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ABSTRACT. After the introduction in 1994, by Okabe and Matsuda, of the no-
tion of semistar operation, many authors have investigated different aspects of
this general and powerful concept. A natural development of the recent work
in this area leads to investigate the concept of invertibility in the semistar set-
ting. In this paper, we will show the existence of a “theoretical obstruction”
for extending many results, proved for star-invertibility, to the semistar case.
For this reason, we will introduce two distinct notions of invertibility in the
semistar setting (called x—invertibility and quasi—x—invertibility), we will dis-
cuss the motivations of these “two levels” of invertibility and we will extend,
accordingly, many classical results proved for the d—, v—, t— and w— invertibility.
Among the main properties proved here, we mention the following: (a) several
characterizations of x—invertibility and quasi—x—invertibility and necessary and
sufficient conditions for the equivalence of these two notions; (b) the relations
between the x—invertibility (or quasi——invertibility) and the invertibility (or
quasi—invertibility) with respect to the semistar operation of finite type (de-
noted by *f) and to the stable semistar operation of finite type (denoted by
%), canonically associated to x; (c) a characterization of the H(x)-domains in
terms of semistar—invertibility (note that the H(x)-domains generalize, in the
semistar setting, the H-domains introduced by Glaz and Vasconcelos); (d)
for a semistar operation of finite type a nonzero finitely generated (fractional)
ideal I is x—invertible (or, equivalently, quasi—x—invertible, in the stable semis-
tar case) if and only if its extension to the Nagata semistar ring I Na(D, *) is
an invertible ideal of Na(D,x).

1. INTRODUCTION AND BACKGROUND RESULTS

The notions of t—invertibility, v—invertibility and w—invertibility, that generalize
the classical concept of (d-)invertibility (these definitions will be recalled in Section
2), have been introduced in the recent years for a better understanding of the
multiplicative (ideal) structure of integral domains. In particular, t—invertibility
has a key role for extending the notion of class group from Krull domains to general
integral domains (cf. [{], [8], [E] and the survey paper [d]). An interesting chart of
a large set of various ¢—, v—, d— invertibility based characterizations of several classes
of integral domains can be found at the end of [&]; some motivations for introducing
the w-invertibility and the first properties showing the “good” behaviour of this
notion can be found in [ (cf. also [B]). The concept of star operation (or,
equivalently, ideal system, cf. the books by Jaffard [EJ], Gilmer [Z2] and Halter-
Koch [Z4]) provides an abstract setting for approaching these different aspects of
invertibility. A recent paper by Zafrullah [B] gives an excellent and updated survey
of this point of view.
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After the introduction in 1994, by Okabe and Matsuda ], of the notion of
semistar operation, as a more general and natural setting for studying multiplica-
tive systems of ideals and modules, many authors have investigated the possible
extensions to the semistar setting of different aspects of the classical theory of ideal
systems, based on the pioneering work by W. Krull, E. Noether, H. Prufer and P.
Lorenzen from 1930°s (cf. for instance [E0, [55], £, [&2], (B4, [, (2], (=], ),
[IkJa [I"Ja l”]a [”Ja [A]a [“Ja [1"Ja ll])

A natural development of this work leads to investigate the concept of invertibi-
lity in the semistar setting. This i1s the purpose of the present paper, in which we
will show the existence of a “theoretical obstruction” for extending many results,
proved for star-invertibility, to the semistar case. For this reason, we will be forced
to introduce two distinct notions of invertibility in the semistar setting (called
*—invertibility and quasi——invertibility; the explicit definitions will be given in
Section 2), we will discuss the motivations of these “two levels” of invertibility and
we will extend, accordingly, many classical results proved for the d—, v—, t— and w—
invertibility.

Among the main properties proved in this work, we mention the following: (a)
several characterizations of x—invertibility and quasi——invertibility and necessary
and sufficient conditions for the equivalence of these two notions; (b) the relations
between the «—invertibility (or quasi——invertibility) and the invertibility (or quasi—
invertibility) with respect to the semistar operation of finite type (denoted by «,)
and to the stable semistar operation of finite type (denoted by %), canonically
associated to % [in case, x = v is the Artin’s v-operation, then %, =t and x = w];
(¢) a characterization of the H(x)-domains in terms of semistar—invertibility (note
that the H(x)-domains generalize in the semistar setting the H-domains introduced
by Glaz and Vasconcelos [E8], more precisely, we will see in Section 2 that an H-
domain coincides with an H(v)-domain); (d) for a semistar operation of finite type
a nonzero finitely generated (fractional) ideal T is x—invertible (or, equivalently,
quasi——invertible, in the stable semistar case) if and only if its extension to the
Nagata semistar ring [ Na(D, ) is an invertible ideal of Na(D, ) (the definition of
Na(D, %) will be recalled at the end of this section).

L T S 3

Let D be an integral domain with quotient field K. Let F(D) denote the set of
all nonzero D—submodules of K and let F(D) be the set of all nonzero fractional
ideals of D, i.e. E € F(D) if E € F(D) and there exists a nonzero d € D with
dE C D. Let f(D) be the set of all nonzero finitely generated D-submodules of
K. Then, obviously f(D) C F(D) C F(D).

A map % : F(D) — F(D),E + E*, is called a semistar operation on D if, for
all z € K, = # 0, and for all E, F € F(D), the following properties hold:

(x1) (xEY* = 2 E™;

(x2) E C F implies E* C F™;

(x3) £ C E* and E* := (E*)" = E*.
cf. for instance [I]. Recall that [l Theorem 1.2 and p. 174], for all B, F € F(D),
we have :

(BF)* = (B*F)" = (EF*)" = (B*F*)"
(E + Fy* = (E* + F) = (E+4 F*)" = (EF 4+ F*)"
(B )*Q( DF) = (B F) = (B )
(EmF) CE F*—(E*DF*)*, if ENF #(0);

When D* = D, we say that x is a (semi)star operation, since, restricted to F(D)
it 1s a star operation.
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For star operations it is very useful the notion of x—ideal, that 1s, a nonzero ideal
1 C D, such that [* = [. For semistar operations we need a more general notion,
that coincides with the notion of x—ideal, when x is a (semi)star operation. We say
that a nonzero (integral) ideal I of D is a quasi——ideal if I*N D = I. For example,
it is easy to see that, if /* # D* then [* N D is a quasi——ideal that contains [
(in particular, a x—ideal is a quasi——ideal). Note that I* # D* is equivalent to
“ND#D.

A quasi—-prime 1s a quasi—x—ideal which is also a prime ideal. We call a quasi—~-
mazimal a maximal element in the set of all proper quasi——ideals of D. We denote
by QSpec*(D) (respectively, QMax™ (D)) the set of all quasi—x—prime (respectively,
quasi—x—maximal).

If x is a semistar operation on D, then we can consider a map x, : F(D) = F(D)
defined for each F € F(D) as follows: E™ = |J{F*|F € f(D) and FF C E}. It
is easy to see that x, is a semistar operation on D, called the semistar operation of
finite type associated to x. Note that, for each F' € f(D), F* = F’s. A semistar
operation x is called a semistar operation of finite type if x = x,. It is easy to see
that (%), =« (that is, x, is of finite type).

If x1 and %2 are two semistar operations on D), we say that x; < %q if B** C E*2,
for each £ € F(D). In this situation, it is easy to see that (F*1)** = F*2 = (F*2)**.
Obviously, for each semistar operation x, we have %, < .

The following result, with a different terminology, was proved in [i&] (cf. also
[ Lemma 2.3]).

Lemma 1.1. Let x be a semustar operation on an integral domain D. Assume that
* 18 non trwvial and « =%,. Then:

(1) Each proper quasi——ideal is contained in a quasi—x—mazrimal.

(2) Fach quasi—*-mazimal is a quasi—%-prime.

(3) Set II* := {P € Spec(D) | P # 0 and P*N D # D}, then QSpec™(D) C IT*
and the set of mazimal elements I1%, of 11* is nonempty and coincides with

QMax*(D). a

For the sake of simplicity, we will denote simply by M (%) the set QMax*(D) of
the quasi—+—maximal ideals of D.

If A C Spec(D), the map %a : F(D) — F(D), E+ E*> .= ({EDp|P € A},
is a semistar operation. If x = xa, for some A C Spec(D), we say that x is a
spectral semistar operation. In particular, if A = {P}, then *yp; is the semistar
operation on D defined by E*(*y := EDp, for each £ € F(D). We say that a
semistar operation is stable if (E N F)* = E* N F*, for each E,F € F(D). A
spectral semistar operation is stable [, Lemma 4.1].

If % 1s a semistar operation on 1), we denote by % the semistar operation *M(x,)

induced by the set M(x,) of the quasi— —maximal ideals of D. The semistar
operation x is stable and of finite type and * < %, (cf. [E, p. 181], where the
semistar operation x is defined, in an equivalent way, by using localizing systems,
and also [B Section 2] for an analogous construction in the star setting). Note
that when x = v (where, as usual, v denotes the (semi)star operation defined by
EV = (D : (D : E)), for each E € F(D)), then % coincides with the (semi)star
operation denoted by w by Wang Fanggui and R.L. McCasland (cf. [, B2 and
).

The following lemma is not difficult to prove (cf. &1 Corollary 3.5(2)] and, for
the analogous result in case of star operations, [, Theorem 2.16]).

Lemma 1.2. Let x be a semistar operation on an integral domain D. Then,

M(x) = M(F). 0

!
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In the next proposition, we recall how a semistar operation on an integral domain
D induces canonically a semistar operation on an overring 7' of D (cf. B Lemma
45], and, for the notation used here, [E]).

Proposition 1.3. Let D be an integral domain and T an overring of D. Let
t: D < T be the embedding of D in T, and let x, : F(T) — F(T) be defined by
E* .= E*. Then:

(1) *, is a semistar operation on T.

(2) If * is of finite type on D, then x, is of finite type on T.

(3) If T'= D*, then x, is a (semi)star operation on D*.

(4) If * is stable, then x, is stable. a

If Ris aring and X an indeterminate over R, then the ring R(X) :={f/g| f,9 €
R[X] and ¢(g) = R} (where ¢(g) is the content of the polynomial g) is called the
Nagata ring of R [, Proposition 33.1].

The following result is proved in B3 Proposition 3.1] (cf. also B, Proposition

2.1)).

Proposition 1.4. Lel x be a nontrivial semistar operation on an integral domain
D and set N(x) := Np(x) :={h € D[X]| h # 0 and (¢(h))* = D*}. Then:
(1) N(x) is a saturated multiplicative subset of D[X] and N(x) = N(x,) =
DIX] N U{QIX] | Q € M(%)}.
(2) Max(D[X]nw)) = {Q[X]nw) | Q@ € M(%,)} and M(x,) coincides with the
canonical image in Spec(D ) of Max ((D[X])N(*)).
(3) DIXInw =M De(X) | Q € M(x)}. o

We set Na(D, %) := D[X]n(x) and we call it the Nagata ring of D with respect to
the semistar operation x. Obviously, Na(D,x) = Na(D,*,) and, when » = d (the
identity (semi)star operation) on D, then Na(D,d) = D(X).

2. SEMISTAR INVERTIBILITY

Let x be a semistar operation on an integral domain D. Let I € F(D), we say
that I 1s x—nvertible if (If_l)* = D*. In particular when x = d [respectively,
v, t (= wv,), w (:= v) ] is the identity (semi)star operation [respectively, the
v—operation, the {—operation, the w—operation | we reobtain the classical notion
of dnvertibility [respectively, v—invertibility, t—invertibililty, w—invertibility | of a
fractional ideal.

Lemma 2.1. Let x, %1, %y be semistar operations on an wntegral domain D. Let
Inv(D,x) be the set of all x—invertible fractional ideals of D and Tnv(D) (instead of
InV(D, d)) the set of all invertible fractional ideals of D. Then:

(0) D eInv(D,x).

(1) If 51 < %o, thenInv(D, %) C Inv(D,*2). In particular, Inv(D) C Inv(D, %) C

Inv(D,*,) C Inv(D, ).

(2) 1,J € Inv( *) if and only if IJ € Inv(D,%).

(3) If I € Inv(D, %) then I=! € Inv(D, *)..

(4) If I € Inv(D, ) then IV € Inv(D,%).

Proof. (0) and (1) are obvious.

(2) Note that, if I, J € Tnv(D,*), then D* = (I1=)" (JJ=1)" C (II"'JJ=1)" C
(IJ(IJ) ) C D*. Thus, IJ € Inv(D,*). Conversely, if IJ € Inv(D, %), then
DF = ((I)(D : 1)y = (I(J(D : IJ)))*. Since (J(D : IJ)) C (D : 1), it follows
(I(D : 1)) = D*. Similarly, (J(D : J))* =

(3) D" = (1I71)" C (")~ 11)" € D*.

(4) follows from (3). d
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Remark 2.2. (a) Note that D is the unit element of Inv(D,*) with respect to
the standard multiplication of fractional ideals of D. Nevertheless, Inv(D, %) is not
a group in general (under the standard multiplication), because for I € Inv(D, %),
then =1 € Inv(D,*), but 1171 # D, if I ¢ Inv(D). For instance, let k be a field,
X and Y two indeterminates over k, and let D := k[X,Y]x,y). Then D is a local
Krull domain, with maximalideal M := (X,Y)D. Let %+ = v, then clearly MV = D,
since ht(M) = 2, thus M is v—invertible but M is not invertible in D, since it is not
principal. Therefore (M M~YY = D, but M = MM~} C D. We will discuss later
what happens if we consider the semistar (fractional) ideals semistar invertible with
the “semistar product”.

(b) Let I € F(D). Assume that I € Inv(D,%) and (D* : I) € F(D), then
we will see later that (D* : I) = (D : I)* (Lemma I, Remark EEE)(d1) and
Proposition 25, more precisely that:

(I = (D: Yy = (D )" = (D*: I) = (I*) ™" .

However, in this situation, we may not conclude that (D* : I) (or, (D : I)*)
belongs to Inv(D, ) (even if (D : I) € Inv(D,x), by Lemma EH(3)). As a matter
of fact, more generally, if J € Inv(D, %) and J* € F(D), then J* does not belong
necessarily to Inv(D, x).

For instance, let K be a field and X,Y two indeterminates over K, set T :=
K[X,Y]and D := K4+Y K[X,Y]. Let x{7} be the semistar operation on D defined
by E*(ry := ET, for each E € F(D). Then J := Y D is obviously invertible (hence
xppy-invertible) in D and JX7r = JT' = YT = YK[X,Y] = (D : T)) is a nonzero
(maximal) ideal of D (and, at the same time, a (prime) ideal of T'), but J*(*} is not
*ppy-invertible in D, because (J*T} (D : JHEYA = (JT(D : JTNT = (YT(D :
YTWT = (YTY =YD : T)T = (T(YT))T = YT C T = D~y

(¢) Note that the converses of (3) and (4) of Lemmal&l are not true in general.
For instance, take an integral domain D that is not an H-domain (recall that an H-
domain is an integral domain D such that, if I is an ideal of D with /=! = D, then
there exists a finitely generated J C I, such that J=! = D [ Section 3]). Then,
there exists an ideal I of D such that IV = I=!' = D and I' C D. It follows that
(I‘lfv)t = D (and so, I7! and I are t-invertibles), but (If_l)t =1'C D, that
18, I is not ¢t—invertible. On the other hand, note that, trivially, I is v—invertible.

An explicit example is given by a 1-dimensional non discrete valuation domain V'
with maximal ideal M. Clearly, V is not an H-domain [E8 (3.2d)], M~ = MV =V
A, Exercise 12 p.431] and M* = |J{J"|J C M, J finitely generated } = |J{J|J C
M, J finitely generated} = M C V. In this case, M~! and MV are obviously
t—invertibles, but M is not ¢—invertible.

If I € F(D), we say that I is x—finite if there exists J € f(D) such that J* = [*.
It is immediate to see that if %; < %2 are semistar operations and [ is x—finite,
then [ is «o—finite. In particular, if I is %, —finite, then it is «—finite.

We notice that, in the previous definition of xfinite, we do not require that
J C I. Next result shows that, with this “extra” assumption, xfinite is equivalent
to *,—finite.

Lemma 2.3. Let x be a semistar operation on an integral domain D with quotient
field K. Let I € F(D). Then, the following are equivalent:

(i) 1 s % —finite.

(i1) There exists J C I, J € f(D) such that J* = I*.

Proof. Tt is clear that (ii) implies (i), since J* = J* | if J is finitely generated. On
the other hand, suppose I % —finite. Then, It = Jgf, with Jo = (a1, as,...,an)D,
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for some family {ay, as,...,a,} C K. Since Jo C I'7 | there exists a finite family of
finitely generated fractional ideals of D, Jy,Js, ..., J, C I, such that a; € JF, for

. * * * %\ %p
z:l,?,...,n.Itfollowsthatf*f:JOfg(Jlf—l—sz—l—...—l—Jnf) =i+ J2+

R Jn)*f C I't. Set J:=Ji+Jo+...4+J,. Then, J is finitely generated, J C [
and J = I'v | thus J* = I*. d

Remark 2.4. Extending the terminology introduced by Zafrullah in the star set-
ting [BH] (cf. also [Bd, p. 433]), given a semistar operation on an integral domain
D, we can say that I € F(D) is strictly x—finite if I* = J*, for some J € f(D),
with J C I. With this terminology, Lemma Bzl shows that % —finite coincides with
strictly x,—finite. This result was already proved, in the star setting, by Zafrullah
[E@, Theorem 1.1]. Note that Querré studied the strictly v—finite ideals [E], using
often the terminology of quasi—finite ideals.

For examples of x—finite ideals that are not x,—finite (when x is the v—operation),
see [, Section (4c)], where are described domains with all the ideals v—finite (called
DVF-domains), that are not Mori domains (that is, such that not all the ideals are
tfinite).

Lemma 2.5. Let x be a semistar operation on an integral domain D and let I €
F(D). Then I is x —invertible if, and only if, (I'T"Y* = D*, for some I' CI,I" C
I=Y, and I', I" € £(D). Moreover, I'" = I* and I'* = (I‘l)*.

Proof. The “if” part is trivial. For the “only if”: if (If_l)*f = D’ then H* = D*
for some H C II=*, H € f(D). Therefore, H = (hy,hs...,hy)D, with h; =
1Y+ T2 + ..+ Tk, sYk, i, with the 2’s in [ and the y’s in I7'. Tet I’ be
the (fractional) ideal of D generated by the z’s and let I” be the (fractional) ideal
of D generated by the y’s. Then, H C I'I" C II=" and so D* = (I'I")*, and,
thus, also D* = (I’I‘l)* = (II"Y*. Moreover, I* = (ID*)" = (I (I’I‘l)*)* =

*

((If_l)*f’)* = (D*I'Y* = I’". In a similar way, we obtain also that ["* = (I‘l) .
(I

A classical result due to Krull [B, Théoréme 8 Ch. I, §4] shows that, for a
star operation of finite type, star—invertibility implies star—finiteness. The following
result gives a more complete picture of the situation in the general semistar setting.

Proposition 2.6. Let x be a semistar operation on an integral domain D. Let
I'€ F(D). Then I is % —invertible if and only if I and I~ are *, ~finite (hence, in
particular, x—finite) and I is x—invertible.

Proof. The “only if” part follows from Lemma B2 and from the fact that x, < «.
For the “if” part, note that by assumption I'* = J = J™ and (I71)% =
J" = J" with J',J" € f(D). Therefore:

(I~ = (I = (T = (7T = (1 (1Y) = (1Y) = DE.
O

Next goal is to investigate when the x—invertibility coincides with the * —inver-
tibility.

Let % be a semistar operation on an integral domain D, we say that D is an
H (x)-domain if, for each nonzero integral ideal I of D such that I* = D*| there
exists J € f(D) with J C I and J* = D*. Tt is easy to see that, for x = v, the
H(v)-domains coincide with the H-domains introduced by Glaz and Vasconcelos

(Remark EEX(c)).
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Lemma 2.7. Let x be a semustar operation on an integral domain D. Then D 1is
an H(x)-domain if and only if each quasi—, —marimal ideal of D is a quasi—~—ideal
of D.

Proof. Assume that D is an H(x)-domain. Let Q = Q@ ND be a quasi—k, —maximal
ideal of D. Assume that @* = D*. Then, for some J € f(D), with J C @,
we have J* = D*, thus Q% = D*, which leads to a contradiction. Therefore
QYNDC Q@ ND C D and, hence, there exists a quasi—,—maximal ideal of D
containing @* N D. This is possible only if @™ N D = Q* N D.

Conversely, let I be a nonzero ideal of D with the property I* = D*. Then,
necessarily [ ¢ @ for each quasi—,—maximal ideal of D (because, otherwise, by
assumption / C Q@ = Q¥ N D = Q*N D, and so I* C Q* C D). Therefore
I = D*. (I

Next result provides several characterizations of the H(x)-domains; note that, in
the particular case that x = v, the equivalence (i) < (iii) was already known [EJ,
Proposition 2.4] and the equivalence (i) < (iv) was considered in [, Proposition

5.7].

Proposition 2.8. Let x be a semistar operation on an integral domain D. The
following are equivalent:
(i) D is an H(x)-domain;

(ii) for each I € F(D), I is x—invertible if and only if I is x, ~invertible;

(iil) M%) = M(%);

(iv) M(%) = M(x).

Proof. Obviously, (iii) < (iv) by Lemmall& and (iii) < (i) by Lemmal=3 recalling
that a quasi—x—ideal is also a quasi—,—ideal.

(iii) = (ii). Let I be a s»—invertible ideal of D). Assume that [ is not x,-invertible.
Then, there exists a quasi—,—maximal ideal M such that I C M. But M is
also quasi-x-maximal, since M(x,) = M(x). Thus M* C D*. It follows that
(II=1)* C M* C D*, a contradiction. Hence I is «,-invertible.

(i1) = (i) Let I be a nonzero integral ideal I of D such that I* = D*. Then,
I C II71 C Dimplies that (If_l)* = D*, that is I is x—invertible. By assumption,
it follows that [ is x —invertible, and so [ is x,—finite (Proposition E3). By Lemma
B2 we conclude that there exists J € f(D) with J C I and J* = I* = D*. d

Let % be a semistar operation of D. If we denote by ¢ : D = D* the embedding of
D in D* and by %, the (semi)star operation canonically induced on D* by % (defined
as in Proposition IE¥), we note that, if I € Inv(D,x), then I* € Inv(D* %,). As
a matter of fact, we have: D* = (II ) = (I*(D SR C (IF(DF ) =
(I(D* s 1) C (D) = D*.

Next example shows that the converse does not hold (in other words I* may be
in Inv(D*,%,), with I € F(D) ~Inv(D,*)), even if % is a semistar operation stable
and of finite type.

Example 2.9. Let D be an almost Dedekind domain, that is not a Dedekind
domain (cf. for instance [Bl, Section 2 and the references]). Then, in D there exists
a prime (= maximal) ideal P, such that P is not invertible (otherwise, D would
be a Dedekind domain). Then, P~ = D [, Corollary 3.1.3], since D is a Priifer
domain. Consider the semistar operation % := %ypy. Let 1p : D < Dp be the
canonical embedding, then P* = PDp is *,,—invertible, since Dp is a DVR, but
(PP_l)* = (PD)* = P*=PDp C Dp = D*, thus P is not «—invertible.

Let ¢ : D < D* be the canonical embedding, then, we say that [ € F(D) is
quasi—x—invertible if I* € Inv(D* %,) (that is, if (I(D*:1))* = D*). Note that
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I* € Inv(D*,%,) implies that I* € F(D*). We denote by QInv(D,«) the set of all
quasi——invertible D—submodules of K and, when x = d, we set QInv(D), instead
of QInv(D,d). We have already noticed that Inv(D, %) C QInv(D,*) and that the
inclusion can be proper. Moreover, it is obvious that QInv(D) = Inv(D).

We have the following straightforward necessary and sufficient condition for a
D—submodule of K to be quasi—x—invertible.

Lemma 2.10. Let x be a semistar operation on an integral domain D and I €
F (D). Then, I is quasi—x—invertible if and only if there exists H € F(D) such that
(TH)* D*. |

Next we prove an analogue of Lemmall&ll for quasi— x—invertible ideals.

Lemma 2.11. Let %, %1, %9 be semistar operations on an integral domain D). Then:
(0) D* € QInv(D,%).
(1) If %1 < %q, then QInv(D,*1) C QInv(D, *x2). In particular, we have
QInv(D) C QInv(D, %) C QInv(D,*,) C QInv(D, *).
(2) I,J € QInv(D, %) if and only if IJ € QInv(D,%).
(3) If I € QInV(D, %), then (D* 1) € QInv(D, )
(4) If I € QInv(D, %), then IV(P") .= (D* . (D* 1)) € QInv(D, %).

Proof. (0) and (1) are straightforward. To prove (2) we notice that I, J € QInv(D, %)
if and only if I*, J* € Inv(D*, %,), where %, is defined as above. It follows (from
Lemma &K 2)) that I, J € QInv(D, *) if and only if I*J* € Inv(D* %,). It is easy
to see that this happens if and only if (IJ)* € Inv(D*,x,), that is, if and only
if IJ € QInv(D,%). (3) is clear and (4) is an immediate consequence of Lemma
EEX(4) and of the fact that (v(D*)), = vp«, where vp« is the v-operation of D*, «
is the canonical embedding of D in D* and v(D*) is the semistar operation on D,
defined by EV(P”) .= (D* : (D* : E)), for each £ € F(D) (note that, obviously,
* < v(D¥)). O

Corollary 2.12. Let x be a semistar operation on an integral domain D, let v(D¥)
be the semistar operation on D, defined in the proof of Lemma E=EM(4{) and let I €
F(D). If I is quasi——invertible, then I is quasi—v(D*)—invertible and I* = o)

Proof. Let ¢ be the canonical embedding of D in D*. As we noted in the proof of
Lemma EEEl (4), (v(D*)), = vp~. Then, in order to show that I* is quasi—v(D*)-
invertible, we prove that I* is vp.—invertible. But %, is a (semi)star operation on D*
and I* is x,—invertible, then (Lemma 2l (1)) I* is vp«—invertible, since %, < vp+
[Z2, Theorem 34.1(4)]. Therefore I is quasi—v(D*)—invertible and I* = (IU(D*))*
1P since (D* 1 1) = (D*: I”(D*)) (cf. also & p. 433] or & Lemma 2.1(3)],
and Remark EEEXb1)).

D._.

Remark 2.13. (a) Note that if I is a quasi——invertible ideal of D, then every
ideal J of D, with / C J C I* N D, is also quasi——invertible.

More prec1sely, let I,J € F(D) [respectively, I,J € F(D)], assume that J C I,
J* = I* and that I is x—invertible [respectively, quasi——invertible] then J is %—
invertible [respectively, quasi——invertible].

Conversely, let I, J € F(D), assume that J C I, J* = I* and that J is quasi—x—
invertible then I is quasi——invertible (but not necessarily x—invertible, even if J is
*—invertible).

As a matter of fact, if I is «—invertible, then D* = (I(D : I))* = (J(D : I))* C
(J(D : J))* C D*. The quasi——invertible case is similar. Conversely, if J is quasi-
s—invertible then D* = (J(D* : J))* = (I(D* : J))*, thus I is quasi—x—invertible
and (D* : J) = (D* : J)" = (D" : )" = (D* : I) (cf. also (d1)).
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Example BB shows the parenthetical part of the statement. Let D, P and %
be as in Example BBl Note that P* is principal in (the DVR) D* = Dp, thus
P* = PDp = tDp, for some nonzero t € PDp. Therefore, if J := tD, then
J* = P* i.e. P is xfinite. We already observed that P is quasi—x—invertible but
not x—invertible, even if obviously J is (x—)invertible.

(b) Let I, H', H", J, L € F(D). The following properties are straightforward:

(bl) (IH"Y" = D* = (IH")" = H* = H" = (D*: )" = (D" : ).

(b2) € QInv(D, %), IJCIL = J*CL*.

(b3) T €QInv(D,%), JCI* = ILeF(D), (IL)" =J.

[Take L := (D* : I)J. ]
(b4) I, J€QInv(D,x), (ILy*=J* = LeQInv(D,x*).
[Set H := I(D* :J), and note that (LH)* = D*. ]

(b5) I, J €QInv(D,x) = (D*:1J)=(D*:1J) = (D~ :1)(D*:J))"

(b6) I, Je€QInv(D,*x) = I LeQlnv(D,%), LCTI*, LCJ*.

[Take z € K, z # 0, such that zI C D* zJ C D*, and set L ==zI1J.]

(b7) I, JEQIHV( %), T4+ J € QInv(D ,*) = VP gD e QInv(D, #) .

[Recall that x < v(D*) and note that:
(D" = (D™= I) (I + D))= (((D* 2 1) (D" 2 J)(D* : D((D* 2 ) T))”
=((D*: J) 4+ (D* - D)) = (D PP 4 (D* 2 /PO =

)( . J) (I+J))U(D*) — ((D* . IU(D*)) 4 (D* . JU(D*)))U(D ) -
((D* 1) (DF ) (L4 ) = (D= ((D* 1°P7)) 4 (D7 2 o))
( D* - (D* . IU( ))) (D* . ( . J’U( *))) IU(D*) 0O J’U(D*).]

(b8) I,J € QInV( %), '@ P e QInv(D, %) = I+J € Qlnv(D,v(D*)).

[Since V(P )OJ”( D= (D*:(D*: D) (D* ) (I—i—J))) and hence
(D* ( o ge@ ))):((D*:I) (D~ J) (I +J))" v(p7) , then apply (b4)
to conclude that T+ J € QInv(D,v(D*)). ]

(c) A statement analogous to Corollary B holds for x—invertibles: Let % be
semistar operation on an integral domain D, let v(D*) be the semistar operation
on D, defined in the proof of Lemma Eal(4) and let I € F(D). If I is x—invertible,
then I is v(D*)~invertible and I* = o)

(d) Mutatis mutandis, the statements in (b) hold for x—invertibles. More pre-

cisely: Let x be a semistar operation on an integral domain D and let I, H', H"”, J,
L € F(D), then:

(D~
D*

o —

(d1) T €Tv(D,*), (IH') =D*=(IH"* = H"=H"=(I"")".

(d2) TeInv(D,x), IJCIL = JxCIL*.

(d3) T env(D,), JCI* = 3LeF(D), (IL)*=J*.

(d4) I, J € Inv(D,x), (IL)* = J~ = L € Qlnv(D,x), (D* : L) =

(I(D : J))*.
Note that, under the present hypotheses, L € Inv(D,*) if and only if
(D : Ly = (I(D: J))*.

I, Jelv(D,%) = (D:IY"=((D:1)(D:J)"

I, Jev(D,x) = ILelnv(D,*x), LCI, LCJ.

I, Jenv(D,%), IT+Jev(D,x) = 'PInJ P cnv(D, ).

) I, JEenv(D, %), I'PINJ'PY) clnv(D,%) = [+J € Inv(D,v(D¥)).

(d5)
(d6)
(d7)
(d8

Our next goal is to extend Proposition to the case of quasif*ffinvertibles.
We need the following:

Lemma 2.14. Let x be a semistar operation on an integral domain D with quotient
field K, let v : D — D* the embedding of D in D*, let x, denote the (semi)star
operation canonically induced on D* by x and let I € F(D). Then, I is x—finite if
and only if I* is %, —finile.
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Proof. Tf T is finite, then there exists J € f(D) such that I* = J*. Tt is clear
that (JD*)™ = I*, with JD* € f(D*). Thus, I* is %,finite. Conversely, let
I* be %,~finite. Then, there exists Jy € f(D*), Jo = (a1,a92,...,a,)D*, with
{a1,as,...,a,} C K, such that J§ = J5* = I** = I*. Set J = (ay,az,...,a,)D €
F(D). Then, J* = (a1 D + asD + ...+ a, D)* = (a1 D" + as D* + ...+ a, D*)* =
JE =17, and so [ is xfinite. d

Proposition 2.15. Let x be a semistar operation on an integral domain D and lel
I € F(D). Then I is quasi—x, —invertible if and only if I and (D* : I) are %, ~finite
(hence, x—finite) and I is quasi——invertible.

Proof. Let « : D = D* be the canonical embedding and let %, be the (semi)star
operation on D* canonically induced by *.

For the “if” part, use the same argument of the proof of the “if” part of Propo-
sition =

The “only if” part. Since I is quasi—x,—invertible, then (D* : I) is also quasi-
*,—invertible, thus we have that s and (D* : ) = (D* : I) are (%, ).—invertibles.
Then, It and (D* : I) are (%, ).~ finite (Corollary EZl) and then [ and (D* : I)
are %, —finite, by LemmalZ& Clearly I is quasi——invertible, since x, < % (Lemma

=3(1). O

It is natural to ask under which conditions a quasi——invertible fractional ideal
is x—invertible. Let I € F(D) be quasi—x—invertible. Then (I(D*:1))* = D*.
Suppose that I is also x—invertible, that is, (I(D : I))* = D*. Then, (D : I)* =
(D DD DY) = (((D: DD (DF 1) = (DF: ) = (D : 1) = (D~ :
I*) D (D : I)*. Therefore we have the following (cf. also Remark EZXb)):

Proposition 2.16. Lel x be a semistar operation on an integral domain D. Let I
be a quasi——invertible fractional ideal of D. Then, I is x—invertible if and only if
(D:D* = (D" 1) (ie. (I7Y) = (1)) O

The following corollary is straightforward (in particular, part (2) follows imme-
diately from [, proof of Remark 1.7]):

Corollary 2.17. Let % be a semistar operation on an integral domain D, and let
I € F(D).
(1) If x is a (semi)star operation then I is quasi——invertible if and only if T
15 x—tnvertible.
(2) If % is stable and T € f(D) then I is quasi——invertible if and only if I is
*—tnvertible. ad

We notice that if x is a semistar operation of finite type, x—invertibility depends
only on the set of quasi—%maximal ideals of D. Indeed, it is clear that I € F(D)
is x—invertible if and only if (If_l)* N D is not contained in any quasi—xmaximal
ideal. Then, from Lemma B, we deduce immediately the following general result
(cf. [E Proposition 4.25]):

Proposition 2.18. Lel x be a semistar operation on an integral domain D. Let
I € F(D). Then I is % —invertible if and only if I is x—invertible. a

A classical example due to Heinzer can be used for describing the content of the
previous proposition.

Example 2.19. Let K be a field and X an indeterminate over K. Set D :=
K[X3 X% X5] and M := (X3 X* X5)D. It is easy to see that D is a one-
dimensional Noetherian local integral domain, with maximal ideal M. Let % := v,
note that in this case v = « = x, = t and M(v) = {M}, since M = (D : K[X]).
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Therefore, w = ¥ = d. 1In this situation Inv(D,v) = Inv(D,t) = Inv(D,w)
=Inv(D) ={zD | z€ K, z # 0}. But v =1 # w = d, because in general
(I nJ)" is different from I* N J* in D, since D is not a Gorenstein domain [i,
Theorem 5, Corollary 5.1] and [E, Theorem 222].

A result “analogous” to Proposition =& does not hold, in general, for quasi-
semistar-invertibility, as we show in the following:

Example 2.20. Let D be a pseudo—valuation domain, with maximal ideal M, such
that V := M~!is a DVR (for instance, take two fields & C K and let V := K[X],
M := XK[X] and D := k 4+ M). Consider the semistar operation of finite type
% 1= %qyy, defined by E*vi := EV, for each ' € F(D). Tt is clear that M is
the only quasi—xmaximal ideal of D. Thus, * = %3} = d, the identity (semi)star
operation of D. We have (M(V : M))* = (M(V : M))V =V, since V is a DVR.
Hence, M is quasi——invertible. On the other side, M is not invertible (i.e., not
quasi—invertible), since MM ™' = MV = M.

Under the assumption D* = D* we have the following extension of Proposition
= to the case of quasi—semistar—invertibility:

Proposition 2.21. Let x be a semistar operation on an integral domain D. Suppose
that D* = D*. Let I € F(D). Then I is quasi—, —invertible if and only if I is
quasi—x—invertible

Proof. If I is quasi—x—invertible, then there exists J € F(D) with (IJ)* = D*. This
implies (1) = D’ | since % < %,. Conversely, suppose that there exists J € F(D)
such that (/J)% = D%. Then IJ C D = D* = D*. Thus, (IJ)* C D*. If
(IJ)* c D* then (IJ)*N D C D is a quasi—x—ideal of D. It follows that (IJy*nD
is contained in a quasi—*maximal P of D. From Lemmal& P is also a quasi—k, —
maximal. Then, (IJ)* N D C ((IJ)* N D) C P* c D"t | a contradiction. Then,

I is quasi——invertible. a

Remark 2.22. (a) If x is a semistar operation on an integral domain D, we already
observed (RemarkEE&a)) that Inv(D, x) is not a group with respect to the standard
multiplication of fractional ideals. In the set of the x—invertible x—fractional ideals,
i.e. in the set Inv*(D) := {I € Inv(D,%) | I = I*}, we can introduce a semistar
composition “x” in the following way I x J := (IJ)*. Note that (Inv*(D), x) is
still not a group, in general, because for instance it does not possede an identity
element (e.g. when D* € F(D) ~ F(D)).

On the other hand, QInv*(D) := {I € QInv(D, %) | I = I*}, with the semistar
composition “x” introduced above, is always a group, having as identity D* and
unique inverse of I € QInv*(D) the D-module (D* : I} € F(D), which belongs to
QInv*(D). This fact provides also one of the motivations for considering QInv (D, )
and QInv*(D) (and not only Inv(D, %) and Inv*(D), as in the “classical” star case).

It is not difficult to prove that: let x be a semistar operation on an integral
domain D, then:

(Inv*(D), x) s a group < (D :D*)#(0).

As a matter of fact, (=) holds because D* € Inv*(D) C F(D) and so (D : D*) #
(0). (<) holds because (D : D*) # (0) implies that D* € Inv*(D) and, for each
I € Inv*(D), we have (D* : I) € F(D), thus (D : I)* = (D* : I) (Remark E=&Xd1))
and so the inverse of each element I € Inv*(D) exists and is uniquely determined
in Inv*(D).

Note that, even if (Inv*(D), x) is a group, Inv*(D) could be a proper subset
of QInv*(D). For this purpose, take D, V, M as in Example E=2 in this case
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D* =V and (D : V) = M # (0), hence (Inv*(D), x) is a group, but M €
QInv*(D) ~ Inv*(D).

(b) Note that, if * is a semistar operation on an integral domain D, the group
(QInv™(D), x) can be identified with a more classic group of star-invertible star-
ideals. As a matter of fact, it is easy to see that:

(QInv*(D), x) = (Inv™(D*), x’)
where ¢ : D — D* is the canonical embedding, %, is the (semi)star operation on
D*, canonically associated to x (Proposition &), and the (semi)star composition
“x" in Inv**(D*) is defined by E x’ F := (EF)*-.

(¢) Let %1, %2 be two semistar operations on an integral domain D. If x; < %
then Tnv(D,x1) C Inv(D,%2) and QInv(D, 1) C QInv(D,*2). Note that it is not
true in general that Inv** (D) C Inv*?(D) or that QInv** (D) C QInv**(D), because
there is no reason for a x;—ideal (or —module) to be a xs—ideal (or —module). For
instance, let T" be a proper overring of an integral domain D, let x; := d be the
identity (semi)star operation on D and let %1 := xqp; be the semistar operation
on D defined by E*(73 := ET, for each £ € F(D). If I is a nonzero principal
ideal of D, then obviously I € Inv**(D) (= Inv(D) = QInv** (D)) but I does not
belong to QInv**(D) (and, in particular, it does not belong to Inv**(D)), because
2 = T4 1.

Note that, even if Inv(D, x1) = Inv(D, x2), for some pair of semistar operations
%1 < %9), it is not true in general that Inv**(D) C Inv**(D). Take D, V, M as
in Example 221 Let %1 := d be the identity (semi)star operations on D and let
%3 1= *qy}. In this case, Inv(D, %) = Inv(D, %3), because x; = 3 and %3 = (*2),
(Proposition EE&). But, Inv**(D) C Inv**(D) = Inv(D), because Inv**(D) C
Inv** (D) = Inv(D) since each %o—ideal is obviously a *j—ideal, and moreover the
proper inclusion holds because, as above, a nonzero principal ideal of D belongs to
Inv(D) but not to Inv**(D).

On the other hand, if x; < % are two star operations on D), then it is known
that Inv** (D) C Inv*?(D), essentially because, in this case, I € Inv**(D) implies
that 7 = I"* = I and so I = "> [, Proposition 3.3].

(d) Let x be a semistar operation on an integral domain D, let v(D*) be the
semistar operation on D defined in LemmalEEl(4) and let I, J € F(D) [respectively,
I,J € F(D)]. Assume that I is a x—invertible [respectively, quasi—x—invertible] %—
ideal of D, then:

(IJU)* = (I:(D:J)) [respectively, (IJ”(D*))* =(:(D":J))].

Recall that, since I = I, then (I : (D : J)) = (I : (D : J))*. Tt is obvious
that IJY C (I : (D : JY)) = (I : (D : J)) and thus (IJY)* C (I : (D : J)).
Conversely, if z € (I : (D :J)) then z(D : J) C T and so z(D : I) C J. Therefore
2 € 2D = 2((D: I)I)* C (1JY)".

For the quasi——invertible case, if I = I*, then (I : (D* : J)) = (I : (D* : J))*
and [ = ID*. Tt is obvious that [.J*(P") C (I : (D* : J*®P"))) = (I : (D* : J)) and
thus (IJ”(D*))* C (I:(D*:J)). Conversely, if z € (I : (D* :.J)) then z(D*:.J) C
I and so z(D* : I) C JVP") Therefore z € zD* = z((D* : I)I)* C (IJ”(D*))*.

In the next theorem, we investigate the behaviour of a x—invertible ideal (when *
is a semistar operation) with respect to the localizations at quasi—+-maximal ideals
and in the passage to semistar Nagata ring. More precisely, in the spirit of Kaplan-
sky’s theorem on (d-)invertibility [B, Theorem 62], we extend a characterization
of t—invertibility proved in [BH, Corollary 3.2] and two Kang’s results proved in the
star setting [B2, Theorem 2.4 and Proposition 2.6].
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Theorem 2.23. Let % be a semistar operation on an wntegral domain D. Assume
that x = x,. Let I € f(D), then the following are equivalent:
(1) T is x—invertible.
(ii) IDg € Inv(Dg), for each Q € M(*) (and then IDq is principal in Dg ).
(iii) I Na(D,*) € Inv(Na(D,*)).

Proof. (i) = (ii). If (II71)* = D*, then II=' ¢ @, for each @ € M(x). Since
I € f(D), by flatness we have:
I"™'Dg = (D : I)Dg = (Dg : IDg) = (IDg)™*.
Therefore, for each @ € M(x), since II=1 ¢ @, we have:
Do =(II""YDg = IDgI 'Dg = IDg(IDg)™".
(ii) = (iii). From the assumption and from the proof of (i) = (ii), we have that

II=1 ¢ @, for each Q € M(%). Since I € f(D), by the flatness of the canonical
homomorphism D — D[X]n ) = Na(D, %), we have:

I[X]nvw) ™" = (DX g X ) = (D DX v = T [X]vg -

Since I171 ¢ @, then (If_l)[X]N(*) Z Q[X]n(x), for each @ € M(x). From [,
Proposition 3.1(3)], we deduce that:

D[X]n = T [X]vw = IXIney (I[XIne)

where I Na(D,x) = I[X]n()-
(iii) = (i). From the assumption and from the previous considerations, we have:

D[XIny = 1IIX v (I[XIne) ™ = (T [ XN
and thus (If_l)[X]N(*) Z Q[X]Nn(x), for each @ € M(x). This fact implies that

II=1 ¢ @, for each @ € M(x). From B Lemma 2.4 (1)], we deduce immediately
that (I771)* = D*. O

Corollary 2.24. Let x be a stable semistar operation of finite type on D, and let
I € f(D). Then, the conditions (1)—(iil) of Theorem E=ZM are equivalent to:

(iv) T is quasi——invertible.
Proof. Apply Corollary EEES (|

Remark 2.25. Tt is known [Eo, Proposition 2.6] (cf. also B Section 1] and [E,
Section 1]) that, if x is a star operation of finite type on an integral domain D,
an ideal I of D is x—invertible if and only if it is x—finite and locally principal
(when localized at the x—mazimal ideals). As a matter of fact, by Corollary B8 we
have that, if I is x-invertible, then I is xfinite. Moreover, (I1=1)* = D implies
II=1 ¢ @, for each x—maximal ideal @ of D. It follows that IDgl='Dg = Dg.
Thus, IDg is invertible (hence, principal) in Dg. Conversely, assume that I* = J*,
with J € f(D), J C I. It is clear that I=! = J=1 since IV = (I*)V = (J*)V = J*,
being * < v [E4, Theorem 34.1(4)]. Suppose that I is not x—invertible, that is,
(I1=1y* C D. Then, there exists a »—maximal ideal ) of D, such that -t caq.
It follows QDQ 0 IDQI_lDQ = IDQJ_lDQ = [DQ(JDQ)_l 0 IDQ(IDQ)_l, a
contradiction, since [/ Dq is principal.

We will see in a moment that the “if” part of a similar result for semistar
operations does not hold, even if I = I*. More precisely, we can extend partially
[Z, Proposition 1.1] in the following way:

Let I € F(D) and let x be a semistar operation on D, the following properties
are equivalent:

(i) 1 s %, —invertible;

(ii) (Q: 1) C(D: 1), for each Q € M(x,);
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(iii) (@ : 1) C (D : 1), for each Q@ € M(x,) and Q D I(D : I).

Moreover, each of the previous properties implies the following:

(iv) I is x,~finite and 1Dq € Inv(Dgq), for each Q@ € M(x,) (and so I1Dgq 1is

principal in Dq ).

As a matter of fact, (i) = (ii) because D* = (I(D : I))* and if (Q : [) = (D : I),
for some @ € M(x,), then I(D : 1) = I(Q : I) C @, thus (I(D : nys cqQv c D,
hence we reach a contradiction. (ii) = (iii) is trivial. (iii) = (i): if not, I(D : I) C
Q, for some @ € M(x,), thus (D : 1) C(Q : ) and hence (D : I) = (Q : I), which
contradicts (iii).

Finally (ii) = (iv), because of Proposition BB and because for zg € (D : I)~(Q :
I), we have zgI C D~ @, and so zgIDg = Dgq, i.e. IDg = (29)~'Dq, for each
Q€ M(x,).

But note that, in the semistar setting, (iv) # (i), even in case [ is a x,—ideal,
*—finite, as the following example will show. However, we can re-establish a
characterization in the quasi—x—invertibility setting in the following way: if x s
a semistar operation of finite type on an wntegral domain D and if I € F(D),
then I € QInv(D,*) if and only if I* is x—finite and I*D*yy is principal, for each
*, —mazimal ideal M of D*.

Example 2.26. Let D be a valuation domain, P a nonzero nonmaximal non-
invertible prime ideal of D such that Dp is a discrete valuation domain. (For
instance, if K is a field and X, Y are two indeterminates over K, let D :=
K+ XK[X]x) +YK(X)[Y]y) and P := YK (X)[Y](y); in this case D is a two-
dimensional valuation domain, Dp = K(X)[Y]y)and P = PDp =Y Dp D Y D.)
Set % := %ypy. In this situation, x = x, and M(x) = {P}, thus x = %, i.e.
is a stable semistar operation of finite type on D. Note that P is in fact a »—
ideal of D, since P* = PDp = P. Moreover, P* = PDp = tDp = (tD)* for
some nonzero t € Dp, i.e. P is a non zero principal ideal in D* = Dp, since
Dp i1s a DVR, by assumption. Thus, P 1s a x-ideal, xfinite and locally principal,
when localized at the quasi——maximal ideal(s) of D. But P is not x—invertible |
since in this situation (D : P) = (P : P) = Dp [, Proposition 3.1.5] and hence
(P(D:P)y*=(P(P:P))*=(PDp)* = P* = P. Note also that, in this situation,
P is quasi—*invertible (because (P(D* : P))* = (tDpt='Dp)* = Dp = D*) and
D*=Dp=(PDp:PDp)=(P:P)Dp=(P:P).

Next two results generalize to the semistar setting B2, Theorem 2.12 and The-
orem 2.14].

Corollary 2.27. Let % be a semistar operation on an integral domain D. Assume
that x = x,. Let h € D[X], h # 0, then:
c(h) env(D,x) <  hNa(D,x) = c(h)Na(D,*).
In particular, e(h) € Inv(D,*) if and only if c(h) € QInv(D,*).
Proof. The proof of the first part of the statement is based on the following result

by D.D. Anderson [, Theorem 1]: If R is a ring and A € R[X],h # 0, then
hR(X) C ¢(h)R(X) and, moreover, the following are equivalent:
(1) hR(X) = e(h)R(X).
(2) e(h) is locally principal (in R).
(3) e(h)R(X) is principal (in R(X)).
(=) By Theorem B ((i) = (i1)), we have that ¢(h)Dg is principal, for each
Q € M(x). Hence,

c(h)Do[X]np) = () (DIX]Nx)@pXne, = €(h)Do(X)
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is principal, for each @ € M(x). By applying Anderson’s result to the local ring
R = Dg, we deduce that hDg(X) = e(h)Dg(X), for each @ € M(x). The
conclusion follows from Proposition =, (2) and (3)
(<) If hNa(D,*) = e(h)Na(D,x), then by localization we obtain that hDg(X) =
¢(h)Dg(X), for each @ € M(%) (Proposition I and [Z4 Corollary 5.3]). By
Anderson’s result, we deduce that e(h)Dg is principal, i.e. e(h)Dg € Inv(Dg), for
each ) € M(x). The conclusion follows from Theorem E=ZH ((ii) = (i)).

The last part of the statement follows from the fact that Na(D,x) = Na(D,%)
B4 Corollary 3.5(3)] and from Corollary EZ& and Proposition & or, directly,
from Corollary E=zd O

Proposition 2.28. Let x be a semistar operation on an integral domain D. If H
is an invertible ideal of Na(D,*), then H is principal in Na(D,*).

Proof. We can assume that 0 € Inv(Na(D,«)) and H C Na(D,x), then, in par-
ticular, H = (hy, ha, ..., hy)Na(D,x), with h; € D[X], 1 < ¢ < n. For each
Q € M(x,), by localization, we obtain that H Dq(X) = (h1, ha, ..., hy)Dg(X) is
a nonzero principal ideal (Theorem B2 ((iii) = (ii)). By a standard argument, if
d; :=deg(h;), for 1 <i < n, and if

h:=hy + thdl‘l'l 4 hSXd1+d2+2 N hnXd1+d2+m+dn—1+n—1 c D[X]’

then it is not difficult to see that H Dq(X) = hDq(X), for each @ € M(x,). From
Proposition IEM3), we deduce that H Na(D,*) = hNa(D,x). O
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