invertibility on integral domains. (English summary)

Algebra Colloq. 12 (2005), no. 4, 645-664.

The authors have written several interesting papers on the semi-star operation [see, for example, S. El Baghdadi and M. Fontana, Comm. Algebra **32** (2004), no. 3, 1101–1126; MR2063800 (2006a:13003); S. El Baghdadi, M. Fontana and G. Picozza, J. Pure Appl. Algebra **193** (2004), no. 1-3, 27–60; MR2076377 (2005g:13032); M. Fontana and K. A. Loper, Comm. Algebra **31** (2003), no. 10, 4775–4805; MR1998028 (2004e:13034)]. This paper is a continuation of their works on the semistar operation. In this paper, the authors introduce the notions of *-invertibility and quasi-*-invertibility, and then they extend many results proved for star (e.g., d-, v-, t-, w-) invertibility.

Let D be an integral domain with quotient field K such that $D \neq K$. Let $\overline{F}(D)$ be the set of all nonzero D-submodules of K, F(D) the subset of $\overline{F}(D)$ consisting of fractional ideals of D, and f(D) the set of nonzero finitely generated D-submodules of K; hence $f(D) \subseteq F(D) \subseteq \overline{F}(D)$. A map $*: \overline{F}(D) \to \overline{F}(D)$, $E \mapsto E^*$, is called a semistar operation on D if (i) $(xE)^* = xE^*$, (ii) $E \subseteq F$ implies $E^* \subseteq F^*$, and (iii) $E \subseteq E^*$ and $E^* = E^*$ for each $E^* = E^*$ and $E^* = E^*$ for each $E^* = E^*$ and $E^* = E^*$ for each $E^* = E^*$ and $E^* = E^*$ for each $E^* = E^*$ fo

Let * be a semistar operation on D. A nonzero integral ideal I of D is a *-ideal (resp., quasi-*-ideal) if $I^* = I$ (resp., $I^* \cap D = I$). A quasi-*-ideal maximal among proper quasi-*-ideals of D is called a quasi-*-maximal ideal. An $I \in \overline{F}(D)$ is said to be *-finite if there exists $J \in f(D)$ such that $I^* = J^*$. For each $E \in \overline{F}(D)$, let $E^{*_f} = \bigcup \{F^* | F \in f(D) \text{ and } F \subseteq E\}$. Then $*_f$ is also a semistar operation on D and $(*_f)_f = *_f$. Let M(*) be the set of quasi-*-maximal ideals of D; it is known that if $* = *_f$, then $M(*) \neq \varnothing$. Let $N(*) = \{h \in D[X] | h \neq 0 \text{ and } (c(h))^* = D^*\}$, where c(h) is the content of the polynomial $h \in D[X]$. Then the ring $\operatorname{Na}(D, *) := D[X]_{N(*)}$ is called the Nagata ring of D with respect to *.

Let * be a semistar operation on D. An $I \in F(D)$ is *-invertible if $(II^{-1})^* = D^*$. An $I \in \overline{F}(D)$ is quasi-*-invertible if $(I(D^*:I))^* = D^*$. Note that $I^{-1} = (D:I) \subseteq (D^*:I)$; so if $I \in F(D)$ is *-invertible, then I is also quasi-*-invertible. The authors give an example which shows that a quasi-*-invertible (integral) ideal need not be *-invertible. Among other things, the authors prove the following. (1) An $I \in F(D)$ is $*_f$ -invertible if and only if I and I^{-1} are $*_f$ -finite and I is *-invertible. (2) Each *-invertible ideal $I \in F(D)$ is $*_f$ -invertible if and only if I and I are $*_f$ -finite and I is quasi-*-invertible. (4) If I and I and I is quasi-*-invertible. (4) If I and I and I is invertible if and only if I and I and I is I and I and I and I and I are I and I are I and I and I are I and I are I and I are I and I and I are I and I are I and I are I are I and I are I and I are I and I are I are I are I are I and I are I and I are I are I are I and I are I are I are I and I are I are I are I are I and I are I are I are I are I are I and I are I and I are I are I and I are I are I are I are I are I and I are I and I are I are I are I and I are I are I are I are I are I and I are I are I are I are I and I are I and I are I are I are I are I are I and I are I and I are I are I are I are I are I are I and I are I and I are I a

Reviewed by Gyu Whan Chang