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1. The Genesis

Toward the middle of the XIXth century, E.E. Kummer discovered

that the ring of integers of a cyclotomic field does not have the

unique factorization property.

Few years later, in 1847 Kummer introduced the concept of “ideal

numbers” to re-establish some of the factorization theory for cyclo-

tomic integers with prime exponents. (In 1856 he generalized his

theory to the case of cyclotomic integers with arbitrary exponents.)
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As R. Dedekind wrote in 1877 to his former student E. Selling, the
goal of a general theory was immediately clear after Kummer’s solu-
tion in the special case of cyclotomic integers: to extend Kummer’s
theory to the case of general algebraic integers.

Dedekind admitted to having struggled unsuccessfully for many years
before he published the first version of his theory in 1871 (XI supple-
ment to Dirichlet’s “Vorlesungen über Zahlentheorie”).

The theory of Dedekind domains, as it is known today, is based on
original Dedekind’s ideas and results: Dedekind’s point of view is
based on ideals (“ideal numbers”) for generalizing the algebraic num-
bers; then he proved that, in the ring of the integers of an algebraic
number field, each proper ideal factors uniquely into a product of
prime ideals.
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L. Kronecker has essentially achieved this goal in 1859, about 12 years

after Kummer’s pioneering work, but he published nothing until 1882

(the paper appeared in honor of the 50th anniversary of Kummer’s

doctorate).

Kronecker’s theory holds in a larger context than that of ring of

integers of algebraic numbers and solves a more general problem.

The primary objective of his theory was to extend the set of elements

and the concept of divisibility in such a way any finite set of elements

has a GCD (greatest common divisor).

*********

Main references for the “classical” Kronecker function ring

L. Kronecker (1882), W. Krull (1936), H. Weyl (1940), H.M. Edwards (1990).
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It is probably for this reason that the basic objects of Kronecker’s

theory –corresponding to Dedekind’s “ideals”– are called “divisors”.

Let D0 be a PID with quotient field K0 and let K be a finite field

extension of K0. The Kronecker’s divisors are precisely all the possible

GCD’s of finite sets of elements of K that are algebraic over K0;

a divisor is integral if it is the GCD of a finite set of elements of the

integral closure D of D0 in K.

One of the key points of Kronecker’s theory is that it is possible to

give an explicit description of the “divisors”. The divisors can be rep-

resented as equivalent classes of polynomials and a given polynomial

in D[X] represents the class of the integral divisor associated with the

set of his coefficients.
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More precisely, in the previous setting, with a modern terminology,
the Kronecker function ring of D is given by:

Kr(D) :=
{

f
g | f, g ∈ D[X] and c(f) ⊆ c(g)

}
=

{
f ′
g′ | f ′, g′ ∈ D[X] and c(g′) = D

}
,

(where c(h) denotes the content of a polynomial h ∈ D[X], i.e. the
ideal of D generated by the coefficients of h).

Note that the previous equality holds since we are assuming that D is
a Dedekind domain (being the integral closure of D0, which is a PID,
in a finite field extension K of the quotient field K0 of D0).
In this case, for each polynomial g ∈ D[X], c(g) is an invertible ideal of
D and, by choosing a polynomial u ∈ K[X] such that c(u) = (c(g))−1,
then we have f/g = uf/ug = f ′/g′, with f ′ := uf, g′ := ug ∈ D[X] and,
obviously, c(g′) = D.
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The fundamental properties of the Kronecker function ring are the

following:

(1) Kr(D) is a Bézout domain (i.e. each finite set of elements has

a GCD and the GCD can be expressed as linear combination of

these elements) and D[X] ⊆ Kr(D) ⊆ K(X) (in particular, the

field of rational functions K(X) is the quotient field of Kr(D)).

(2) Let a0, a1, . . ., an ∈ D and set f := a0 + a1X + . . .+ anXn ∈ D[X],

then:

(a0, a1, . . ., an)Kr(D) = fKr(D) (thus, GCDKr(D)(a0, a1, . . ., an)=f) ,

fKr(D) ∩K =(a0, a1, . . ., an)D = c(f)D (hence, Kr(D) ∩K = D) .
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Kronecker’s classical theory leaded to two different major extensions:

• Beginning from 1936, W. Krull generalized the Kronecker function

ring to the more general context of integrally closed domains, by

introducing ideal systems associated to particular star operations: the

e.a.b. (endlich arithmetisch brauchbar) star operations.

• Beginning from 1956, M. Nagata investigated, for an arbitrary

integral domain D, the domain

D(X) :=

{
f

g
| f, g ∈ D[X] and c(g) = D

}
.

It is now wellknown that D(X) coincides with Kr(D) (= {f/g | f, g ∈
D[X] and c(f) ⊆ c(g)}) if (and only if) D is a Prüfer domain.
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2. Krull’s generalization of the Kronecker function ring

One of the major difficulties for generalizing the Kronecker’s theory is

that Gauss Lemma for the content of polynomials holds for Dedekind

domains (or, more generally, for Prüfer domains), but not in general:

let f, g ∈ D[X], where D is a Prüfer domain, then:

c(fg) = c(f)c(g) .

In the general situation, we have the following result:

Dedekind-Mertens Lemma: Let D be an integral domain and f, g ∈
D[X]. Let m := deg(g), then:

c(f)mc(fg) = c(f)m+1c(g) .
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In order to overcome this obstruction for the definition of a ring of

“Kronecker functions type” in the general context, Krull introduced

multiplicative ideal systems having a “nice” cancellation property, de-

fined by what we call e.a.b. star operations, that is star operations ?

such that, for all nonzero finitely generated ideals I, J, H:

(IJ)? ⊆ (IH)? ⇒ J? ⊆ H? .

In this context, Krull recovers an useful identity for the contents of

polynomials:

Let ? be an e.a.b. star operation on an integral domain D (this

condition implies that D is an integrally closed domain) and let f, g ∈
D[X] then:

c(fg)? = c(f)?c(g)? .
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Remark 1 Let F (D) [respectively, f(D)] be the set of all fractionary ideals [re-
spectively, finitely generated fractionary ideals] of an integral domain D. A mapping
? : F (D) → F (D) , I 7→ I? , is called a star operation of D if, for all z ∈ K , z 6= 0
and for all I, J ∈ F (D) , the following properties hold:

(??1) (zD)? = zD , (zI)? = zI? ;

(?2) I ⊆ J ⇒ I? ⊆ J? ;

(?3) I ⊆ I? and I?? := (I?)? = I? .

Krull introduced the concept of a star operation in his first Beiträge paper (1936).
He used the notation “ ′–Operation ” (“Strich–Operation”) for his generic opera-
tion. [In this paper you can find the terminology “ ′–Operation ” in footnote 13
and in the title of Section 6, among other places.]

Next page contains some of the key parts of Krull’s Beiträge paper.



Beitrilge zur Arithmetik kommutativer Integritdtsbereiche.
I. Multiptikationsringe, ausgezeichnete fdealsysteme

und Kroneckersche Funktionalringe [43]

Math. Z. 41 (1936),545-577
JFM 62.1105.01; Zbl 015.002031

In meinem Bericht iiber die ueuere Entwicklung der kommutatrven

Idealtheorie') habe ich gezeigt, da8 die arithnietische Untersuchung und
insbesondere die Entwickiung der Teilbarkeitslehre beiiebiger ganz ab-
geschlossener Integritiitsbereiche durch geeignet'e Verkniip{ung bewertungs-

und idealtheoretischer Methoden weitgehend gefdrdert und vielfach zu
einem wenigstens vorld,ufigen Abschlu0 gebracht werden kann. Natur-

gem?i8 handelte es sich nur um eine Skizze, bei der allein die Umrrsse

im GroBen deutlich herausgearbeitet wurden, whbrend auf eine genauere

Ausfiihrung der Einzelheiten verzichtet werden mu8te. Die folgenden

Beitriige sind einerseits dazu bestimmt, die Liicken des Berichts auszu-

fiillen, andererseits sollen sie nach Moglichkeit die Theorie iiber die bis-

herigen Grenzen hinaus entwickeln. Die Untersuchungen des ersten

Beitrags beschiiftigen sich mit allgemeinen, durch keinerlei Zusatzaxrom

genauer gekennzeichneten ganz abgeschlossenen Integritiitsbereichen. Die

spd,teren Beitrbge sollen vor allem Anwendungen auf mehr oder minder

spezielle Ringklassen bringen. (,,Yollstiindig ganz" abgeschlossene Inte-

gritd,tsbereiche, endliche diskrete Hauptordnungen tnd ihre unendlichen

algebraischen Erweiterungen, Potenzreihenringe usw.).

556 W. Krull'

4. Wertiilealo und Funktionalring.

Es sei i ler Integri t i i tsbereich 5 fest gegeben, Er, . . .  ,  Eo, . . .  seien

die siimtlichen 3 umfassenden Bewertungsringe aus "R, ttro (o) bedeute den

Wert des Krirperelements o in der zu E, gehdrigen Bewertung 8". -

Ist a ein beliebiges Ideal aus ft, so setzen wir a' : ao: 
4 

(c E'), wobei

die Durchschnittsbildung iiber alle E, zu erstrecken ist. o6 besteht (au8er

der Null) aus ailen und nur den Kiirperelementen o, zu denen es fiir
jedes z in o ein der Ungleichung w'(a") {*,(o) geniigendes Element' a'

gibt. - Die ,,b-Operat'ion", die von o zu o' : ca fiihrt, geniigt den

folgenden Beilingungen 13) :

( 1 )  5 '  : 3 .  ( 2 )  s ' Z o ;  a u s  o :  b  f o l g t  o ' :  b ' .  ( 3 )  ( o ' ) '  : 6 "

(4 )  (o  *  b ) '  :  (a '  f  b ' ) ' .  (5 )  (o .b ) '  :  (o ' 'b ' ) ' .  (6 )  (o 'n  b ' ) '  :  o '  , - .  b ' .

( 7 )  ( a ) '  :  ( a ) ;  ( a ) . 0 '  :  ( ( a ) . a ) ' .

13) Die folgenden Formeln werden ung in 6. zur Definition des Begriifes der

aligenoeinen '-Operation dienen. Deshalb schreiben wir schon hier bei ih:ren iiberall

c'statt ob. - Zn d.en lformeln (I) bis (7) vgl. Bericht.43., wo allordings die Formeln

(1) und (6) des Textes fehlen.

6.'-Operationen und ru-Operationen.

Eine Rechenvorschrift, die jedem S-Ideal o aus ft eindeutig ein
Ideal c' zuordnet, und zwar so, daB die in 4. {iir die b-Operation
bewiesenen X'ormeln (1) bis (7) gelten, soll als ,,1operation" bezeichnet
werden. Ein Ideal o, das der Gleichung o' : o geniigt, hei0t ,,'-16"u1"t
entsteht a'  :  (at, . . . ,a,) '  aus einem endiichen Ideal durch den'-Proze8,
so ist o' als ,,'-endlich" anzusehen. Gilt fiir eine '-Operation cler Ein-
deutigkeitssatz 10 von 4., so wollen wir sie ,,arithmetisclr, brau,chbar"
nennen 17).

1?) N&tiirlich ist dabei (ebenso wie nachher beim GauBschen Satz) o'fiir oD

za aetzen, und es hat das '-Produkt c' x b' : (o" b')' an die Stelle iles b'Produktes
oo x bu zu treten.

sat,z 10. E,ind,eut,i,gkeitssatz: Ants ob x bb c snx ca lolqt stets bb : cb'

lalts a, ,,b-end,Licl,"' 'i,si' d. h' aus et'nem end'I'ichen ld'eal durch rlen

b-Proze lS  en ts teh t .  06  :  (n ,  .  .  ' . .  a , ) r '



The notation “ ∗–operation ” (“star–operation”) arises from Section 26 of the original version of
Gilmer’s “Multiplicative Ideal Theory” (Queen’s, 1968).

Robert Gilmer explained to me that � I believe the reason I switched from “ ′–Operation ” to
“ ∗–operation ” was because “ ′ ” was not so generic at the time: I ′ was frequently used as the
notation for the integral closure of an ideal I, just as D′ was used to denote the integral closure
of the domain D. (Such notation was used, for example, in both Nagata’s Local Rings and in
Zariski-Samuel’s two volumes.) �

Moreover, Krull only considered the concept of an “arithmetisch brauchbar (a.b.) ′–Operation”, not
an e.a.b. operation. [An a.b.–operation is a star operation ? such that, if I ∈ f(D) and J, K ∈ F (D)
and if (IJ)? ⊆ (IH)? then J? ⊆ H?.] The e.a.b. concept stems from the original version of Gilmer’s
book (1968). The results of Section 26 show that this (presumably) weaker concept is all that one
needs to develop a complete theory of Kronecker function rings.

Robert Gilmer explained to me that � I believe I was influenced to recognize this because during the
1966 calendar year in our graduate algebra seminar (Bill Heinzer, Jimmy Arnold, and Jim Brewer,
among others, were in that seminar) we had covered Bourbaki’s Chapitres 5 and 7 of Algèbre
Commutative, and the development in Chapter 7 on the v–operation indicated that e.a.b. would be
sufficient.�

I thank Robert Gilmer and Franz Halter-Koch for some information contained in this remark.



Using the star operations, in 1936 W. Krull defined a “well-behaved” Kronecker
function ring in a more general setting than Kronecker’s setting.

Let D be an integrally closed integral domain with quotient field K and let ? be an
e.a.b. star operation on D, then:

Kr(D, ?) :=

{
f

g
| f, g ∈ D[X] and c(f)? ⊆ c(g)?

}
is an integral domain with quotient field K(X), called the ?–Kronecker function

ring of D, having the following properties:

(1) Kr(D, ?) is a Bézout domain and D[X] ⊆ Kr(D, ?) ⊆ K(X).

(2) Let a0, a1, . . . , an
∈ D and set f := a0 + a1X + . . . + a

n
Xn ∈ D[X], then:

(a0, a1, . . . , an
)Kr(D, ?) = fKr(D, ?) ,

(a0, a1, . . . , an
)Kr(D, ?) ∩K = ((a0, a1, . . . , an

)D)? (i.e. fKr(D, ?) ∩K = (c(f))?) .

(In particular, Kr(D, ?) ∩K = D? = D .)
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In particular, the previous construction can be applied:

• when ? is the identity star operation d on a Prüfer domain D;

this case gives back the “classical” Kronecker function ring Kr(D),

when D is a Dedekind domain (= Prüfer + Noetherian domain).

• when ? is the Artin’s v–operation on a Krull domain D (since in

this case the v–operation is an e.a.b. star operation and is equivalent

to the operation of “completion” with respect to the rank 1 discrete

valuation overrings of D: I 7→ ∩{IDP | P ∈ Spec1(D)}).
This case gives rise to an effective extension: the construction of the

Kronecker function ring for Krull domains.

[ Note that:
Prüfer + Krull ⇔ Dedekind domain. ]
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3. Nagata’s “generalization” of the Kronecker function ring

Nagata’s construction is possible for each integral domain D (even

non integrally closed):

Na(D) := D(X) :=

{
f

g
| f, g ∈ D[X] and c(g) = D

}
,

(cf. Krull (1943), Nagata’s book (1962), Samuel (1964)),

but, in general Na(D) is not a Bézout domain.

It is not difficult to see that:

Na(D) is a Bézout domain if (and only if) D is a Prüfer domain.

Equivalently:

Na(D) coincides with Kr(D) if (and only if) D is a Prüfer domain.
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The interest in the Nagata’s ring D(X) is due to the fact that this integral domain
of rational functions has some “nice” properties that D itself need not have, man-
taining in any case a strict relation with the ideal structure of D.

(a) The map P 7→ PD(X) establishes a 1-1 correspondence between the maximal
ideals of D and the maximal ideals of D(X).

(b) For each ideal I of D ,
ID(X) ∩D = I , D(X)/ID(X) ∼= (D/ID)(X) ;

I is finitely generated if and only if ID(X) is finitely generated.

Among the “new” properties acquired by D(X) we mention the following:

(c) the residue field at each maximal ideal of D(X) is infinite;

(d) an ideal contained in a finite union of ideals is contained in one of them;

(e) each finitely generated locally principal ideal is principal (thus Pic(D(X)) = 0).

(cf. J. Arnold (1969), Gilmer-Mott (1970), Gilmer’s book (1972), Quartararo-
Butts (1975), D.D. Anderson (1977)).
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4. Principal focuses of this talk

In a recent series of papers, in collaboration with K. Alan Loper, we investigated
properties of the Kronecker function rings which arise from arbitrary semistar
operations ? on an integral domain D and we generalized Kang’s notion of a star
Nagata ring (1989) to the semistar setting.

The principal focuses of the present talk are the similarities between the ideal
structure of the Nagata Na(D, ?) and Kronecker Kr(D, ?) semistar rings and between
the natural semistar operations that these two types of function rings give rise to
on D.

Moreover, I would like also to present some of the results of a work in progress
with K.A. Loper in which these similarities lead naturally to study a “new” integral
domain of rational functions
Lo(D, ?), obtained as an intersection of local Nagata domains associated to a given
semistar operation, Na(D, ?) ⊆ Lo(D, ?) ⊆ Kr(D, ?).

Lo(D, ?) generalizes at the same time Na(D, ?) and Kr(D, ?) and coincides with
Na(D, ?) or Kr(D, ?) when the semistar operation ? assumes “extreme values”.
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5. Notation and basic facts on semistar operations

For the duration of this talk D will represent an integral domain with
quotient field K .

Let F (D) represent the set of all nonzero D–submodules of K .

Let F (D) represent the nonzero fractionary ideals of D (i.e. E ∈
F (D) such that dE ⊆ D , for some nonzero element d ∈ D ).

Finally, let f(D) represent the finitely generated D-submodules of
K . Obviously:

f(D) ⊆ F (D) ⊆ F (D) .
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In 1994, Okabe and Matsuda introduced the more “flexible” notion of semistar
operation ? of an integral domain D , as a natural generalization of the notion of
star operation, allowing D 6= D? .

More precisely, a mapping ? : F (D) → F (D) , E 7→ E? is called a semistar operation
of D if, for all z ∈ K , z 6= 0 and for all E, F ∈ F (D) , the following properties
hold:

(?1) (zE)? = zE? ;

(?2) E ⊆ F ⇒ E? ⊆ F ? ;

(?3) E ⊆ E? and E?? := (E?)? = E? .

When D? = D, we say that ? is a (semi)star operation of D, since, restricted to
F (D) it is a star operation of D

[i.e. ? : F (D) → F (D) verifies the properties (?2), (?3) and
(??1) (zD)? = zD , (zE)? = zE? ].
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For star operations, the notion of ?–ideal (that is, a nonzero ideal I ⊆ D, such
that I? = I) leads to the definition of a canonically associated ideal system.

For semistar operations, we need a more general notion, that coincides with the
notion of ?–ideal, when ? is a (semi)star operation.
We say that a nonzero (integral) ideal I of D is a quasi–?–ideal if I? ∩D = I.

For example, it is easy to see that, if I? 6= D?, then I? ∩D is a quasi–?–ideal that
contains I (in particular, a ?–ideal is a quasi–?–ideal).
Note that:
– when D = D? the notions of quasi–?–ideal and ?–ideal coincide;
– I? 6= D? is equivalent to I? ∩D 6= D.

Similarly, we designate by quasi–?–prime [respectively, ?–prime ] of D a quasi–?–
ideal [respectively, an integral ?–ideal] of D which is also a prime ideal.

We designate by quasi–?–maximal [respectively, ?–maximal ] of D a maximal
element in the set of all proper quasi–?–ideals [respectively, integral ?–ideals] of D .

We denote by Spec?(D) [respectively, Max?(D), QSpec?(D), QMax?(D)] the set of
all ?–primes [respectively, ?–maximals, quasi–?–primes, quasi–?–maximals] of D .
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As in the classical star-operation setting, we associate to a semistar operation ?
of D a new semistar operation ?f as follows. If E ∈ F (D) we set:

E?f := ∪{F ? | F ⊆ E, F ∈ f(D)} .

We call ?f the semistar operation of finite type of D associated to ? .

If ? = ?f , we say that ? is a semistar operation of finite type of D .
Note that ?f ≤ ? and (?f)f = ?f , so ?f is a semistar operation of finite type of D .

Lemma 2 Let ? be a non-trivial semistar operation of finite type on D. Then

(1) Each proper quasi–?–ideal is contained in a quasi–?–maximal.

(2) Each quasi–?–maximal is a quasi–?–prime.

(3) Set

Π? := {P ∈ Spec(D) |P 6= 0 , P ? ∩D 6= D} .

Then QSpec?(D) ⊆ Π? and the set of maximal elements of Π?, denoted by
Π?

max, is nonempty and coincides with QMax?(D). 2

For the sake of simplicity, when ? = ?f , we will denote simply by M(?) , the
nonempty set Π?

max = QMax?(D) .
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6. Nagata semistar domain

A generalization of the “classical” Nagata ring construction was considered by Kang
(1987, 1989).

We further generalize the previous construction so that, given any integral domain
D and any semistar operation ? on D , we define the semistar Nagata ring as
follows:

Na(D, ?) :=

{
f

g
| f, g ∈ D[X] , g 6= 0 , c(g)? = D?

}
.

Note that, Na(D, ?) = Na(D, ?f) . Therefore, the assumption ? = ?f is not really
restrictive when considering Nagata semistar rings.

If ? = d is the identity (semi)star operation of D, then:

Na(D, d) = D(X) .
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Some results on star Nagata rings proved by Kang in 1989 are generalized to the
semistar setting in the following:

Proposition 3 Let ? be a nontrivial semistar operation of an integral domain D .
Set:

N(?) := ND(?) := {h ∈ D[X] | c(h)? = D?} .

(1) N(?) = D[X] \ ∪{Q[X] | Q ∈ M(?f)} is a saturated multiplicatively closed
subset of D[X] and N(?) = N(?f) .

(2) Max(D[X]N(?)) = {Q[X]N(?) | Q ∈M(?f)} .

(3) Na(D, ?) = D[X]N(?) = ∩{DQ(X) |Q ∈M(?f)} .

(4) M(?f) coincides with the canonical image in Spec(D) of the maximal spec-
trum of Na(D, ?) ; i.e. M(?f) = {M ∩D |M ∈ Max(Na(D, ?))} . 2

Corollary 4 Let D be an integral domain, then:

Q is a maximal t–ideal of D ⇔ Q = M ∩D , for someM ∈ Max(Na(D, v)) .
2
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7. The semistar operation canonically associated to Na(D, ?)

If ∆ is a nonempty set of prime ideals of an integral domain D , then the semistar
operation ?∆ defined on D as follows

E?∆ := ∩{EDP | P ∈ ∆} , for each E ∈ F (D) ,

is called the spectral semistar operation associated to ∆.

Lemma 5 Let D be an integral domain and let ∅ 6= ∆ ⊆ Spec(D) . Then:

(1) E?∆DP = EDP , for each E ∈ F (D) and for each P ∈ ∆ .

(2) (E ∩ F )?∆ = E?∆ ∩ F ?∆, for all E, F ∈ F (D).

(3) P ?∆ ∩D = P , for each P ∈ ∆.

(4) If I is a nonzero integral ideal of D and I?∆ ∩D 6= D then there exists P ∈ ∆
such that I ⊆ P . 2
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• A semistar operation ? of an integral domain D is called a spectral semistar
operation if there exists ∅ 6= ∆ ⊆ Spec(D) such that ? = ?∆ .

• We say that ? possesses enough primes or that ? is a quasi-spectral semistar
operation of D if, for each nonzero ideal I of D such that I? ∩ D 6= D , there
exists a quasi–?–prime P of D such that I ⊆ P .

• Finally, we say that ? is a stable semistar operation on D if

(E ∩ F )? = E? ∩ F ?, for all E, F ∈ F (D) .

Lemma 6 Let ? be a nontrivial semistar operation of an integral domain D. Then:

(1) ? is spectral if and only if ? is quasi-spectral and stable.

(2) Assume that ? = ?f . Then ? is quasi-spectral and M(?) 6= ∅ . 2
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Theorem 7 Let ? be a nontrivial semistar operation and let E ∈ F (D) . Set
?̃ := (?f)sp := ?M(?f) .

[ ?̃ is called the spectral semistar operation associated to ? .] Then:

(1) E?̃ = ∩{EDQ | Q ∈M(?f)} [and E?f = ∩{E?fDQ | Q ∈M(?f)} ].

(2) ?̃ ≤ ?f .

(3) ENa(D, ?) = ∩{EDQ(X) | Q ∈M(?f)} , thus:
ENa(D, ?) ∩K = ∩{EDQ | Q ∈M(?f)} .

(4) E?̃ = ENa(D, ?) ∩K . 2
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Proposition 3(4) assures that, when a maximal ideal of Na(D, ?) is contracted to
D , the result is exactly a prime ideal in M(?f) . This result can be reversed.
Moreover, the semistar operation ?̃ generates the same Nagata ring as ?.

Corollary 8 Let ?, ?1, ?2 be semistar operations of an integral domain D . Then:

(1) Max(Na(D, ?)) = {QDQ(X) ∩Na(D, ?) | Q ∈M(?f)} .

(2) (?̃)f = ?̃ = ˜̃? .

(3) M(?f) = M(?̃) .

(4) Na(D, ?) = Na(D, ?̃) .

(5) ?1 ≤ ?2 ⇒ Na(D, ?1) ⊆ Na(D, ?2) ⇔ ?̃1 ≤ ?̃2 . 2
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Remark 9 Note that, when ? is the (semi)star v–operation, then

the (semi)star operation ṽ coincides with the (semi)star operation

w defined as follows:

Ew := ∪{(E : H) | H ∈ f(D) and Hv = D} ,

for each E ∈ F (D) . This (semi)star operation was considered by J.

Hedstrom and E. Houston in 1980 under the name of F∞–operation.

Later, starting in 1997, this operation was intensively studied by Wang

Fanggui and R. McCasland under the name of w–operation. Note also

that the notion of w–ideal coincides with the notion of semi-divisorial

ideal considered by S. Glaz and W. Vasconcelos in 1977.
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Finally, in 2000, for each (semi)star operation ? , D.D. Anderson

and S.J. Cook considered the ?w–operation which can be defined as

follows:

E?w := ∪{(E : H) | H ∈ f(D) and H? = D} ,

for each E ∈ F (D) . From their theory (and from the results by Hed-

strom and Houston) it follows that:

?w = ?̃ .

The relation between ?̃ and the localizing systems of ideals (in the

sense of Gabriel and Popescu) was established by M. Fontana and J.

Huckaba in 2000.
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8. The Kronecker function ring in a general setting

The problem of the construction of a Kronecker function ring for
general integral domains was considered indipendently by F. Halter-
Koch (2003) and Fontana-Loper (2001, 2003).

Halter-Koch’s approach is axiomatic and makes use of the theory
of finitary ideal systems (star operations of finite type). He also
establishes a connection with Krull’s theory of Kronecker function
rings and introduces the Kronecker function rings for integral domains
with an ideal system which does not necessarily verify the cancellation
property (e.a.b.).

Fontana-Loper’s treatment is based on the theory of semistar opera-
tions.
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Halter-Koch gives the following “abstract” definition:

Let K be a field, R a subring of K(X) and D := R ∩K. If

(Kr.1) X ∈ U(R) ;

(Kr.2) For each f ∈ K[X], then f(0) ∈ fR ;

then R is called a K–function ring of D.

Using only these two axioms, he proved that R behaves as a Kronecker function
ring:

Theorem 10 Let R be a K–function ring of D = R ∩K, then:

(1) R is a Bézout domain with quotient field K(X) .

(2) D is integrally closed in K .

(3) For each f := a0 + a1X + . . . + anXn ∈ K[X], then (a0, a1, . . . , an)R = fR . 2
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One of the main goals for the classical theory of star operations has been to con-
struct Kronecker function rings associated to a domain, in a more general context
than the original one considered by L. Kronecker in 1882.
As we have already observed, in the Krull’s setting, one begins with an integrally
closed domain D and a star operation ? on D with the cancellation property
known as e.a.b. (endlich arithmetisch brauchbar).

Then the star Kronecker function ring is constructed as follows:

Kr(D, ?) := {f/g | f, g ∈ D[X], g 6= 0, c(f)? ⊆ c(g)?} .

This domain turns out to be a Bézout overring of the polynomial ring D[X] such
that Kr(D, ?) ∩K = D (where K is the quotient field of D ), cf. [Gilmer’s book
Section 32].

********

Further related references
Arnold (1969), Arnold-Brewer (1971), Dobbs-Fontana (1986), D.F. Anderson-
Dobbs-Fontana (1987), Okabe-Matsuda (1997).
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If ? is any semistar operation of any integral domain D , then we

can introduce the Kronecker function ring of D with respect to the

semistar operation ? in the following way:

Kr(D, ?) := {f/g | f, g ∈ D[X], g 6= 0, and there exists
h ∈ D[X] \ {0} with (c(f)c(h))? ⊆ (c(g)c(h))? }.

At this point, we need some preliminaries in order

– to prove that this construction leads to a natural extension of the

classical Kronecker function ring,

– to show the links between this general Kr(D, ?) and the “axiomati-

cally defined” K-function ring, introduced by Halter-Koch and

– to show that Kr(D, ?) defines a “new” semistar operation on D,

behaving with respect Kr(D, ?) in a “similar” way to ?̃ with respect

to Na(D, ?).
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It is possible to associate to any semistar operation ? of D an e.a.b.
semistar operation of finite type ?a of D , called the e.a.b. semistar
operation associated to ? , defined as follows for each F ∈ f(D) and
for each E ∈ F (D) :

F ?a := ∪{((FH)? : H?) | H ∈ f(D)} ,
E?a := ∪{F ?a | F ⊆ E , F ∈ f(D)} .

The previous construction is essentially due to P. Jaffard (1960) and
F. Halter-Koch (1997, 1998).
Obviously (?f)a = ?a. Note that:
– when ? = ?f , then ? is e.a.b. if and only if ? = ?a .
– D?a is integrally closed and contains the integral closure of D in
K .

When ? = v , then Dva coincides with the pseudo-integral closure of
D introduced by D.F. Anderson, Houston and Zafrullah (1992).
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Remark 11 In the “classical” context of star operations, ?a is a star operation and
for this reason is defined on the “star closure” of D (cf. Okabe-Matsuda 1992,
Halter-Koch (1997, 1998, 2003)).
More precisely (even if ? is a semistar operation), we call the ?–closure of D:

D
cl?

:= ∪{(F ? : F ?) | F ∈ f(D)} .

It is easy to see that D
cl?

is an integrally closed overring of D.

D is said ?–closed if D = D
cl?

.

We can now define a new (semi)star operation on D if D = D
cl?

(or, in general, a
semistar operation on D), cl? by setting for each F ∈ f(D), for each E ∈ F (D) :

F
cl?

:= ∪{((H? : H?)F )? | H ∈ f(D)} ,

E
cl?

:= ∪{Fcl? | F ⊆ E , F ∈ f(D)} .

If we set ? := cl?, it is not difficult to see that D
cl?

= D
cl?

(and that it coincides

with D?a) and D
cl?

contains the “classical” integral closure of D. Moreover (as
semistar operations on D):

?
f
≤ cl? ≤ ?a , (?

f
)a = (cl?)a = (?a)a = ?a .

33



We now turn our attention to the valuation overrings. The notion that we recall
next is due to P. Jaffard (1960) (cf. also Halter-Koch (1997)).

For a domain D and a semistar operation ? on D , we say that a valuation overring
V of D is a ?–valuation overring of D provided F ? ⊆ FV , for each F ∈ f(D) .
Note that, by definition the ?–valuation overrings coincide with the ?f–valuation
overrings.

Proposition 12 Let D be a domain and let ? be a semistar operation on D .

(1) The ?–valuation overrings also coincide with the ?a–valuation overrings.

(2) Dcl? = ∩{V | V is a ?–valuation overring of D} .

(3) A valuation overring V of D is a ?̃–valuation overring of D if and only if V
is an overring of DP , for some P ∈ M(?f) .

2
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Theorem 13 Let ? be a semistar operation of an integral domain D with quotient
field K . Then:

(1) Na(D, ?) ⊆ Kr(D, ?) .

(2) V is a ?–valuation overring of D if and only if V (X) is a valuation overring of
Kr(D, ?).
The map W 7→ W ∩K establishes a bijection between the set of all valuation
overrings of Kr(D, ?) and the set of all the ?–valuation overrings of D.

(3) Kr(D, ?) = Kr(D, ?f) = Kr(D, ?a) = ∩{V (X) | V is a ?–valuation overring of D}
is a Bézout domain with quotient field K(X) .

(4) E?a = EKr(D, ?) ∩K = ∩{EV | V is a ?–valuation overring of D} , for each E ∈
F (D) .

(5) R := Kr(D, ?) is a K–function ring of R ∩ K = D?a (Halter-Koch’s axiomatic
definition). 2
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9. Some relations between Na(D, ?) , Kr(D, ?) , ?̃ , and ?a

An elementary first question to ask is whether the two semistar operations ?̃ and
?a are actually the same - or usually the same - or rarely the same.

Proposition 12 indicates that for a semistar operation ? on a domain D , the ?̃–
valuation overrings of D are all the valuation overrings of the localizations of D
at the primes in M(?f) .
On the other hand, it is known (cf. Halter-Koch (1997), Fontana-Loper (2001,
2003)) that the ?a–valuation overrings (or, equivalently, the ?–valuation overrings)
of D correspond exactly to the valuation overrings of the Kronecker function ring
Kr(D, ?) .
In particular, each ?a–valuation overring is also a ?̃–valuation overring.

It is easy to imagine that these two collections of valuation domains can frequently
be different. We only mention a couple of examples constructed explicitly in a joint
work with K.A. Loper (2003).
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Example 14 There exists a (semi)star operation ? of an integral

domain D such that ?̃ 6= ?a , but the ?̃–valuation overrings coincide

with the ?a–valuation overrings (and so Kr(D, ?̃) = Kr(D, ?a) =

Kr(D, ?) ).

In Example 14 ?̃ 6= ?a , however ?̃ = (̃?a) . More generally,

Example 15 There exists a (semi)star operation ? of an integral

domain D such that ?̃ 6= ?a , the ?a–valuation overrings form a

proper subset of the set of ?̃–valuation overrings and

(a) ?̃ = (̃?a) , or

(b) ?̃ � (̃?a) .
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It is possible to prove “positive” statements about the relationship

between (̃-) and (-)a under conditions made clear by the preceding

examples.

However, we limit ourself to state here a result that generalizes the

fundamental result that is at the basis of Krull’s theory of Kronecker

function rings:

Na(D) = Na(D, d) = Kr(D, b) = Kr(D) ⇔ D is a Prüfer domain.

We recall that a Prüfer ?–multiplication domain (for short, a P?MD)

is an integral domain such that, for each F ∈ f(D), then:

(FF−1)
?
f = D

?
f (= D?) (i.e., each F is ?f–invertible).
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Some of the statements of the following theorem generalize some of the classical
characterizations of the Prüfer v–multiplication domains (for short, PvMD) (cf.
Griffin (1967), Arnold-Brewer (1971), Zafrullah (1984) and Kang (1989)).

Theorem 16 (Fontana-Jara-Santos, 2003). Let D be an integral domain and ? a
semistar operation on D. The following are equivalent:

(i) D is a P?MD.

(ii) Na(D, ?) is a Prüfer domain.

(iii) Na(D, ?) = Kr(D, ?) .

(iv) ?̃ = ?a .

(v) ?
f
is stable and e.a.b..

In particular, D is a P?MD if and only if it is a P?̃MD. 2
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The following gives the converse of the implication PvMD ⇒ PwMD proved by
Wang Fanggui-McCasland (1999), cf. also D.D. Anderson-Cook (2000).

Corollary 17 Let D be an integral domain. The following are equivalent:

(i) D is a PvMD.

(ii) Na(D, t) = Kr(D, t) .

(iii) w := ṽ = va .

(iv) t is stable and e.a.b..

In particular, D is a PvMD if and only if it is a PwMD. 2

Corollary 18 Let D be an integral domain and ? a star operation on D.

D is a P?MD ⇔ D is a PvMD and t = ?̃ ( or, equivalently, t = ?
f
).

————

Further relevant references on PvMDs and P?MDs:
Mott-Zafrullah (1981), Houston-Malik-Mott (1984), Garcia-Jara-Santos (1999),
Halter-Koch (2003).
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10. Intersections of local Nagata domains, Na(D, ?) and Kr(D, ?)

Given a semistar operation ? on D, we have shown that the integral
domains Na(D, ?) and Kr(D, ?) (and the related semistar operations
?̃ and ?a) have for many aspects a similar behaviour.
This is the starting point of a work in progress in collaboration with
K.A. Loper:
Is it possible to find a “new” integral domain of rational functions
denoted by Lo(D, ?) (obtained as an intersection of local Nagata
domains associated to any semistar operation ?) such that:
• Na(D, ?) ⊆ Lo(D, ?) ⊆ Kr(D, ?) ;
• Lo(D, ?) “generalizes” at the same time Na(D, ?) and Kr(D, ?) and
coincides with Na(D, ?) = Na(D, ?̃) or Kr(D, ?) = Kr(D, ?a), when the
semistar operation (of finite type) ? assumes the “extreme values” of
the interval ?̃ ≤ ? ≤ ?a ?

41



An overring T of D is called a ?–overring of D if, for each F ∈ f(D), then F ? ⊆ FT
(or, equivalently, F ?T = FT thus, in particular, T = T ?

f ).
An overring T of D such that T = T ?

f is not necessarily a ?–overring of D.

If F is in f(D), we say that F is ?–e.a.b. if (FG)? ⊆ (FH)?, with G, H ∈ f(D),
implies that G? ⊆ H?.
Note that F is ?–e.a.b. if and only if ((FH)? : F ?) = H?, for each H ∈ f(D) .
The previous characterization gives “a posteriori” a motivation for the definition of
?a and shows that a semistar operation of finite type is e.a.b. if and only if ? = ?a.

Lemma 19 Let ? be a semistar operation on an integral domain D, let F ∈ f(D)
be ?

f
–invertible and let (L, N) be a local ?–overring of D. Then FL is a principal

fractional ideal of L.

Note that, in general, ?–(e.)a.b. does not imply ?–invertible, even for finite type
semistar operations.
However, it is possible to show that, for finite type stable semistar operations ? (i.e.
when ? = ?̃), the notions of ?–e.a.b., ?–a.b. and ?–invertible coincide.
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Next goal is to generalize Lemma 19 to the “e.a.b.–case”.

Let ? be a semistar operation on an integral domain D. A ?–monolocality of D is
a local overring L of D such that:
– FL is a principal fractionary ideal of L, for each ?–e.a.b. F ∈ f(D) ;
– L = L?

f .

Obviously, each ?–valuation overring is a ?–monolocality.
It is not hard to prove that, for each Q ∈M(?

f
), DQ is a ?̃–monolocality.

Set:
L(?) := L(D, ?) := {L | L is a ? –monolocality of D} ,

Lo(D, ?) := ∩{L(X) | L ∈ L(D, ?)} .

We are now in condition to state some of the results that we have already proved.
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Theorem 20 Let ? be a semistar operation on an integral domain D with quotient
field K.

(1) Na(D, ?) ⊆ Lo(D, ?) ⊆ Kr(D, ?)) .

(2)
Lo(D, ?) := {f/g ∈ K(X) | f, g ∈ D[X], g 6= 0, such that c(f) ⊆ c(g)?

c(g) is a ? –e.a.b. } .

(3) For each maximal ideal m of Lo(D, ?), set L(m) := Lo(D, ?)m ∩K. Then:
L(m) is a ?–monolocality of D (with maximal ideal M := mLo(D, ?)m∩L(m)),

Lo(D, ?)m coincides with the Nagata ring L(m)(X) and
m coincides with M(X) ∩ Lo(D, ?).

(4) Every ?–monolocality of an integral domain D contains a minimal ?–mono-
locality of D. If we denote by L(D, ?)min the set of all the minimal ?–monolocalities
of D, then
L(D, ?)min = {L(m) | m ∈ Max(Lo(D, ?))} and, obviously,
Lo(D, ?) = ∩{L(X) | L ∈ L(D, ?)min} .
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(5) For each J := (a0, a1, . . . , an)D ∈ f(D), with J ⊆ D and J ?–e.a.b., let
g := a0 + a1X + . . . + anXn ∈ D[X], then:

JLo(D, ?) = J?Lo(D, ?) = gLo(D, ?) .

(6) Let ?
`
and ∧L be the semistar operations of D defined as follows, for each

E ∈ F (D),

E?̀ := ELo(D, ?) ∩K ,
E∧L := ∩{EL | L ∈ L(D, ?)} .

Then:
?̃ ≤ ?

`
= ∧L ≤ ?a .

(7) Na(D, ?) = Na(D, ?̃) = Lo(D, ?̃) .

Lo(D, ?a) = Kr(D, ?a) = Kr(D, ?) .


