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1. Introduction

In the course of studying the flat spectral topology and a related discrete
Alexandroff topology in [8], we had occasion to prove that direct limits of certain
types of directed systems of GD (going-down)-homomorphisms were also GD-
homomorphisms [8, Lemma 2.14]. In the present note, we establish a generalization
of this result which is valid for all directed systems of GD-homomorphisms (Theorem
2.1). Analogous results are obtained for, i.c., the INC-property (Proposition 2.3). The
major portion of this article is devoted to showing that various classes of going-down
rings (in the sense of [4]) are closed under direct limit (cf, Corollary 2.7). Results of
this sort are motivated in part by the well-known fact that directed unions of Priifer
domains are themselves Prifer domains; indeed, the present work includes three
proofs of a direct limit generalization of this fact.

Throughout, rings are assumed commutative, with 1; a subring must contain the
1 of the larger ring; and ring-homomorphisms are assumed unital. that is,send 1 to 1.

2. Main results
We begin with the promised sharpening of [8, Lemma 2.14].

THEOREM 2.1.  Let (I, <) be a directed set. and let (A, fi;) and (B,. g;;) each be
direct systems of rings indexed by 1. For each icl, let h; : A;—>B; be a ring-
homomorphism satisfying GD such that, whenever i<jin [ then g hi=hf,; : 4,-B,
Set A =lim 4;, B=lim B; and h=lim h;. Then h : A— B also satisfies GD.

Proof. If the assertion fails, then [12], Exercise 37. p. 44 supplies Pe Spec(4)
and Q e Spec(B) such that Q >h(P)B and
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h(P)BNW(A\P)B\Q)# I .

Thus, Y./ A( p,)b,= h(a)b for suitable elements p,e P, b;e B, ac A\P and be B\Q. By
the construction of direct limits (see [3], Lemma 1, p. 203), we produce an index ae/
and elements x;, € B, such that g (x;,)=0b; for i=1, --- , nand g,(x,,, ,)=b, where
g, : B,— B is the canonical map. Similarly, there exist fel and y, € 4; such that
Spyiy)=p; for i=1, -+, nand f(y,, g)=a where f; 1 A;—>A is the canonical
map. Since directedness of I yields an index y majorizing both & and f, we may
suppose that « = f. (In detail, x;,, may be replaced by g,.(x;,) since g,9,,=¢,, etc.) As
hf,=g,h, and g, is a homomorphism, it follows that

ga( Z ha( yia)xia>:ga(ha( Y+ l,x)er- 1.1) .
i=1

Thus, by [3], (ii), p. 204, there is an index & in 7 such that a <k and

gzk(zha( yia)xia) = gak(ha( yn +1, az)xn + 1. 1) .
Since g/, = h, /. by hypothesis, we have

th(/xk( yia))gzk(xia) = hk(fak(yn +1, a))gak(xn +1, a) .

To complete the proof, it suffices to show (using the preceding equation) that 4, does
not satisfy GD.

Indeed, in view of [12], Exercise 37, p. 44, it suffices to verify that P, =
S¥(P)eSpec(A4,) and Q, =g¥(Q)eSpec(B,) satisfy O, 2h(P,); f.(r.) € P, for each
i=1, - ,n fuyaey JeANP; and gu(x, ;)€ B\Q,. For the first of these, one
need only notice that g, (P,)=hf{P,)=h(P)<= Q. The second and third assertions
follow readily from the above information about p; and a, since f, f,, = f,- Similarly,
the final assertion reduces to requiring b ¢ @, and so the proof is complete.

REMARK 2.2. (a) Some special cases of the preceding result are noted next.
First, if 4;,— B is a directed system of ring-homomorphisms each of which satisfies
GD, then the direct limit map lim 4;,— B also satisfies GD. Of course, this follows
from Theorem 2.1 by setting each B;= B and g;;= 1. Secondly, specializing to the case
A;=4, fi;=1 recovers [8, Lemma 2.14]. Thirdly, let (B, g;;) be a directed system
indexed by /and set B=lim B;. If k e [ is such that g,; : B,— B, satisfies GD whenever
k <j, then the canonical map g, : B,— B also satisfies GD. For a proof, let B'=
lim B;, where the indexes range over those je I such that k£ <j. By the preceding ob-
servation, the canonical map g, : B,— B’ satisfies GD. However, since / is directed,
a cofinality argument identifies B with B’, whence ¢, is identified with ¢;, and
the assertion follows.

(b) As a special case of the second observation in (a), that is of [8, Lemma
2.14], we easily recover [13], Corollary 2, whose proof was our original inspiration
for Theorem 2.1. Specifically, we have that if 4 is a subring of B such that 4 = A[b,,

-, b,] satisfies GD for each finite subset {b,, - - - , b,} of B, then A = B also satisfies
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GD. The point, of course, is that B is the direct limit of its subrings of the form Alb,,
<+, b,). If the 4-subalgebras corresponding to n=1 happen to be cofinal amongst
the A4-subalgebras of finite type then, to use the terminology of [13], “simple going
down” for 4< B implies that A< B satisfies GD. It would be of interest to
characterize those extensions 4 = B for which such cofinality obtains.

(¢c) Note that analogues of Theorem 2.1 and the above consequences may fail
when “satisfies GD” is replaced by “‘induces an open mapping of prime spectra with
their Zariski topologies.” In particular, consideration of the extension Zc<Q reveals
the falsity of the analogue of [8, Lemma 2.14}; indeed [14], Remark 3.12 guarantees,
in the terminology of [14], that Z is an FTO-domain which is not an open domain.
For some positive analogues, see the next result.

First, some terminology. As in [12], p. 28, it will be convenient to let INC denote
the incomparability property. Adapting from [14], p. 2, we shall say that a ring-
homomorphism f : 4- Bisan i-mapif f* : Spec(B)—Spec(4) is an injection; and
an integral domain A is called an i-domain if the inclusion 4 = B is an i-map for each
overring B of 4.

PROPOSITION 2.3.  Ler (4;, f;) and (B), g;) be directed systems of rings, each
indexed by a directed set (1, <). For eachjel, let h; © A;— B, be a ring-homomorphism
satisfying INC (resp., which is an i-map) such that, whenever j<k in I, then gph;=
ISy Then h=limh; : 4 =lim 4;— B=1im B; satisfies INC (resp., is an i-map).

Proof. If the assertion concerning INC is assumed to fail, then there exist
distinct comparable prime ideals Q = W of B such that #*(Q)=h*(W)= P e Spec (A).
Select be W\Q. By the construction of direct limits, there exist an index k e/ and
an element xe B, such that g,(x)=>5, where g, : B,—B is the canonical map. Let
Wy=gt(W), Q,=g¥(Q) and P,=f¥P), where f;: A,—~A is the canonical map.
Evidently, Q; = W, are comparable prime ideals of B,, distinct since xe WAQ,. But
the condition g,k = h f, readily yields that A¥(Q,) = f¥(P) = h¥*(W,). contradicting the
assumption that h, satisties INC. The preceding argument also applies, muratis
mutandis, to give the assertion about ji-maps.

To avoid unnecessary repetition, let us fix notation for (2.4)~(2.10). Data will
consist of a directed system (4, f;,) of rings indexed by a directed set (/, <); and its
direct limit, A=lim 4, together with the canonical maps Ji A A

COROLLARY 2.4. If A; is an i-domain for each jel, then A is also an i-domain.

Proof. If not, then as in the preceding proof (also cf. [14], Proposition 2.10),
there exists an element u in the quotient field of A4 such that B=A[u] has distinct
primeideals O, Wsuchthatu e W\QandQ n A=W~ 4= Pe Spec (A4). Writeu=ab !
for appropriate nonzero a. b e A. By the construction of direct limits, there exists k e /
and ¢, de A, such that fi(c)=a and f(d)=b.

We claim that there exists a ring-homomorphism H : D= A,[cd”']— B which
restricts to f, on A4, and sends ¢d ™' to u. For this, it is enough to show that if 4 is the
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homomorphism 4,[X]— B which restricts to f, on A4, and sends X to . then / vanishes
on the kernel of the evaluation map 4,[X]— D. Now. if

g=a,X"+a, X" '+ fa,e 4[X]
is an n-th degree polynomial in that kernel, i.e. satisfies g{cd™')=0, then,
0=d"g(cd Y=ay"+a,c" 'd+ - +a,d".
Applying f, and dividing by b" results in
0=/lagh" +fila "' + - + fila,) = h(g) .

as claimed.

Observe that Q, = H*(Q) and W, = H*(W) are prime ideals of D, distinct since
cd ~' e W\Q,. But the conditions satisfied by H imply that Q, A, = f¥(P)=W,NA,.
whence the inclusion A, = A,Jcd '] is not an i-map, contradicting the assumption that
A, 1s an j-domain. This completes the proof.

Corollary 2.4 is reminiscent of the well-known fact (cf. [9], Proposition 22.6) that
a directed union of Priifer domains is itself a Priifer domain. Indeed, Prifer domains
may be characterized as the integrally closed i~-domains [9], Theorem 26.2. Recall
that, in general, each overring of an i-domain is a going-down ring [14], Corollary
2.13. Accordingly, one might conjecture that the classes of Priifer domains and of
going-down rings are closed under taking direct limits. We shall soon establish these
conjectures, together with their analogue for locally divided domains, a type of going-
down ring figuring intimately in the analysis of arbitrary going-down rings (cf. [5],
Theorem 2.5 and Corollary 2.8). For completeness, we recall that an integral domain
D 1s called divided in case P=PD, for each PeSpec(D); and D is said to be locally
divided if Dp is divided for each PeSpec (D).

PROPOSITION 2.5. (a) If A4; is a Priifer domain for each jel, then A is also a
Priifer domain.

(b) If A; is divided for each jel, then A is divided.

(c) If A;is locally divided for each jel. then A is locally divided.

Proof. In any event, A4 is an integral domain (cf. [2], Proposition 3, p. 122).

(a) One proof proceeds by applying Corollary 2.4, since any direct limit of
integrally closed integral domains is itself integrally closed. For a more direct proof,
we shall use the criterion that an integral domain is a Priifer domain if and only if
each of its ideals is flat. Let J be any ideal of 4 and, for each jel, set J,= f; '(J).
Since A4; 1s a Prufer domain, J;is 4 -flat. Thus, by [1], Proposition 9, p. 35, lim J; is
A-flat. However, according to [10], Proposition 6.1.2 (ii), p. 128, limJ;=J, and
so the assertion follows.

(b) Let PeSpec(A4) and, for each jel, set P;= f¥(P)eSpec(4)). As above,
P=lim P However, each 4; is supposed divided, and so P,=
P{App,=P;& 4(A4))p,. Since tensor product commutes with direct limit, the proof
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that P=PA4, will be complete if Ap=lim(A;), . However, this needed isomor-
phism does hold, by virtue of [10], Proposition 6.1.6 (i), p. 130, whose appli-
cability is a consequence of noticing that P;= f%(P,) whenever j<k in /.

(c) We shall offer two proofs. First, let Pe Spec(A4) and, for each je, set P,=
J¥(P). As in the proof of (b), an appeal to [10] reveals Ap=1im(4;)p,. Since A4; is
assumed to be locally divided, (4))p, 1s divided, and so an appeal to (b) shows that
Ap 1s divided. Since P was an arbitrary prime of A4, the assertion follows.

To sketch another proof of (c), we recall from [6], Theorem 2.4 that an integral
domain D is locally divided if and only if D+QD, is D-flat for cach Qe Spec (D).
Now, let P, P; be as above. Since Aj; is locally divided for each j and direct limit
preserves flatness, it follows that B=Im (Aj+Pj(A_,-)PJ) is A-flat. However, one may
verify routinely that the canonical D-module epimorphism B—A+ PA, is an
isomorphism, from which the assertion (again) follows.

LEMMA 2.6.  Assume that each A, is a domain. Then each overring B of A may be
expressed as B=lim Bj, where B; is an overring of A j for each jel, such thar the
canonical diagram

B

4
l }
A

commutes whenever je|l.

Proof.  Let K be the quotient field of A, and consider an overring B of 4 (so that
A<= BcK). For each jel, let P;= f*(0)e Spec (A4)). As in the proofs of parts (b) and
(c) of Proposition 2.5, we have ling(Aj)pJ;K. In particular, ((Ayp,» gj) is a directed
system indexed by I note that g restricts to f, on A4, Let g; : (A))p,~K be the
canonical structure map, and set B;=g, '(B). Then A< B; since g restricts to f; on
A;. The idea of the proof is now to verify the following assertions:

(1) (Bj, g, is a directed set of rings indexed by I

(2) Whenever j<k in I, one has (9| 8 )0 =hf s and

(3)  The direct limit of the system in (1) may be identified with B in such a way
that lim /1; becomes identified with the inclusion map 4- B.

Now, (1) follows readily from the condition 99x=4¢; The compatibility
condition (2) is a consequence of the above remarks. Finally, to establish (3), observe
that the direct limit of the system in (1) may be viewed as B’:U(im (g;| ) the
union indexed by /7. Evidently, B’ < B, by the definition of B,. For the reverse inclu-
sion, view any given be B inside lim (A4))p, and use the construction of direct limits
(cf. [3], Lemma 1(i), p. 204) to find ke/ and xe(4,)p, such that gi(x)=">b; then
xeg, (B)=B,, whence he B’. Thus B=B’. For the final assertion in (3). one has
to verify that the inclusion map A4— B is compatible with the composite maps
A;— B;— B, and this holds since g; restricts to f;. The proof is complete.

Lemma 2.6 is perfectly suited for our present purposes. For example, it
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immediately recovers Corollary 2.4 since a direct limit of (abelian group) monomor-
phisms is itself a monomorphism. Similarly, Lemma 2.6 also leads to a (third) proof
of Proposition 2.5(a), since Priifer domains may be characterized as the integral
domains each of whose overrings is flat [15}, Theorem 4. More to the point. we now
give the promised result.

COROLLARY 2.7. IfAjisa going-down ring for each je I, then A is also a going-
down ring.

Proof. Use the criterion that an integral domain D is a going-down ring if and
only if the inclusion D < E satisfies GD for each overring E of D. Apply Lemma 2.6
and Theorem 2.1, to complete the proof.

Our next result concerns QR-domains. Recall that an integral domain D is said
to be a Q R-domain in case cach overring of D is a quotient ring (ring of fractions) of
D. As quotient rings are flat, any QR-domain must be a Priifer domain and, in
particular, a going-down ring.

COROLLARY 2.8. If 4;isa QR-domain for each jel, then A is also a OR-
domain.

Proof. Let B be an overring of A. By Lemma 2.6, B=lm B;, where B;is a
suitable overring of A; for each jel By hypothesis, B;=(A)r, where we may
suppose that T; is a saturated multiplicative subset of A, Observe, using (2) in
the proof of Lemma 2.6, that f(T)<=Tx whenever j<k in 1. Letting T be the
multiplicative set LT 'je]} < A, one readily verifies (cf. [10], Proposition 6.1.5,
p. 129) that the canonical ring-homomorphism lim B~ Ay is an isomorphism,
completing the proof.

Our final results concern strong extensions {7} and pseudo-valuation domains
[11]. Recall that an extension Dc E of rings is said to be strong if, whenever xy € P
for some x€ £, ye E and PeSpec (D), then either x or ¥ is in P, and that a domain
D is a pseudo-valuation domain (PVD) in case D=K is strong. where K 1s the
quotient field of D. Any PVD is a divided ring and, hence, a going-down ring.

PROPOSITION 2.9. Let (A f) and (B, ;) be directed systems of rings, each
indexed by a directed set (I, <). For each jel, let h; A;—B; be a strong extension
such that, whenever j<k in I, then gjkhjzhkf}k. Then h=limh; : A=lim 4;,~8=
lim B; is a strong extension.

Proof. Suppose that xye P for some xe B, ye B, PeSpec (B). By the nature
of direct limits, there exists an index j and elements Xx;. y; of B; such that g fx;)=x,
gily)=y and xjyjer:gjl(P) (cf. 110}, Proposition 6.1.2). Since h; is assumed

strong, either x; or y; 18 in P, and so either x or y is in P, as desired.

COROLLARY 2.10. If A;isa PVD for each jel and if [ is a monomorphism
whenever j<k in I, then A is a PVD and the quotient field of A is lim K;, where K;
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denotes the quotient field of 4; for each jel.

Proof. By the definition of PVD’s. A;—> K is a strong extension for each Jjel

Thus, by Proposition 2.9, 4 —lim Kj is also strong. Since lim K is readily shown to be
the quotient field of A. the assertions follow.
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