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1. INTRODUCTION

A property " is said to be a globalizing property for a class CC of integral
domains if for each integral domain R in CC, the property " holds for the
localizations R of R at each maximal ideal M of R. For example, if " isM
the property that each non-zero ideal is contained in at most finitely many
maximal ideals, then clearly " holds for every local integral domain, and
hence is a globalizing property for the class of integral domains. In this
paper we focus on several globalizing properties and indicate how these
properties arise in the consideration of different classes of Prufer domains.¨
We are particularly interested in when local divisoriality and invertibility
properties can be globalized.

Globalizing properties allow information about the localizations of an
integral domain to be transferred to the domain itself. For example, it will

Žbe shown in Section 4 that an integrally closed domain R is SV-stable i.e.,
Ž ..every ideal I is an invertible ideal of I : I if and only if each non-zero

ideal of R is contained in at most finitely many maximal ideals of R and
R is locally SV-stable for all maximal ideals M of R. This reducesM
consideration of integrally closed SV-stable domains to the local case,
which, in this instance, is well understood: A local domain is integrally
closed and SV-stable if and only if it is a valuation domain containing no
non-zero idempotent prime ideals.

H-local domains provide a prominent example of a globalizing property.
An integral domain R is defined to be h-local provided each non-zero

* Some of these results appeared in the author’s Ph.D. dissertation, which was written
under the supervision of Professor J. D. Reid at Wesleyan University.
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ideal of R is contained in at most finitely maximal ideals of R and each
non-zero prime ideal of R is contained in a unique maximal ideal of R.
H-local domains arise in many contexts and have a surprising variety of
characterizations. Examples of these domains include Noetherian domains
of Krull dimension one, almost maximal domains, and integral domains for

Žwhich every ideal is divisorial i.e., every ideal I has the property that
Ž #1 .#1 .I $ I .

In Section 3 we give different characterizations of h-local integral
domains and then restrict to h-local Prufer domains. If I is a finitely¨
generated ideal of an integral domain R, then for each maximal ideal M

Ž #1 . Ž .#1of R, it is the case that I $ I . Thus every Noetherian domainM M
has the property that the localization of the dual of an ideal is the dual of
the localization, but this fact does not hold true for arbitrary integral
domains. Since we are interested in globalizing divisoriality and invertibil-
ity properties of Prufer domains and both of these properties involve the¨
dual of an ideal, it makes sense to determine when the dual of an ideal
localizes. It has been shown recently that if an integral domain R is

Ž #1 . Ž .#1h-local, then every ideal I of R satisfies I $ I . We show inM M
Section 3 that the converse is true for Prufer domains.¨

We also consider several weaker globalizing properties for Prufer do-¨
Ž .mains, including "" and the separation property. In Section 2 we

characterize the separation property in different ways, showing how this
property globalizes local divisoriality properties of non-maximal prime
ideals of Prufer domains. This is used to show that if the prime spectrum¨
of a Prufer domain R is Noetherian, then the duals of radical ideals of R¨
localize, in the sense discussed above. We also indicate in Section 3 how
for Prufer domains the requirement that each ideal be contained in at¨
most finitely many maximal ideals in the h-local criterion can be replaced

Ž .by weaker properties such as "" and the radical trace property.
There has been recent interest in Prufer domains having no non-zero¨

idempotent prime ideals. These domains are known as strongly discrete
Prufer domains. The richness of this class of domains is due to their strong¨
local properties. In fact, the property of being strongly discrete is solely a
local property. In Sections 4 and 5, we characterize different classes of
strongly discrete Prufer domains using some of the globalizing properties¨
developed in the previous sections. The characterization of integrally
closed SV-stable domains has been mentioned above. If R is a strongly
discrete valuation domain and R" is an overring of R, then R" has the
property that every prime ideal of R" is a divisorial ideal of R". This
property in fact characterizes strongly discrete valuation domains. We
show the strongly discrete Prufer domains which preserve this property are¨

Ž .precisely those satisfying "" . This class is well known to coincide with
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the class of generalized Dedekind domains, for which we give several other
characterizations in terms of stability and divisoriality properties.

It is not hard to show that strongly discrete valuation domains can be
characterized by the property that each prime ideal P is a cancellation

Ž .ideal of P : P . We show that the class of Prufer domains that possess this¨
property is the same as the class of strongly discrete Prufer domains that¨
have the separation property. The remaining case, h-local strongly discrete
Prufer domains, has been classified by Bazzoni and Salce. An integral¨
domain R is said to be a di!isorial domain if every ideal of R is divisorial.
If every overring of R is divisorial, then R is a totally di!isorial domain.
Bazzoni and Salce have shown that an integrally closed domain is totally
divisorial if and only if it is an h-local strongly discrete Prufer domain.¨

In the final section we focus first on a representation theorem for ideals
of totally divisorial domains. S. Gabelli and N. Popescu, in a recent paper,
proved a representation theorem for divisorial ideals of generalized
Dedekind domains. They showed that a Prufer domain R is a generalized¨
Dedekind domain if and only if every divisorial ideal of R can be written
as a product of an invertible ideal and finitely many comaximal prime
ideals. Using the results of the previous sections, we show that every ideal
of a Prufer domain R is of the form JP P ### P for some invertible ideal¨ 1 2 n
J of R and pairwise comaximal prime ideals P , P , . . . , P of R if and only1 2 n
if R is strongly discrete and h-local.

To close the final section, we list several existence results for the
integral domains studied in Section 4. A. Facchini has shown that any
Noetherian tree with least element can be realized as the prime spectrum
of a generalized Dedekind domain. Using his result and the results of
Section 4, we indicate how successively restricting Noetherian trees with
least element guarantees that they can be realized by integrally closed
SV-stable domains and integrally closed totally divisorial domains.

% &I thank Professor Gabelli for making a preprint of 10 available to me. I
am also indebted to the referee for several suggestions that have helped
streamline the paper.

Terminology and notation are standard throughout, with a few excep-
tions that are noted below. By integral domain we mean a commutative
ring with identity having no zero-divisors. To avoid vacuous assertions, all
integral domains are assumed not to be fields. If R is an integral domain

Ž .with quotient field Q and X and Y are submodules of Q, then Y : X will
" 4 Ž . Ž .denote q ' Q : qX ( Y . We will sometimes write E X for X : X when

X is a submodule of Q and we wish to emphasize the ring structure of
Ž . Ž .X :X . The choice of notation is explained by the fact that E X can be

Ž . Židentified with End X . An ideal I of R is SV-stable in the sense ofR
% &. Ž .Sally and Vasconcelos 22 if I is an invertible ideal of E I . The set of

Ž .maximal ideals of an integral domain R is denoted Max R ; the set of
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Ž .prime ideals, Spec R . We will often have occasion to refer to the ring
" Ž . 4) R : N ' Max R and N # M , where M is some maximal ideal of R.N

% & % &Following Matlis in 19 , we give this ring a name, ‘‘ M .’’ We will view RM
as a submodule of the quotient field Q of R and if X is a submodule of
the quotient field Q, then we will often write X for XR . Finally, weM M
write * for proper inclusion.

For more on generalized Dedekind domains, SV-stable domains, strongly
Ž .discrete Prufer domains, and integral domains satisfying "" , see the¨

% &recent monograph 6 .

Ž .2. "" AND RELATED PROPERTIES

Ž .An integral domain R is said to satisfy " if for any two distinct subsets
Ž .$ and $ of Max R , it is the case that ! R # ! R . If1 2 M ' $ M N ' $ N1 2

Ž . Ž .every overring of R satisfies " , then R is said to satisfy "" . If M is a
% & " Ž . 4maximal ideal of R, define M $ R : N ' Max R and N # M . ThenN

Ž . % &an integral domain R satisfies " if and only if M " R for eachM
Ž . Ž .M ' Max R . Prufer domains satisfying " were shown in Theorem 1 of¨

% &12 to be precisely those Prufer domains which can be represented¨
" 4uniquely as an intersection of a family V of valuation overrings of R%

Ž .having no containment relations among the V ’s. Thus " is a restriction%

on how R can be assembled as an intersection of valuation domains.
Before restricting to Prufer domains, we note the following interpreta-¨

Ž .tion of " in terms of divisorial ideals, stating first a simple lemma that
will be needed often.

LEMMA 2.1. Let R be an integral domain with quotient field Q. If M is a
maximal ideal of R and q ' Q, then q ' R if and only if R ) Rq#1 " M.M

Proof. Assume first that q ' R . Then there exist a, b ' R such thatM
b # M and q $ a"b. Therefore, b ' R ) Rq#1 and b # M. Conversely,
suppose that there exists b ' R ) Rq#1 such that b # M. Then there

#1exists a ' R such that b $ aq . It follows that q ' R .M

PROPOSITION 2.2. The following are equi!alent for an integral domain R
with maximal ideal M.

Ž . % &1 M " R .M

Ž .2 There exists a di!isorial ideal D of R such that the only maximal
ideal containing D is M.

Ž . #13 There exists an ideal J of R such that J # R and the only maximal
ideal containing J is M.
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Ž . Ž . Ž . % &Proof. 1 ! 2 . Assuming 1 , there exists q ' M + R . Define D $M
R ) Rq#1. By Lemma 2.1, the only maximal ideal containing the divisorial
ideal D is M.
Ž . Ž . Ž .2 ! 3 . Assuming 2 , there exists a divisorial ideal D of R such that

the only maximal ideal containing D is M. Since D is divisorial, it cannot
be the case that D#1 $ R.
Ž . Ž . Ž . Ž .3 ! 2 . Assuming 3 , there exists an ideal J of R such that R : J #

Ž .R. Since R : J # R and M is the only maximal ideal containing J, then
Ž Ž ..R : R : J ( M, and M is the only maximal ideal containing the diviso-

Ž Ž ..rial ideal R : R : J .
Ž . Ž . Ž .2 ! 1 . Assuming 2 , there exists a divisorial ideal D such that the

only maximal ideal containing D is M. Write D $ ! Rq for some%
" 4collection q of elements of Q, the quotient field of R. Then there exists%

& such that R ) Rq is properly contained in R. Since the only maximal&

ideal containing D is M, it must be the case that M is the only maximal
% &ideal of R containing R ) Rq . By Lemma 2.1, M " R .& M

Ž .It follows that a Prufer domain R satisfies " if and only if for each¨
maximal ideal M of R there exists a finitely generated ideal I of R such

% &that the only maximal ideal containing I is M 11, Theorem 3 . Prufer¨
Ž .domains satisfying "" admit a similar description.

% & Ž .LEMMA 2.3 12, Theorem 3 . A Prufer domain R satisfies "" if and¨
only if for each prime ideal P of R, there exists a finitely generated ideal I
contained in P such that each maximal ideal containing I contains P;
equi!alently, ! R " R for each non-zero prime ideal P and collection% M P%

" 4M of maximal ideals not containing P.%

Ž .As Lemma 2.3 suggests, whether or not a Prufer domain satisfies ""¨
depends on the prime ideals of R. Proposition 2.5 will make this explicit.
Another lemma is needed first.

% &LEMMA 2.4 7, Corollary 4.15 . If I is a radical ideal of a Prufer domain¨
R, then

E I $ ! R ) ! R ,Ž . Ž . Ž .% P & M% &

" 4 " 4where P is the collection of minimal prime ideals of I and M is the% &

collection of all maximal ideals of R not containing I.

Ž . Ž .PROPOSITION 2.5. A Prufer domain R satisfies "" if and only if E P¨
Ž .satisfies " for e!ery non-zero prime ideal P of R.

Ž . Ž .Proof. Clearly if R satisfies "" , then so does E P for every prime
Ž . Ž .ideal P of R. To prove the converse, assume that E P satisfies " for all

Ž . Ž .P ' Spec R . Since E M $ R for every maximal ideal M of R, this
Ž .means R satisfies " . Suppose P is a non-zero non-maximal prime ideal



PRUFER DOMAINS¨ 485

" 4of R and M is the collection of maximal ideals of R not containing P.%
Ž . Ž . % & Ž .By Lemma 2.4, E P $ R ) ! R . By Theorem 1 of 12 , E P canP % M%

Ž .be written uniquely as an intersection of valuation overrings of V of E P&

having no containment relations between the V ’s. Therefore, it cannot be&
Ž .the case that ! R ( R . This fact and the fact that R satisfies "% M P%

Ž .implies by Lemma 2.3 that R satisfies "" .

In the next section we characterize those Prufer domains R for which¨
Ž . Ž .every ideal I of R has the property that R : I $ R : I for allM M M

Ž .M ' Max R . This property, as will be seen, is considerably stronger than
Ž ."" . In the present section we show that a weaker version of this
localization property is valid for Prufer domains with the radical trace¨
property, namely, that the duals of products of prime ideals localize. From
this it will follow that the duals of radical ideals of Prufer domains with¨

ŽNoetherian prime spectrum localize. Recall that an integral domain R has
the radical trace property provided that for every ideal I of R, II#1 is

.either a radical ideal of R or is R itself.
Non-maximal prime ideals of valuation domains are divisorial, and every

overring of a valuation domain inherits this property. We characterize in
Lemma 2.7 those Prufer domains which preserve this property. An integral¨
domain R satisfies the separation property if for each pair of distinct prime
ideals P and Q of R such that P * Q, there exists a finitely generated

% &ideal I of R such that P ( I ( Q. In 15 it is shown that R has the
Ž . Ž .separation property if and only if E P Q $ E P for all prime ideals P

and Q of R such that P * Q.

% &LEMMA 2.6 15, Theorems 3.2 and 3.8 and Proposition 3.9 . If P is a
#1 Ž .non-maximal prime ideal of a Prufer domain R, then P $ E P .¨

LEMMA 2.7. The following are equi!alent for a Prufer domain R.¨
Ž .1 R has the separation property.
Ž . "2 If R is an o!erring of R, then e!ery non-zero non-maximal prime

ideal of R" is a di!isorial ideal of R".
Ž .3 For each non-zero prime ideal P of R, non-zero non-maximal prime

Ž .ideals of E P are di!isorial.
Ž . Ž .4 For each non-zero prime ideal P of R, P is a maximal ideal of E P .
Ž . Ž . Ž .5 For each non-zero prime ideal P of R, P : P $ P : P for allM M M

Ž .M ' Max R .
Ž . Ž . Ž .6 For each non-zero radical ideal I of R, I : I $ I : I for allM M M

Ž .M ' Max R .

Ž . Ž . % &Proof. 1 " 4 . This follows from Lemma 10 and Theorem 11 of 5 .
Ž . Ž .1 ! 5 . Let P be a non-zero prime ideal of R. It suffices to check

Ž . Ž .that P : P $ P : P for maximal ideals M containing P. Let M beM M M
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Ž .such a maximal ideal and note that E P R is a valuation ring containedM
in R . Thus there exists a prime ideal Q such that P ( Q ( M andP
Ž . Ž . Ž . Ž .E P R $ R . If Q # P, then by 1 , E P Q $ E P . Hence QR $ R ,M Q Q Q

a contradiction.
Ž . Ž . Ž .5 ! 6 . Assume 5 and let I be a non-zero radical ideal of R. By

Ž . Ž . Ž . " 4Lemma 2.4, I : I $ ! R ) ! R , where P is the collection of% P & M %% &

" 4minimal prime ideals of I and M is the collection of all maximal ideals&

" 4 Ž .of R not containing P. Suppose first that N ' M . Then R ( I : I& N N

Ž . Ž . " 4( I : I $ R . Suppose next that N ' Max R but N # M . SinceN N N %

the set of prime ideals contained in N is linearly ordered, it is the case
" 4that there exists a unique % such that P ' P and P ( N. Write0 % % %0 0

N $ N. For each % # % , there is a maximal ideal N containing P .% 0 % %0

It follows that if % # & , then N # N and for all % # % , no N con-% & 0 %

Ž . Ž .tains P . Defining P $ P , we have I : I $ R ) ! R )% % N P % # % P N0 0 0 %

Ž . Ž . Ž . Ž .! R . By 5 and Lemma 2.4, R $ P : P ( ! R )& M N P N % # % N N& 0 %

Ž . Ž . Ž . Ž .! R ( ! R ) ! R . Therefore, I : I $ R , and& M N % # % P N & M N N P& 0 % &

Ž . Ž .by Lemma 2.4, I : I $ R . This proves 6 .N N P
Ž . Ž .6 ! 5 . This is clear.
Ž . Ž . Ž .5 ! 1 . Assuming 5 , let P and Q be distinct prime ideals of R such

that P * Q. To show that there exists a finitely generated ideal I of R
such that P ( I ( Q, it suffices by the criterion mentioned before the

Ž . Ž .statement of the lemma to show that QE P $ E P . By assumption P is
Ž .a non-maximal prime ideal of R. Thus, for every M ' Max R such that

Ž . Ž . Ž . Ž .P * M, P : P $ R $ R Q $ Q P : P , and so E P $ QE P .M P P M
Ž . Ž .2 ! 3 . This is clear.
Ž . Ž . Ž .3 ! 4 . Assuming 3 , suppose that P is a non-maximal prime ideal of

Ž .R that is also a non-maximal prime ideal of E P . Then by Lemma 2.6,
Ž Ž . . Ž . Ž . Ž .E P : P $ E P . By 3 , P is a divisorial ideal of E P , which implies

Ž . Ž .P $ E P , a contradiction that forces P to be a maximal ideal of E P .
Ž . Ž . Ž . Ž .5 ! 2 . Note that the equivalence of 1 and 5 has already been

Ž .established. Assume that 5 holds. Then R satisfies the separation prop-
erty. This property is inherited by every overring of R; likewise statement
Ž . "5 holds for every overring of R. Now let R be an overring of R and
assume P" is a non-zero non-maximal prime ideal of R". Then by Lemma

Ž " ". Ž " ". Ž " Ž ".. Ž " " . " "
"2.6, R : P $ P : P , and so R : E P ( R : R $ P R forM M P M

Ž ". Ž " Ž ".. " Ž .every M ' Max R containing P'. Hence R : E P $ P and 2 holds.

Ž .If R is a Prufer domain that satisfies "" , then R has the radical trace¨
% &property 18, Corollary 25 . Furthermore, every Prufer domain that has the¨

% &radical trace property has the separation property 18, Theorem 27 .
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LEMMA 2.8. If R is a Prufer domain satisfying the radical trace property,¨
then e!ery non-idempotent prime ideal of R is SV-stable and di!isorial.

Proof. Assuming R has the radical trace property, let P be a non-
idempotent prime ideal of R and suppose that P is not an invertible ideal

Ž . Ž .of E P . If P is a maximal ideal of R, then P : P $ R; otherwise, it
follows from Lemma 2.7 and the fact that R has the separation property

Ž . Ž 2 . ŽŽ . . Ž .that P is a maximal ideal of E P . Thus R : P $ R : P : P $ E P
2Ž 2 . 2and P R : P $ P , which is not a radical ideal of R. This contradiction

Ž .implies P is an invertible ideal of E P . If P is maximal, then it is clearly
divisorial; if P is non-maximal, then P is divisorial by Lemma 2.7.

THEOREM 2.9. If R is a Prufer domain ha!ing the radical trace property¨
Ž .and P , P , . . . , P are non-zero prime ideals of R, then R : P P ### P $1 2 n 1 2 n M

Ž Ž . . Ž .R : P P ### P for all M ' Max R .M 1 2 n M

Proof. The proof is by induction on n. Suppose that R is a Prufer¨
domain having the radical trace property and that N is a maximal ideal of
R. If N $ N 2, then N is not an invertible ideal of R and N is not anN

Ž . Ž .invertible ideal of R . Thus R : N $ R $ R : N . Otherwise, ifN N N N N
N # N 2, Lemma 2.8 applies and N must be an invertible ideal of R.
Hence the conclusion holds for all maximal ideals of R. Since R has the
separation property it follows that if P is a non-zero non-maximal prime

Ž .ideal of R and M ' Max R , then by Lemma 2.7 and Lemma 2.6,
Ž . Ž . Ž . Ž .R : P $ P : P $ P : P $ R : P . Hence the claim holds trueM M M M M M
for n $ 1.

Suppose next that the statement of the corollary is true for all products
of no more than n prime ideals. Let P , P , . . . , P be non-zero prime1 2 n

Ž .ideals of R, I $ P P ### P , and N ' Max R . Suppose first that N is1 2 n
Ž . Ž . ŽŽ . .invertible and that M ' Max R . Then R : IN $ R : I : N $M M

ŽŽ . . ŽŽ . . Ž .R : I : N $ R : I : N $ R : IN , by the induction hypothe-M M N N N N N
sis. Finally, if P is a non-invertible maximal ideal or a non-zero non-maxi-

Ž . Ž . Ž .mal prime ideal of R, then by Lemma 2.6, R : P $ E P . Thus R : IP M
Ž Ž . Ž . . Ž .$ E P : E P I . Since R is a Prufer domain, E P I must be a product¨M

Ž . % & Ž .of prime ideals of E P 15, Proposition 2.4 . Therefore, since E P has
% &the radical trace property 18, Corollary 24 , the induction hypothesis

Ž Ž . Ž . . Ž Ž . Ž . . Ž Ž . .applies and E P : E P I $ E P : E P I $ E P : I $M M M M M
ŽŽ . . Ž .R : P : I $ R : PI . By induction, the proof is complete.M M M M M

COROLLARY 2.10. If R is a Prufer domain with Noetherian prime spec-¨
Ž . Ž .trum and I is a non-zero radical ideal of R, then R : I $ R : I for allM M M

Ž .M ' Max R .

Proof. An integral domain R has Noetherian prime spectrum if and
only if each radical ideal of R is the radical of a finitely generated ideal of
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% &R 20, Proposition 2.1 . Assuming then that R is a Prufer domain with¨
Ž . Ž .Noetherian prime spectrum, we have that R satisfies "" Lemma 2.3 .

Ž .Since R satisfies "" , every finitely generated ideal of R has only finitely
% &many minimal primes 12, Proposition 3 . It follows that every radical ideal

has finitely many minimal prime ideals and thus can be written as a
Ž .product of finitely many prime ideals. Since R satisfies "" , R has the

radical trace property and Theorem 2.9 applies.

COROLLARY 2.11. If R is a Prufer domain ha!ing Noetherian prime¨
spectrum, then e!ery locally SV-stable radical ideal of R is SV-stable and
di!isorial.

Proof. Let I be a locally SV-stable radical ideal. As noted in the proof
of Corollary 2.10, I $ P P ### P for some pairwise comaximal prime1 2 n
ideals P , P , . . . , P of R. Since R is a Prufer domain, I is a radical¨1 2 n

Ž . Ž .ideal of E I and E I has Noetherian prime spectrum. It follows
Ž Ž ..then from Corollary 2.10 that I is SV-stable. Similarly, R : R : I $

Ž Ž . . Ž Ž ..! R : R : I $ ! R : R : I $ ! IM ' MaxŽR. M M M ' MaxŽR. M M M M ' MaxŽR. M
$ I, which proves the claim.

¨3. H-LOCAL PRUFER DOMAINS

Recall that an integral domain R is h-local provided each non-zero
ideal of R is contained in only finitely many maximal ideals of R and each
non-zero prime ideal of R is contained in a unique maximal ideal of R.
Although we focus mainly on ideal theoretic characterizations of this

% &property, the reader may refer to 19, Theorem 22 for several interesting
module-theoretic interpretations of the h-local criterion. Recall that if R

Ž . % & " Ž .is an integral domain and M ' Max R , then M $ ! R : N ' Max RN
4and N # M .

PROPOSITION 3.1. The following statements are equi!alent for an integral
domain R with quotient field Q.

Ž .1 R is an h-local domain.
Ž . % & Ž .2 M R $ Q for each M ' Max R .M

Ž . " 43 If X is a collection of submodules of Q ha!ing non-tri!ial%
Ž . Ž . Ž .intersection, then ! X $ ! X for each M ' Max R .% % M % % M

Ž . " 44 If I is a collection of ideals of R ha!ing non-tri!ial intersection%

and M is a maximal ideal of R such that ! I ( M, then there exists & such% %

that I ( M.&
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Ž . Ž . % &Proof. 1 " 2 . See Theorem 22 of 19 .
Ž . Ž . " 42 ! 3 . Let X be a collection of submodules of Q having non-triv-%

Ž . Ž . Ž .ial intersection and let M ' Max R . Then ! X $ ! X )% % M % % M
Ž Ž . . Ž . Ž Ž Ž . . .! ! X ( ! X ) ! ! X . Let 0 # x '% N # M % N M % % M % N # M % N M

% & #1 Ž Ž . .! X . Then Q $ M R ( x ! ! X , which means% % M % N # M % N M
Ž Ž . . Ž . Ž .! X $ Q . Thu s ! X $ ! X )N # M % N M % % M % % M

Ž Ž . . Ž .! ! X $ ! X .% N # M % N M % % M
Ž . Ž . " 43 ! 4 . Let I be a collection of ideals of R having non-trivial%

Ž . Ž .intersection and let M ' Max R be such that ! I ( M. Then ! I% % % % M
Ž . Ž . Ž .( M . By 3 , ! I $ ! I . If there does not exist I such thatM % % M % % M &

Ž . Ž .I ( M, then I $ R for all % and ! I $ R , a contradiction.& % M M % % M M
Ž . Ž . % &4 ! 1 . Examination of the proofs of Theorems 2.4 and 2.5 in 13

Ž .shows that they depend only on statement 4 .

Several elementary characterizations of h-local Prufer domains follow¨
readily from Proposition 3.1.

COROLLARY 3.2. The following are equi!alent for a Prufer domain R.¨
Ž .1 R is an h-local domain.
Ž . % & Ž .2 M is not a fractional ideal of R for each M ' Max R .
Ž . Ž . % &3 If M ' Max R , then M " R for any prime ideal P containedP

in M.

Ž . Ž . Ž . % &Proof. 1 ! 2 . Suppose that R is h-local, M ' Max R , and M is a
% &fractional ideal of R. Then M R is a fractional ideal of R . But byM M

% &Proposition 3.1, Q $ M R , where Q is the quotient field of R, and so QM
is a fractional ideal of R , a contradiction.M
Ž . Ž . Ž .2 ! 3 . Suppose that M ' Max R and P is a prime ideal contained

% & % &in M. If M ( R , then M R ( R . Since R is a valuation domain,p M P M
% &this means M R is a fractional ideal of R and there exists r ' R suchM M

% & % & % & % &that r M R ( R . Thus r M ( R ) M $ R and M is a fractionalM M M
Ž .ideal of R, contradicting 2 .

Ž . Ž . Ž .3 ! 1 . Assume 3 and suppose that R is not h-local. Then there
Ž . % &exists M ' Max R such that M R # Q. Since R is a valuationM M

domain, every overring of R is of the form R for some prime ideal P ofM P
% & % &R. There exists a prime ideal P of R such that M ( M R ( R , whichM P

Ž .is a contradiction to 3 .

Corollary 3.2 allows for a useful weakening of the defining criteria of
h-local domains in the case of Prufer domains. A result due to Gilmer and¨
Heinzer is needed first.

% &LEMMA 3.3 12, Theorem 5 . If R is a Prufer domain for which each ideal¨
of R is contained in only finitely many maximal ideals of R, then R satisfies
Ž ."" .
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Under the additional assumption that each prime ideal of R is con-
tained in a unique maximal ideal of R, the converse of Lemma 3.3 is true,
as the next proposition shows.

PROPOSITION 3.4. The following statements are equi!alent for a Prufer¨
domain R such that each non-zero prime ideal of R is contained in a unique
maximal ideal of R.

Ž .1 R is an h-local domain.
Ž .2 Each non-zero ideal of R is contained in at most finitely many

maximal ideals of R.
Ž . Ž .3 R satisfies "" .
Ž .4 R has the radical trace property.
Ž .5 E!ery non-zero ideal of R has finitely many minimal prime ideals.

Ž . Ž .Proof. 1 " 2 . This is clear.
Ž . Ž .2 ! 3 . See Lemma 3.3.
Ž . Ž . Ž . Ž .3 ! 1 . Assume 3 and let M ' Max R . By Corollary 3.2, it is

enough to show that there does not exist a non-zero prime ideal P of R
% &contained in M such that M ( R . Suppose that such a P does exist. ByP

assumption the only maximal ideal of R containing P is M. Since
% & Ž .R ) M satisfies " and R " R for all maximal ideals N # M, itP N P

% &cannot be the case that M ( R , contradicting the choice of P.P
Ž . Ž . % &3 ! 4 . See 18, Corollary 25 .
Ž . Ž . Ž .4 ! 3 . Assuming 4 , let M be a maximal ideal of R. Define

Ž .I $ R m ) R, where m ' M and M # R m. Then if N ' Max R andM M M
N # M, I $ R R m ) R $ R , since the fact that M ) N containsN M N N N
no non-zero prime ideals implies that R R $ Q, where Q is the quotientM N

% &field of R 19, Theorem 19 . Thus the only maximal ideal of R containing
I is M. If I#1 $ R, then I is a radical ideal of R since R has the radical
trace property. Thus mR $ I is a principal prime ideal of R whichM M M
implies MR $ mR , a contradiction. By Proposition 2.2 we can concludeM M

Ž .that R satisfies " . Because the radical trace property is inherited by
% &overrings of Prufer domains 18, Corollary 24 , as is the property that every¨

non-zero prime ideal is contained in a unique maximal ideal, it is clear how
Ž .to extend the argument to show that every overring of R satisfies " .

Ž . Ž .5 " 2 . This is clear.

Ž . Ž . Ž .Statements 3 , 4 , and 5 are closely related and often coincide. For
example, when R is a strongly discrete Prufer domain, all three conditions¨

%are equivalent and serve to characterize generalized Dedekind domains 8,
&Theoreme 2.7 .` ´

Ž #1 .We proceed now to consideration of Prufer domains for which I $¨ M
Ž .#1 Ž .I for all ideals I of R and M ' Max R . The concept of divisorialityM
will play a key role. For an integral domain R with quotient field Q, if X
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Ž Ž ..and Y are submodules of Q, then X is Y-di!isorial provided Y : Y : X
"$ X. It can be checked that this occurs precisely when X $ ! Yq : q ' Q

4and X ( Yq .

LEMMA 3.5. Let R be an integral domain with quotient field Q. The
following statements are equi!alent for a proper submodule Y of Q.

Ž . Ž . Ž .1 Y : X $ Y : X for all non-zero submodules X of Q suchM M M
Ž .that X ( Y and M ' Max R .

Ž . " 42 If X is a collection of Y-di!isorial submodules of Q ha!ing%
Ž . Ž . Ž .non-tri!ial intersection, then ! X $ ! X for each M ' Max R .% % M % % M

Ž . Ž . Ž . " 4Proof. 1 ! 2 . Assume 1 and let X be a collection of Y-divisorial%

submodules of Q having non-trivial intersection. For each % there exists a
Ž . Ž .submodule W of Q such that X $ Y : W . Thus if M ' Max R ,% % %

Ž . Ž Ž .. Ž . Ž Ž . .! X $ ! Y : W $ Y :Ý W $ Y :Ý W $% % M % % M % % M M % % M
Ž Ž . . Ž . Ž .! Y : W $ ! Y : W $ ! X .% M % M % % M % % M

Ž . Ž . Ž . Ž .2 ! 1 . Assume 2 and let X be a submodule of Y. If M ' Max R ,
Ž . Ž . Ž #1 . #1then Y : X $ Y : Ý Rx $ ! Yx $ ! Y x $M x ' X M x ' X M x ' X M
Ž . Ž . Ž .! Y : R x $ Y :Ý R x $ Y : X .x ' X M M M x ' X M M M

LEMMA 3.6. The following statements are equi!alent for an integral do-
main R.

Ž . Ž . Ž . Ž .1 R : I $ R : I for all ideals I of R and M ' Max R .M M M

Ž . " 42 If D is a collection of di!isorial ideals of R ha!ing non-tri!ial%
Ž .intersection, M ' Max R , and ! D ( M, then D ( M for some % .% % %

Ž . Ž . Ž . " 4Proof. 1 ! 2 . Assume 1 . Let D be a collection of divisorial%
Ž .ideals of R having non-trivial intersection. Suppose M ' Max R , ! D% %

Ž . Ž .( M, and D " M for all % . By Lemma 3.5, ! D $ ! D $% % % M % % M
Ž .! R $ R . Thus R $ ! D ( M , which is a contradiction.% M M M % % M M

Ž . Ž . Ž . Ž .2 ! 1 . Assume 2 and suppose I is an ideal of R and M ' Max R .
Ž . Ž . Ž .It suffices to show R : I ( R : I . To this end, let q ' R : I .M M M M M

Then qi ' R for all i ' I, from which it follows by Lemma 2.1 thatM
Ž .#1 Ž . Ž Ž .#1 .R ) R qi " M for each i ' I. Thus, by 2 , ! R ) R qi " M.i' I

Ž Ž .#1 . #1Ž #1 . Ž .But ! R ) R qi $ R ) q ! Ri $ R ) R : qI , and soi' I i' I
Ž .Ž #1 .there exists b ' R+ M such that bqI ' R. Therefore, q $ bq b '

Ž .R : I .M

LEMMA 3.7. The following statements are equi!alent for an integral do-
main R.

Ž .1 E!ery non-zero ideal of R is contained in only finitely many maxi-
mal ideals of R.

Ž . " 42 If M is a collection of maximal ideals of R ha!ing non-tri!ial%
Ž .intersection, N ' Max R , and ! M ( N, then N $ M for some % .% % %
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Ž . Ž . " 4Proof. 1 ! 2 . Let M be a collection of maximal ideals of R%
Ž . " 4having non-trivial intersection. By 1 , M must be a finite collection.%

Ž .Thus if N ' Max R and ! M ( N, it follows that N $ M for some % .% % %
Ž . Ž . % &2 ! 1 . The proof is essentially that of Lemma 2.5 in 13 . Let I be a

" 4non-trivial ideal of R and M be the collection of ideals containing I.%
Ž .For each % , define J $ ! M and let J $ Ý J . By 2 , J " M for% & # % % % % % %

each % . Therefore, I ( J and J " M for any choice of % . This means%
n " 4J $ R, which implies R $ Ý J for some J , . . . , J ' J . If M isk$1 k 1 n % %
" 4 ndistinct from the elements of M , . . . , M , then R $ Ý J ( M , which1 n k$1 k %

is a contradiction.

% &The proof of the next lemma can be found in 3, Lemma 2.3 . It also
follows from Lemma 3.5 and Proposition 3.1.

LEMMA 3.8. If R is an h-local integral domain with quotient field Q and X
Ž . Ž .and Y are submodules of Q such that X ( Y, then Y : X $ Y : X forM M M

Ž .all M ' Max R .

LEMMA 3.9. The following statements are equi!alent for an integral do-
main R such that e!ery non-zero prime ideal of R is contained in a unique
maximal ideal of R.

Ž .1 R is h-local.
Ž . Ž . Ž . Ž .2 If I is an ideal of R such that E I $ R, then R : I $ R : IM M M

for all maximal ideals M of R.
Ž .3 E!ery locally in!ertible ideal of R is in!ertible.

Ž . Ž .Proof. 1 ! 2 . See Lemma 3.8.
Ž . Ž .2 ! 3 . This is clear.
Ž . Ž . Ž . " 43 ! 1 . Assume 3 and let M be a collection of maximal ideals of%

R having non-empty intersection. Suppose M is a maximal ideal of R such
" 4that ! M ( M and M # M . Let m be a non-zero element of ! M% % % % %

and define for each % , I $ R ) R m. If N and N " are maximal ideals of% M%

R such that N # N ", Then R R " $ Q, where Q is the quotient field ofN N
R, since by assumption N ) N " contains no non-zero prime ideals of R
% & Ž .19, Theorem 19 . Thus for each % , I $ R for all maximal ideals% N N
N # M . It follows that for each % , the only maximal ideal of R contain-%

ing I is M . By assumption, since I is a locally invertible ideal of R, we% % %

have that I is an invertible ideal of R for each % . Define next J $%
Ž . Ž .Ý R : I . Then m ' ! I $ R : J and so J is a fractional ideal of R.% % % %

Ž . Ž Ž . .Now if N ' Max R , then since J $ Ý R : I , it is the case thatN % N % N
" 4 Ž . #1J $ R if N # M and J $ R : R m $ R m if N $ M forN n % N N N N &

some &. Therefore J is a fractional invertible ideal of R, and so by
Ž .assumption, J is a fractional invertible ideal and R $ R : R $M M M
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Ž Ž . .. Ž . Ž . Ž . Ž .R :Ý R : I $ R : J $ R : J $ ! I ( ! MM % M % M M M M % % M % % M
" 4( M , which is a contradiction. Hence M ' M . By Lemma 3.7, eachM %

non-zero ideal of R is contained in at most finitely many maximal ideals
of R.

THEOREM 3.10. The following statements are equi!alent for a Prufer¨
domain R with quotient field Q.

Ž .1 R is h-local.
Ž . Ž . Ž . Ž .2 Y : X $ Y : X for all M ' Max R and non-zero submod-M M M

ules X and Y of Q such that X ( Y.
Ž . Ž . Ž .3 R : I $ R : I for each non-zero ideal I of R and M 'M M M
Ž .Max R .

Ž . Ž .Proof. 1 ! 2 . See Lemma 3.8.
Ž . Ž .2 ! 3 . This is clear.
Ž . Ž . Ž .3 ! 1 . Observe first that from 3 it follows easily that an ideal A of

R is a divisorial ideal of R if and only if A is a divisorial ideal of R forM M
Ž .each M ' Max R . Secondly, if I and J are divisorial ideals of R, then so

are I , J and I ) J. This follows from the first remark and the fact that
Ž .for each M ' Max R , I ( J or J ( I , since R is a valuationM M M M M

domain.
To show that every prime ideal of R is contained in a unique maximal

ideal, let P be a non-maximal prime ideal of R and suppose that M and N
are two distinct maximal ideals of R such that P ( M ) N. Note that if

Ž .L ' Max R , P is either R or is a non-maximal prime ideal of R . SinceL L L
valuation domains have the separation property, non-maximal prime ideals
of valuation domains are divisorial. It follows from the above observations
that P is a divisorial ideal of R and that P , Rr is a divisorial ideal of R

" 4for each r ' R. Define D to be the collection of divisorial ideals D of% %
%R such that P ( D " M. The proof now proceeds similarly to that of 13,%

&Theorem 2.4 . Define D $ ! D . By Lemma 3.6, D " M, so let d '% %

D+ M. Then P , Rd2 is a divisorial ideal of R and P , Rd2 " M; hence
2 " 4 2P , Rd ' D . Thus d ' P , Rd and there exists r ' R such that%

Ž .d 1 # rd ' P. Since P ( M, d # P, and so 1 # rd ' P. Observe next that
" 4D ( N: If n ' N + M, then P , Rn ' D , which means D ( N. Thus%

rd ' N and 1 # rd ' N, a contradiction from which we can conclude any
prime ideal of R is contained in a unique maximal ideal of R. The
conclusion now follows from Lemma 3.9.

¨4. STRONGLY DISCRETE PRUFER DOMAINS

A Prufer domain R is strongly discrete if P # P 2 for every non-zero¨
prime ideal P of R. It is easy to check that whether or not a Prufer¨
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domain is strongly discrete is determined locally, i.e., that a Prufer domain¨
R is strongly discrete if and only if R is strongly discrete for allM

Ž .M ' Max R . From this it follows that a Prufer domain R is strongly¨
discrete if and only if R has no non-zero idempotent ideals. In this section
we successively weaken globalizing properties on strongly discrete Prufer¨
domains and characterize the integral domains that result at each stage.

Multiplicative properties of the ideals of strongly discrete valuation
domains are well-understood. Several characterizations are collected in the
next proposition.

% &PROPOSITION 4.1 3, Proposition 7.6 . The following statements are equi!-
alent for a !aluation domain R.

Ž .1 R is strongly discrete.
Ž .2 E!ery ideal of R is isomorphic to a prime ideal of R.
Ž .3 E!ery non-zero prime ideal P of R is principal o!er R .P

Ž .4 R is SV-stable.
Ž .5 R is totally di!isorial.

Thus strongly discrete Prufer domains are locally totally divisorial and¨
locally SV-stable. As mentioned in the Introduction, to globalize the
property of being totally divisorial, the h-local hypothesis is necessary.

% &While the following proposition is not stated explicitly in 3 , its proof is
implicit in the statement of several other propositions in their work.

% &PROPOSITION 4.2 3 . An integral domain R is integrally closed and totally
di!isorial if and only if R is an h-local strongly discrete Prufer domain.¨

Recall that an ideal I of an integral domain is SV-stable if I is an
Ž .invertible ideal of E I and that an integral domain R is an SV-stable

domain if every ideal of R is SV-stable. Interest in Noetherian SV-stable
% &domains can be traced back at least to Bass 2 . Recently there has been

% &interest in the integrally closed case 1, 9 . Before giving a characterization
of these domains, we establish several lemmas.

LEMMA 4.3. Let R be an integral domain such that e!ery non-zero ideal of
R is contained in at most finitely many maximal ideals of R. An ideal I of R is

Ž .SV-stable if and only if I is an SV-stable ideal of R for all M ' Max R .M M

Proof. Assume that I is locally SV-stable. We prove first that for each
Ž . Ž . Ž .maximal ideal N of R, I : I $ I : I . Let t ' I : I . Then sinceN N N N N

each non-zero ideal of R is contained in at most finitely many maximal
ideals of R, there exists at most finitely many maximal ideals M of R such

" 4that R # R t. Denote this collection by M , M , . . . , M . Since I isM M 1 2 n Mi

SV-stable for each i, it follows that there exists a finitely generated ideal
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Ž .A of R such that A ( I and I $ E I A. By assumption, tA ' I ,i i M M i Ni i

and so there exists, since A is finitely generated, a non-zero element
d ' R+ N such that d tA ' I. Define d $ d d ### d . Then since dtA 'i i i 1 2 n i

Ž . Ž .I, it follows that dtI $ dtE I A ( E I I $ I . Hence, for all i,m M i M Mi i i i

dtI ( I . Also, if M is a maximal ideal of R such that M #M Mi i
" 4M , M , . . . , M , then dtI $ dI ( I . It follows that dtI ( I. There-1 2 n M M M

Ž . #1 Ž .fore, t $ dt d ' I : I .N
Ž . Ž .Define S $ E I and assume M ' Max R . Using a similar argument,

Ž . Ž . Ž .we prove next that S : I $ SR : I . To see this let q ' SR : I .M M M M M
Clearly qI ( SR . Since every non-zero ideal of R is contained in at mostM
finitely many maximal ideals of R, there exists at most finitely many
maximal ideals N such that R # R q. Denote this collection byN N
" 4N , N , . . . , N . Since I is SV-stable for each j $ 1, 2, . . . , k, there1 2 k Nj

exists for each j, a finitely generated ideal B of R such that B ( I andj j
Ž .I $ E I B . By assumption, qB ' SR for each j. Thus, since B isN N j j M jj j

finitely generated for each j, there exists b ' R+ M such that b qB ' S.j j j

Define b $ b b ### b and observe that since bqr ' S, it follows that1 2 k j
Ž . Ž . Ž .bqI $ bqE I B ( SE I $ S I : I R $ SR . As above, bqI * S andN N j N N Nj j j j j

Ž .so q ' S : I .M
Ž .We show finally that I is an invertible ideal of S. Since I : I $M

Ž . Ž .I : I for all M ' Max R , we have by assumption that I is anM M M
Ž .invertible ideal of SR for each maximal ideal M of R. Hence I S : IM M

Ž . Ž .$ I SR : I $ SR for all M ' Max R , and I must be an invertibleM M M M
ideal of S.

To see that the converse is true, assume that I is SV-stable, and note
Ž . Ž . Ž .that for each ideal I of R and M ' Max R , I : I $ I : I , since IM M M

Ž .is a finitely generated E I -module. It follows that I must be SV-stableM
Ž .for each M ' Max R .

Ž .LEMMA 4.4. Let R be a Prufer domain satisfying " and let Q be its¨
Ž .quotient field. If X is a non-zero submodule of Q such that E X $ R, then

Ž . Ž . Ž .for each M ' Max R , X : X $ X : X .M M M

Proof. Let R and X be as in the claim and let M be a maximal ideal
Ž . Ž . Ž Ž ..of R. Then R $ X : X $ X : X ) ! X : X , whereM M M M N # M N N M

N ranges over all maximal ideals of R distinct from M. Since R satisfies
Ž . Ž Ž .." , it cannot be the case that R $ ! X : X , and since RM N # M N N M M

Ž .is a valuation domain, this means R $ X : X .M M

The next lemma can be compared to a characterization of integrally
closed divisorial domains due to Heinzer. He proved that an integral
domain R is integrally closed and divisorial if and only if R is an h-local

% &Prufer domain with invertible maximal ideals 13, Theorem 5.1 . Observe¨
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that the requirement that the maximal ideals be invertible can be weak-
ened to the requirement that the maximal ideals be non-idempotent, which

Ž .is a restriction only on R for each M ' Max R . This is because aM
maximal ideal of a valuation domain is invertible if and only if it is not
idempotent. By Lemma 3.8, the h-local assumption implies that locally
invertible ideals are invertible.

Dropping the restriction on prime ideals in the definition of h-local, we
have:

LEMMA 4.5. The following are equi!alent for an integral domain R.

Ž . Ž .1 R is integrally closed and each ideal I of R such that E I $ R is
in!ertible.

Ž . Ž .2 R is integrally closed and each ideal I of R such that E I $ R is
di!isorial.

Ž .3 R is a Prufer domain such that e!ery non-zero ideal of R is¨
contained in at most finitely many maximal ideals of R and maximal ideals of
R are not idempotent.

Ž . Ž .Proof. 1 ! 2 . This is clear.
Ž . Ž . Ž . Ž .2 ! 1 . Assuming 2 , let I be an ideal of R such that E I $ R.

Ž #1 . ŽŽ #1 . . Ž . Ž #1 .Then R : II $ R : I : I $ I : I $ R. Therefore, E II $ R
#1 Ž Ž #1 .. Ž .and by assumption, II $ R : R : II $ R : R $ R, proving that I is

invertible.
Ž . Ž . Ž .1 ! 3 . Assume 1 . Since R is integrally closed, if I is a finitely

Ž . Ž .generated ideal, then E I $ R. By 1 , I is invertible and R must be a
Prufer domain. If M is a maximal ideal of an integrally closed domain R,¨

Ž .then E M $ R. It follows that maximal ideals of R are invertible and
hence not idempotent. It remains to show that every non-zero ideal is
contained in at most finitely many maximal ideals of R. We do this via

" 4Lemma 3.7. Suppose there exists a collection M of maximal ideals of R%

having non-empty intersection and such that ! M ( M, for some maxi-% %
" 4mal ideal M # M . Each maximal ideal is invertible; therefore, ! M% % %

Ž Ž .. Ž Ž .. Ž .$ ! R : R : M $ R :Ý R : M . Define J $ Ý R : M and let% % % % % %
" 4 ŽM ' M . Then again using the fact that each maximal ideal is invert-& %

. Ž Ž . . Ž Ž . .ible J $ Ý R : M $ R : M , which is an invertibleM % M % M M & M& & & & &

fractional ideal of R . A similar argument shows that if N is a maximalM&

" 4ideal of R such that N # M , then J $ R . This means J is a locally% N N
invertible fractional ideal of R and, as such, it must be the case that
Ž . Ž . Ž .E J $ R. By 1 , J is an invertible fractional ideal of R. Thus ! M% % M
Ž . Ž .$ R : J $ R : J . But as we have already noted, J $ R , sinceM M M M M

" 4M # M . Therefore, it cannot be the case that ! M ( M. By Lemma% % %
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3.7, we conclude that every non-zero ideal of R is contained in at most
finitely maximal ideals of R.
Ž . Ž . Ž . %3 ! 1 . By 3 , each maximal ideal of R is not idempotent. As in 13,

&Lemma 5.2 , this means the valuation domain R is a divisorial domainM
Ž . Ž .for each M ' Max R see the remark preceding this lemma . Arguing as

Ž . Ž .in the proof of 2 ! 1 , it follows that each ideal I of R such thatM M
Ž . Ž .E I $ R is invertible. If I is an ideal of R such that E I $ R, thenM M

Ž .by Lemmas 3.3 and 4.4, E I $ R . Since I is an SV-stable ideal ofM M M
Ž .R for each M ' Max R , Lemma 4.3 applies and I must be an invertibleM

ideal of R.

% &In 1, Proposition 2.10 it is shown that for semilocal Prufer domains, the¨
property of being strongly discrete is equivalent to the domain in question
being SV-stable. Theorem 4.6 generalizes this fact.

THEOREM 4.6. The following are equi!alent for an integral domain R.

Ž .1 R is an integrally closed SV-stable domain.
Ž .2 R is a strongly discrete Prufer domain such that each non-zero ideal¨

of R is contained in at most finitely many maximal ideals of R.
Ž .3 R is a Prufer domain such that e!ery ideal I of R can be generated¨

Ž .by two elements as an ideal o!er E I .

Ž . Ž . Ž .Proof. 1 ! 2 . Assume 1 . By Lemma 4.5, R is a Prufer domain and¨
each non-zero ideal of R is contained in at most finitely many maximal
ideals of R. If P is a non-zero prime ideal of R, then clearly P # P 2, since

Ž .P is an invertible ideal of E P .
Ž . Ž . Ž .2 ! 1 . Assuming 2 , R is by Proposition 4.1 an SV-stable domainM

Ž . Ž .for all M ' Max R . By Lemma 4.3, 1 holds.
Ž . Ž . Ž . Ž . Ž .1 ! 3 . We have shown 2 is equivalent to 1 . Thus, in assuming 1

it must be true that every non-zero ideal of R is contained in at most
finitely many maximal ideals of R. If I is an ideal of R, then by

Ž . Ž . Ž .Proposition 4.1, I - E I for all M ' Max R . Since by 1 , I is aM M
Ž . Ž .finitely generated E I -module, this means I - E I for all M 'M M

Ž . % &Max R . By 19, Theorem 26 , I can be generated by two elements as an
Ž .E I -module.
Ž . Ž .3 ! 1 . This is clear.

We consider a larger class of strongly discrete Prufer domains next,¨
those for which every radical ideal is the radical of a finitely generated
ideal of R. These domains are known as generalized Dedekind domains,

% & % &and were first defined in 21 . In 8 , a Prufer domain R is shown to be a¨
generalized Dedekind domain if and only if R is a strongly discrete Prufer¨

Ž .domain satisfying "" . It follows from Lemma 3.3 and Theorem 4.6 that
integrally closed SV-stable domains are generalized Dedekind domains.
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This implication will also be clear from the next theorem. S. Gabelli and N.
Popescu have investigated characterizations of generalized Dedekind do-

% &mains involving stability and divisoriality conditions 9, 10 . In the next
theorem, we give several other such characterizations. A proof of the

Ž . Ž . % &equivalence of statements 1 and 3 can also be found in 9, Theorem 5 .

THEOREM 4.7. The following statements are equi!alent for a Prufer do-¨
main R.

Ž .1 R is a generalized Dedekind domain.
Ž .2 E!ery radical ideal of R is SV-stable.
Ž .3 E!ery prime ideal of R is SV-stable.
Ž . " "4 If R is an o!erring of R, then e!ery radical ideal of R is a di!isorial

ideal of R".
Ž . " "5 If R is an o!erring of R, then e!ery maximal ideal of R is an

in!ertible ideal of R".

Ž . Ž . Ž .Proof. 1 ! 2 and 4 . The prime spectrum of a generalized Dedekind
% & Ž . Ž .domain is a Noetherian space 8, Theorem 2.7 . Statements 2 and 4 now` ´

follow from Proposition 4.1 and Corollary 2.11.
Ž . Ž .2 ! 3 . This is clear.
Ž . Ž . 23 ! 1 . Suppose that P is a non-zero prime ideal of R and P $ P .0 0 0
Ž . Ž . Ž Ž . . Ž 2 .By 2 , E P $ P E P : P $ P P : P $ P , a contradiction. Thus0 0 0 0 0 0 0 0

R is strongly discrete. Let P" be an ideal of an overring R" of R. Then
since R is a Prufer domain, P" $ R"P for some prime ideal P of R. Thus¨

"Ž Ž ". ". " ŽŽ " " . " . Ž .P E P : P $ R P R P : R P : R P . Since P is E P -projective,
Ž " " . Ž " . " Ž . "Ž Ž ". ". Ž " Ž . .R P : R P $ R P : P $ R E P . Thus P E P : P $ P R E P : P

" Ž . Ž ". "$ R E P $ E P . Hence P is SV-stable. It follows that every prime
ideal of every overring of R is SV-stable. Now let M " be a maximal ideal
of the overring R". Since M " is SV-stable and E " $ R", it follows that M "

M
is a divisorial ideal of R" and, since M " is maximal, it must be the case that
M " $ R" ) R"q for some element q in the quotient field of R. By Lemma

#1 % " & #1 " " Ž ."2.1, q ' M , but q # R . Thus R satisfies " and so R satisfiesM
Ž . """ . As remarked before this theorem, this means R is a generalized
Dedekind domain.
Ž . Ž .4 ! 5 . This follows from the fact that every divisorial maximal ideal

of a Prufer domain is invertible.¨
Ž . Ž .5 ! 1 . Suppose that P is a non-zero prime ideal of R such that

P 2 $ P. Then P 2 $ P also. But P is a maximal ideal of R and byP P P P
assumption divisorial. Since R is a valuation domain and P is divisorial,P P
the maximality of P implies that P is a principal ideal of R . Therefore,P P P
it cannot be the case that P 2 $ P , contradicting the choice of P. Thus RP P

Ž . Ž .is strongly discrete. Arguing as in the proof of 3 ! 1 , it follows from
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the fact that every maximal ideal of every overring of R is divisorial that R
Ž .satisfies "" and hence R must be a generalized Dedekind domain.

Before proceeding to the case of strongly discrete Prufer domains that¨
have the separation property, we note the following proposition since it
anticipates our characterization of these domains. Recall that an ideal I of
an integral domain R is a cancellation ideal if IJ $ IK , where J and K are
ideals of R, implies that J $ K.

PROPOSITION 4.8. If R is a generalized Dedekind domain, then e!ery
Ž .non-zero ideal I of R is a cancellation ideal of E I .

Proof. Let R be a generalized Dedekind domain and I be a non-zero
Ž .ideal of R such that IJ $ IK for two non-zero ideals J and K of E I .

" Ž . Ž ".Define R $ E I and let M ' Max R . Then I J $ I K . Since everyM M M M
overring of a generalized Dedekind domain is a generalized Dedekind

" Ž .domain, R must be a strongly discrete Prufer domain satisfying "" . By¨
Ž . Ž . "Proposition 4.1, I $ E I i for some i ' I . By Lemma 4.4, E I $ R .M M M M M

Since J and K are ideals of R", this means J $ K . This holds for allM M
"maximal ideals M of R . We conclude that J $ K.

The converse of Proposition 4.8 is not true. If R is an almost Dedekind
Ž . %domain that is not a Dedekind domain, then R does not satisfy " 11,

&Theorem 3 , and so R is not a generalized Dedekind domain. Yet every
% &ideal of R is a cancellation ideal of R 17, Theorem 9.4 .

PROPOSITION 4.9. The following are equi!alent for a Prufer domain R.¨
Ž .1 R is a strongly discrete Prufer domain that has the separation¨

property.
Ž . Ž .2 E!ery non-zero radical ideal I of R is a cancellation ideal of E I .
Ž . Ž .3 E!ery non-zero prime ideal P of R is a cancellation ideal of E P .

Ž . Ž . Ž .Proof. 1 ! 2 . Assume 1 and let I be a radical ideal of R. Since R
is a Prufer domain, R has the property that if q is an element of the¨
quotient field of R and q n ' R for some integer n, then q ' R. There-

Ž .fore, I is also a radical ideal of E I . Suppose that IJ $ IK for two ideals
Ž . " Ž . Ž ".J and K of E I . Define R $ E I and let M ' Max R . Then I J $M M

Ž .I K , and by Proposition 4.1, I - E I . By Lemma 2.7 and the factM M M M
" Ž . Ž .that since R has the separation property, so does R , E I $ I : I $M M

R" . Thus I is a principal ideal of R" and it follows that J $ K . WeM M M M M
can conclude that J $ K.
Ž . Ž .2 ! 3 . This is clear.
Ž . Ž . Ž .3 ! 1 . Assuming 3 , suppose that P is a non-zero prime ideal of R

2 Ž .such that P $ P. Since P is a cancellation ideal of E P , this means
Ž .P $ E P , a contradiction that implies R is a strongly discrete Prufer¨

domain. Now let P and Q be two distinct prime ideals of R such that
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P * Q. To show that R has the separation property we must show there
exists a finitely generated ideal I of R such that P ( I ( Q. To prove this,

Ž . Ž . Žit is enough to show that E P Q $ E P see the remarks before Lemma
. Ž . Ž . Ž .2.7 . We first show that E P Q $ PQ : P . Observe that PQ : P P ( PQ
Ž . Ž .( P PQ : P . Therefore, PQ $ P PQ : P . Since P is a cancellation ideal
Ž . Ž . Ž .of E P , this means E P Q $ PQ : P , as desired. Now note that if M is

Ž . Ž .a maximal ideal of R containing P, then since E P $ R Lemma 2.4 ,M P
P $ P $ PQ $ PQ . If M is a maximal ideal not containing P, thenM P P M
P $ R $ P Q $ PQ . From this we conclude that PQ $ P, and soM M M M M
Ž . Ž . Ž .E P Q $ PQ : P $ E P , which means R has the separation property.

5. FURTHER RESULTS ON STRONGLY DISCRETE
¨PRUFER DOMAINS

Ideals of Dedekind domains can be written as products of prime ideals.
Integral domains possessing this property, ZPI-rings, must be one dimen-

% &sional and Noetherian 17, Theorem 9.10 . Thus the only integrally closed
domains for which every ideal is the product of prime ideals are Dedekind
domains. Gabelli and Popescu have, however, discovered a similar phe-
nomenon for the divisorial ideals of generalized Dedekind domains. They
proved that an integral domain R is a generalized Dedekind domain if and
only if the divisorial ideals of R are precisely those of the form JP P ### P ,1 2 n
where J is an invertible ideal of R and P , P , . . . , P are pairwise1 2 n

% &comaximal prime ideals of R 10, Theorem 3.3 .
It follows from the results of the previous section that integrally closed

totally divisorial domains are generalized Dedekind domains. Thus each
ideal of an h-local strongly discrete Prufer domain is the product of an¨
invertible ideal and finitely many pairwise comaximal prime ideals of R. In
Theorem 5.2, we show that for Prufer domains the converse is true, thus¨
characterizing the Prufer domains for which every ideal can be repre-¨
sented in this way.

LEMMA 5.1. If I and J are comaximal ideals of an integral domain R, then
Ž . Ž . Ž .K : I ) J $ K : I , K : J for all ideals K of R.

Proof. Let I and J be comaximal ideals of R. Then there is an exact
sequence 0 # I ) J # I . J # I , J # 0. Since I , J $ R, this sequence

Ž .splits. Let K be an ideal of R. Applying Hom #, K to the sequence
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yields a commutative diagram,

$ $ $Ž . Ž . Ž .Hom R , K Hom I . J , K Hom I ) J , K 0

$ $ $$ $ $Ž . Ž . Ž . Ž . Ž . Ž .K : I ) K : J K : I . K : J K : I , K : J 0.

Ž . Ž . Ž .Observe that K : I , J $ K : I ) K : J , so the left vertical mapping
is an isomorphism. Since the middle vertical mapping is also an isomor-
phism, the claim follows.

THEOREM 5.2. A Prufer domain R is strongly discrete and h-local if and¨
only if e!ery ideal of R is of the form JP P ### P , where J is an in!ertible1 2 n

" 4ideal of R and P , P , . . . , P is a non-empty collection of prime ideals of R1 2 n
that are pairwise comaximal if n $ 1.

% &Proof. As noted above, sufficiency follows from Theorem 3.3 of 10 . So
with the goal of establishing necessity, we prove first that R is h-local. If P

Ž .is a non-maximal prime ideal of R, then by Lemma 2.6, P R : P $
Ž .P P : P $ P. If, on the other hand, P is a maximal ideal of R, then either

PP#1 $ P or PP#1 $ R. Suppose now that A $ P P ### P is a product1 2 n
of pairwise comaximal prime ideals of R and that n / 2. We will show that
AA#1 is either a radical ideal of R or is R itself. For each k $ 1, 2, . . . , n,
define A $ Ł P . If P is invertible for some k, then AA#1 $k i# k i k

ŽŽ . . Ž .A P R : A : P $ A R : A , and if each P is invertible, then clearlyk k k k k k i
AA#1 $ R. We may thus assume without loss of generality that for all i, Pi
is not invertible. Observe that since the P ’s are pairwise comaximal,i

Ž .A $ P ) P ) ### ) P . It follows from Lemma 5.1 that R : P P ### P1 2 n 1 2 n
Ž . Ž . Ž . #1 #1 #1$ R : P , R : P , ### , R : P . Thus AA $ AP , AP1 2 n 1 2

#1 #1 Ž ., ### ,AP . By assumption, no P is invertible. Hence P $ P : P forn i i i i

each i, and so AP#1 $ A for each i. Therefore, AA#1 $ A and AA#1 is ai
radical ideal of R.

Now let I be a non-zero ideal of R. By assumption I $ JB, where J is
an invertible ideal and B is a product of pairwise comaximal prime ideals

#1 ŽŽ . . Ž .of R. Thus II $ BJ R : B : J $ B R : B , which, as was established
above, is a radical ideal of R or is R itself. Hence R has the radical trace

Ž .property. To complete the argument that R is h-local, let M ' Max R
and I " be an ideal of R. By assumption, I " $ J "C, where J " is an invertible
ideal of R and C is a product of pairwise comaximal prime ideals. Thus
Ž ". ŽŽ . " . Ž . Ž .R: I $ R : C : J . By Theorem 2.9, R : C $ R : C . It fol-M M M M M M

Ž ". Ž " . "lows that R : I $ R : I . The choice of I was arbitrary, as was thatM M M
of M. Therefore, by Theorem 3.10, R is h-local.

It remains to show that R has no non-zero idempotent prime ideals. We
prove this for maximal ideals first. Let M be a maximal ideal of R. Since
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Ž .h-local domains satisfy "" , there exists by Lemma 2.3 an invertible ideal
B such that only maximal ideal containing B is M. By assumption, there
exists an invertible ideal J and prime ideals P , . . . , P such that B $ JP1 n 1

Ž . Ž .### P . Note that this means for each i, E P ( E B $ R. Since Rn i
Ž . Ž .satisfies "" , it follows by Lemma 2.4 that E P $ R if and only if P is ai i

maximal ideal of R. Therefore, each P is a maximal ideal of R. But thei
only maximal ideal containing B is M, so l $ 1 and B $ JM. This means
M $ BJ#1 is invertible and clearly not idempotent. Now suppose P is a
non-maximal non-zero prime ideal of R and let p be a non-zero element

Ž .of P. Then by assumption E P p $ KQ Q ### Q , for some comaximal1 2 m

prime ideals Q , Q , . . . , Q of R and invertible ideal K. There exists a1 2 m
unique maximal ideal M of R containing P. If no Q is contained in M,i

Ž . Ž .then E P R p $ K , and it follows using Theorem 3.10 that R $M M P
Ž Ž . Ž .. Ž Ž . Ž . . Ž .E P : E P $ E P R p : E P R p $ K : K $ R , a con-M M M M M M M

Ž .tradiction. Thus there exists a necessarily unique j such that Q isj
Ž .contained in M. Hence, R p $ K Q . Since K is invertible, it followsP M j M

Ž Ž . Ž . . ŽŽ . Ž . .that R $ K Q : K Q $ Q : Q $ R , and so Q $ P.P j M j M j M j M Q jj
Ž .Therefore, P is an invertible ideal of R $ E P and so P cannot beM P M

idempotent.

A. Facchini has shown that every Noetherian tree with least element
arises as the prime spectrum of a generalized Dedekind domain. We
indicate next how this result can be used to derive similar existence
theorems for integrally closed SV-stable domains and integrally closed

Ž .totally divisorial domains. A tree is a partially ordered set X, 0 with the
" 4property that for every x ' X, the set B $ y ' X : y 0 x is a chain. Thex

tree X is Noetherian if every ascending chain x 0 x 0 x 0 . . . of1 2 3
elements of X is stationary.

% &PROPOSITION 5.3 4, Theorem 5.3 . The following statements are equi!a-
lent for a partially ordered set X.

Ž .1 X is a Noetherian tree with a least element.
Ž .2 There exists a generalized Dedekind domain R whose prime spec-

trum is order isomorphic to X.

PROPOSITION 5.4. The following statements are equi!alent for a partially
Ž .ordered set X, 0 .

Ž .1 X is a Noetherian tree with a least element x such that e!ery0
element of X except possibly x is contained in at most finitely many maximal0
elements of X.

Ž .2 There exists an integrally closed SV-stable domain R whose prime
spectrum is order isomorphic to X.
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Ž . Ž . Ž .Proof. 1 ! 2 . Assume X is as in 1 . Then by Proposition 5.3, there
exists a generalized Dedekind domain R whose prime spectrum is order
isomorphic to X. Therefore, each non-zero ideal has at most finitely many

% &minimal primes 8, Theoreme 2.7 . Since the prime spectrum of R is order` ´
isomorphic to X, each non-zero prime ideal of R is contained in at most
finitely many maximal ideals of R. Thus each non-zero ideal of R is
contained in at most finitely many maximal ideals of R. By Theorem 4.6, R
is an SV-stable domain.
Ž . Ž . Ž .2 ! 1 . If 2 holds, then by Proposition 5.3, X is a Noetherian tree

with least element. The additional restriction on X follows from Theorem
4.6.

PROPOSITION 5.5. The following statements are equi!alent for a partially
Ž .ordered set X, 0 .

Ž .1 X is a Noetherian tree with a least element x and e!ery element of0
X except possibly x is contained in a unique maximal element of X.0

Ž .2 There exists an integrally closed domain R that is totally di!isorial
and whose prime spectrum is order isomorphic to X.

Ž . Ž . Ž .Proof. 1 ! 2 . Assuming 1 , there exists by Proposition 5.3 a gener-
alized Dedekind domain R whose prime spectrum is order isomorphic to

Ž .X. Thus, by 1 , each prime ideal of R is contained in a unique maximal
ideal of R. By Propositions 4.2 and 3.4, R is totally divisorial.
Ž . Ž . Ž .2 ! 1 . Let R be as in 2 . Then by Theorem 4.7, R is clearly a

generalized Dedekind domain. By Proposition 5.3 it follows that the prime
spectrum of R is a Noetherian tree ordered by ( and having a least

Ž .element. Since R is h-local Proposition 4.1 , every non-zero prime ideal of
Ž .R is contained in a unique maximal ideal of R. Statement 1 follows.

Gabelli has given an example of an integrally closed SV-stable domain
% &that is not a generalized Dedekind domain 9 . While Propositions 5.3 and

5.4 guarantee the existence of many such examples, we briefly indicate a
direct way to construct examples of generalized Dedekind domains that
are not SV-stable. Let R be a generalized Dedekind domain with infinitely

% &many maximal ideals. If Q is the quotient field of R and Q X is the
polynomial ring of Q in one variable X, then the integral domain S $ R

% & % &, XQ X is also a generalized Dedekind domain 8, Theorem 4.1 . Since` ´
% &the prime ideal XQ X of S is contained in every maximal ideal of S,

Theorem 4.6 implies that S is a generalized Dedekind domain that is not
SV-stable.

Similarly, Propositions 5.4 and 5.5 guarantee that the class of integrally
closed SV-stable domains is distinct from the class of integrally closed
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totally divisorial domains. In fact, it follows from these last two proposi-
tions that even for semi-local domains the two classes do not coincide.
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