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§2 Bézout-type domains and v–domains

§3 Integral closures and v–domains

§4 v–domains and rings of fractions

§5 v–domains, polynomials and rational functions

§6 v–domains and domains with a divisor theory: a brief account

§7 Ideal-theoretic characterizations of v–domains

Marco Fontana (“Roma Tre”) On v–domains: a survey 2 / 35



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C

Summary
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§1. The Genesis: Prüfer-like domains and v-domains

The v–domains generalize at the same time Prüfer domains and Krull
domains and have appeared in the literature with different names.

This survey is the result of an effort to put together information on this
useful class of integral domains.

In this talk, I will try to present old, recent and new characterizations of
v–domains along with some historical remarks.

I will also discuss the relationship of v–domains with their various
specializations and generalizations, giving suitable examples.
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Basic notation

• Let D be an integral domain with quotient field K .

• Let F(D) be the set of all nonzero fractional ideals of D, and
let f(D) be the set of all nonzero finitely generated D–submodules of K .

Then, obviously f(D) ⊆ F(D).

• Let A,B ∈ F(D), set

(A : B) := {z ∈ K | zB ⊆ A} and A−1 := (D : A) .

• As usual, we let v (or, vD) denote the star operation defined by

Av := (D : (D : A)) =
(
A−1

)−1
for all A ∈ F(D).

• We denote by t (or tD), the star operation of finite type on D, associated
to v , i.e., At :=

⋃
{F v | F ∈ f(D) and F ⊆ A} for all A ∈ F(D).
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• The v–domains are precisely the integral domains D for which the
v–operation is an “endlich arithmetisch brauchbar” operation (Gilmer,
1968&1972).

• Recall that a star operation ∗ on an integral domain D is endlich
arithmetisch brauchbar (for short, e.a.b.) (respectively, arithmetisch
brauchbar (for short, a.b.)) if for all F ,G ,H ∈ f(D) (respectively,
F ∈ f(D) and G ,H ∈ F(D))

(FG )∗ ⊆ (FH)∗ ⇒ G ∗ ⊆ H∗ .

I asked Robert Gilmer and Joe Mott about the origins of v–domains. They
had the following to say:
�We believe that Prüfer’s paper (1932) is the first to discuss the concept
in complete generality, though we still do not know who came up with the
name of “v–domain”. �
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It is not hard to see that an integral domain D is a v–domain if and only if
every F ∈ f(D) is v–invertible, i.e., (FF−1)v = D.

• The v–domains generalize the Prüfer domains (i.e., the integral
domains D such that DM is a valuation domain for all M ∈ Max(D)),
since an integral domain D is a Prüfer domain if and only if every
F ∈ f(D) is invertible (Gilmer’s book).

• More precisely, the v–domains generalize the Prüfer v–multiplication
domains, where a Prüfer v–multiplication domains (for short, PvMD;
anneau pseudo-prüférien in Bourbaki’s terminology) is an integral domain
D such that every F ∈ f(D) is t–invertible, i.e., (FF−1)t = D.

As a matter of fact, an invertible ideal is t–invertible and a t–invertible
ideal is v-invertible, therefore we have the following picture:

Prüfer domain ⇒ PvMD ⇒ v–domain.

[General setting: Prüfer semistar domains (Houston-Malik-Mott, Fontana-Jara-Santos,

Picozza, Anderson-Anderson-Fontana-Zafrullah); r–Prüfer monoids (Halter-Koch).]
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A paper by Dieudonné (1941) provides a clue to where v -domains came
out as a separate class of rings, though they were not called v–domains
there.

In this paper, J. Dieudonné gives an example of what we call now a
v–domain that is not a Prüfer v–multiplication domain.

• Let Fv (D) (respectively, fv (D)) be the set of all nonzero fractional
divisorial ideals of D (respectively, the set of all nonzero fractional
divisorial ideals of finite type of D).

In general, Fv (D) and fv (D) are not groups (with respect to the
v–operation of fractional ideals).
By a classical result by Van der Waerden (1931), Fv (D) is a group if and
only if D is completely integrally closed.
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A paper by Dieudonné (1941) provides a clue to where v -domains came
out as a separate class of rings, though they were not called v–domains
there.
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Dieudonné considers the following two properties introduced by Prüfer
(1932):

(Vβ) fv (D) is a group (with respect to the v–operation of fractional
ideals) or, equivalently, each element of fv (D) has an inverse belonging to
fv (D) (i.e., D is a PvMD). [ Note that fv (D) = ft(D).]

(Vγ) the v–operation is e.a.b. (i.e., D is a v–domain).

He constructs an example of a particular domain of semigroup D that
verifies (Vγ) and has a two generated ideal I such that I−1 is a (v–ideal)
not of finite type and hence D does not satisfy (Vβ).
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The picture (considered above):

Prüfer domain ⇒ PvMD ⇒ v–domain.

can be refined.
M. Griffin (1967), a student of Ribenboim’s, showed that D is a PvMD if
and only if DM is a valuation domain for each maximal t–ideal M of D.

• Call a valuation overring V of D essential if V = DP for some prime
ideal P of D (which is invariably the center of V over D) and call D an
essential domain if D is expressible as an intersection of its essential
valuation overrings (e.g., a Krull domain is an essential domain).

Clearly, a Prüfer domain is essential and, more generally, by Griffin’s result,
a PvMD is essential.
[Note that Griffin’s theory was extended by Kang (1989).]
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• Call a valuation overring V of D essential if V = DP for some prime
ideal P of D (which is invariably the center of V over D) and call D an
essential domain if D is expressible as an intersection of its essential
valuation overrings (e.g., a Krull domain is an essential domain).

Clearly, a Prüfer domain is essential and, more generally, by Griffin’s result,
a PvMD is essential.
[Note that Griffin’s theory was extended by Kang (1989).]
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From a local point of view, it is easy to see from the definitions that every
integral domain D that is locally essential is essential.

The converse is not true: the first example of an essential domain having a
prime ideal P such that DP is not essential was given by Heinzer (1981).

Now add to this information the following well known result that shows
that the essential domains are sitting in between PvMD’s and v–domains.

Proposition 1

An essential domain is a v-domain.

This result is due to Kang (1989) and Zafrullah (1988). It can be also
deduced from a general result for essential monoids due to Halter-Koch
(1998).
The previous picture can be refined as follows:

PvMD ⇒ locally essential domain ⇒ essential domain ⇒ v–domain.
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Remark. Since a Krull domain is locally Krull, a Krull domain D is a locally essential

domain. Using the fact that D =
T
{DP | ht(P) = 1}, it can be shown that v is an a.b.

operation (associated to the family of valuation overrings {DP | ht(P) = 1}) and eacn

F ∈ f(D) is v–invertible. Therefore, a Krull domain is a PvMD.

A characterization of PvMD’s using the essential domain property is given
next.

Proposition 2

Given an integral domain D, the following are equivalent:

(i) D is a PvMD.

(ii) D is an essential domain such that (a) ∩ (b) is a v–finite v–ideal, for
all nonzero a, b ∈ D.

(iii) (a) ∩ (b) is t–invertible in D, for all nonzero a, b ∈ D.

(i)⇔(ii) is due to Zafrullah (1978) (cf. also Halter-Koch (1998) for the
monoid case).
(i)⇔(iii) is due to Malik-Mott-Zafrullah (1988).
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For v–domains, we have the following “v–version” of the previous
characterization ((i)⇔(iii)) for PvMD’s:

Proposition 3

Given an integral domain D,

D is a v–domain ⇔ (a)∩(b) is v–invertible in D, for all nonzero a, b ∈ D.

The idea of proof is simple. Recall that every F ∈ f(D) is invertible
(respectively, v–invertible; t–invertible) if and only if every nonzero two
generated ideal of D is invertible (respectively, v–invertible; t–invertible)
(the idea of proof dates back to Prüfer (1932)). Moreover, for all nonzero
a, b ∈ D, we have:

(a, b)(a, b)−1 = (a, b) (aD∩bD)
ab .

Therefore, in particular, the fractional ideal (a, b)−1 (or, equivalently,
(a, b)) is v–invertible if and only if the ideal aD ∩ bD is v–invertible.

Marco Fontana (“Roma Tre”) On v–domains: a survey 12 / 35



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C

For v–domains, we have the following “v–version” of the previous
characterization ((i)⇔(iii)) for PvMD’s:

Proposition 3

Given an integral domain D,

D is a v–domain ⇔ (a)∩(b) is v–invertible in D, for all nonzero a, b ∈ D.

The idea of proof is simple. Recall that every F ∈ f(D) is invertible
(respectively, v–invertible; t–invertible) if and only if every nonzero two
generated ideal of D is invertible (respectively, v–invertible; t–invertible)
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§2 Bézout-type domains and v–domains

Recall that an integral domain D is
• a Bézout domain if every finitely generated ideal of D is principal, and
• a GCD domain if, for all nonzero a, b ∈ D, a greatest common divisor of
a and b, GCD(a, b), exists and it is in D.

Among the characterizations of the GCD domains we have that D is a
GCD domain if and only if, for every F ∈ f(D), F v is principal or,
equivalently, if and only if the intersection of two (integral) principal ideals
of D is still principal (see, for instance, the survey paper by D.D. Anderson
(2000)).

From Proposition 3, we deduce immediately the second implication in the
following picture:

Bézout domain ⇒ GCD domain ⇒ v–domain.
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Next goal is to show that in between GCD domains and v–domains are
sitting several other distinguished classes of integral domains.

First, note that, from the previous observations, it follows easily that if D is
a Prüfer domain then (a)∩ (b) is invertible in D, for all nonzero a, b ∈ D.
Examples show that the converse is not true. The reason for this is that
aD ∩ bD invertible allows only that (a,b)v

ab (or, equivalently, (a, b)v ) is
invertible and not necessarily the ideal (a, b).

An important generalization of the notion of GCD domain was introduced
by Anderson-Anderson (1979):

• an integral domain D is called a Generalized GCD (for short, GGCD)
domain if the intersection of two (integral) invertible ideals of D is
invertible D (or, equivalently, (a) ∩ (b) is invertible in D, for all nonzero
a, b ∈ D).
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It is well known that D is a GGCD domain if and only if, for each
F ∈ f(D), F v is invertible (Anderson-Anderson, 1979).
In particular,

Prüfer domain ⇒ GGCD domain ⇒ PvMD.

From the well known fact that an invertible ideal in a local domain is
principal, we easily deduce that a GGCD domain is locally a GCD domain.
On the other hand, from the definition of PvMD, we easily deduce that a
GCD domain is a PvMD (see also D.D. Anderson (2000)).

Therefore, we have the following addition to the existing picture:

Bézout domain ⇒ GCD domain ⇒ GGCD domain
⇒ locally GCD domain ⇒ locally PvMD domain
⇒ locally essential domain ⇒ essential domain
⇒ v–domain .
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§3 Integral closures and v–domains

Recall an integral domain D with quotient field K is called a completely
integrally closed (for short, CIC ) domain if
D = {z ∈ K | for all n ≥ 0, azn ∈ D for some nonzero a ∈ D}.
It is well known that the following statements are equivalent.

(i) D is CIC;

(ii) for all A ∈ F(D), (Av : Av ) = D;

(ii′) for all A ∈ F(D), (A : A) = D;

(ii′′) for all A ∈ F(D), (A−1 : A−1) = D;

(iii) for all A ∈ F(D), (AA−1)v = D.

(see Gilmer’s book for (i)⇔(ii)⇔(ii′) and Zafrullah (2008) for (ii′′)⇔(iii);
for a general monoid version of this characterization, see Halter-Koch
(1998)).
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In Bourbaki (Exercises in Ch. 7 of Algèbre Commutative) an integral
domain D is called regularly integrally closed if, for all F ∈ f(D), F v is
regular with respect to the v–multiplication (i.e., if (FG )v = (FH)v for
G ,H ∈ f(D) then G v = Hv ).

Theorem 1

Let D be an integral domain, then the following are equivalent.

(i) D is a regularly integrally closed domain.

(iif) For all F ∈ f(D), (F v : F v ) = D.

(iiif) For all F ∈ f(D) (FF−1)−1 = D (or, equivalently, (FF−1)v = D).

(iv) D is a v–domain.

A preliminary version of Theorem 1 appeared in a paper by Lorenzen
(1939) (see also Dieudonné (1941)). A general monoid version of the
previous characterization is given in Halter-Koch’s book.
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Remark. B (a) Note that the condition
(ii′f) for all F ∈ f(D), (F : F ) = D

is equivalent to say that D is integrally closed and so it is weaker than
condition (iif) of the previous Theorem 1, since
(F v : F v ) = (F v : F ) ⊇ (F : F ).
On the other hand, it is easy to see that condition

(ii′′f ) for all F ∈ f(D), (F−1 : F−1) = D
is equivalent to the other statements of Theorem 1.

B (b) By Mott-Nashier-Zafrullah (1990), condition (iiif) of the previous
theorem is equivalent to

(iii2) Every nonzero fractional ideal with two generators is
v–invertible.

This characterization is a variation of the Prüfer’s classical result that an
integral domain is Prüfer if and only if each nonzero ideal with two
generators is invertible (and of the characterization of PvMD’s also
recalled above).
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B (c) Regularly integrally closed integral domains make their appearance
with a different terminology in the study of a weaker form of integrality,
introduced in a paper by Anderson-Houston-Zafrullah (1991).

• Recall that, given an integral domain D with quotient field K , an
element z ∈ K is called pseudo-integral over D if z ∈ (F v : F v ) for some
F ∈ f(D). The terms of

• pseudo-integral closure (i.e., D̃ :=
⋃
{(F v : F v )) | F ∈ f(D)}) and

• pseudo-integrally closed domain (i.e., D = D̃) are coined in the obvious
fashion.

It is clear from the definition that pseudo-integrally closed coincides with
regularly integrally closed.

For the previous observations, we deduce the following addition to the
existing picture:

CIC domain ⇒ v–domain ⇒ integrally closed domain .
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element z ∈ K is called pseudo-integral over D if z ∈ (F v : F v ) for some
F ∈ f(D). The terms of

• pseudo-integral closure (i.e., D̃ :=
⋃
{(F v : F v )) | F ∈ f(D)}) and

• pseudo-integrally closed domain (i.e., D = D̃) are coined in the obvious
fashion.

It is clear from the definition that pseudo-integrally closed coincides with
regularly integrally closed.

For the previous observations, we deduce the following addition to the
existing picture:

CIC domain ⇒ v–domain ⇒ integrally closed domain .
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B (d) By Theorem 1, we have that a v–domain is an integral domain D
such that each element of F v ∈ fv (D) is v–invertible but, as observed by
Dieudonné, F−1 (= (F v )−1 ∈ Fv (D)) does not necessarily belong to
fv (D).

When (and only when), in a v–domain D, F−1 ∈ fv (D), D is a PvMD.

As a matter of fact, (see for instance, Zafrullah (2000)):
let F ∈ f(D), then F is t–invertible if and only if F is v–invertible and
F−1 is v–finite, i.e., F v ∈ fv (D) is v–invertible and F−1 (= (F v )−1)
belongs to fv (D)).
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B (e) The “regular” teminology with respect to the v–multiplication for
the elements of fv (D) (used by Dieudonné and Bourbaki) is clearly
different from the notion of “von Neumann regular”, usually considered for
elements of a ring or of a semigroup.

However, it may be instructive to record some observations showing that,
in the present situation, the two notions are somehow related.

(α) Let H be a commutative and cancellative monoid. If any element a
of H is von Neumann regular (i.e., if there is b ∈ H such that
a2b = a), then a is invertible in H (and conversely).
[A commutative semigroup in which every element is von Neumann
regular is called Clifford semigroup.]

(β) Let D be a v–domain. If A ∈ fv (D) is von Neumann regular in the
monoid fv (D) under v–multiplication, then A is t–invertible (or,
equivalently, A−1 ∈ fv (D)). Consequently,
a v–domain D is a PvMD if and only if each element of the monoid
fv (D) is von Neumann regular [i.e., fv (D) is a Clifford semigroup].
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§4 v–domains and rings of fractions

Note that, given a multiplicative set S of a PvMD, D, then DS is still a
PvMD.

The easiest proof of this fact can be given noting that, given F ∈ f(D), if
F is t–invertible in D then FDS is t–invertible in DS , where S is a
multiplicative set of D (Bouvier-Zafrullah (1988)).

On the other hand, Mott-Zafrullah (1981) have shown that an example of
a non PvMD essential domain due to Heinzer and Ohm (1973) is in fact a
locally PvMD (and, hence, locally essential domain).

It is natural to ask whether DS is a v–domain when D is a v–domain.

The answer is no.

Marco Fontana (“Roma Tre”) On v–domains: a survey 22 / 35



B §1 C B §2 C B §3 C B §4 C B §5 C B §6 C B §7 C

Example: D v–domain 6⇒ DS v–domain

An example of an essential domain D with a prime ideal P such that DP is
not essential was given by Heinzer (1981).

What is interesting is that an essential domain is a v–domain by
Proposition 1 and that, in this example, DP is a (non essential) overring of
the type k + XL[X ](X ) = (k + XL[X ])XL[X ], where L is a field and k a
proper subfield that is algebraically closed in L.

Now, a domain of type k + XL[X ](X ) is an integrally closed (not CIC) local
Mori domain (see Barucci (1983) or Gabelli-Houston (1997)).
It is well known that if a Mori domain is a v–domain then it must be CIC,
i.e., a Krull domain (Nishimura (1967)), and hence, in particular, an
essential domain.

Therefore, Heinzer’s construction provides an example of an essential
(v–)domain D with a prime ideal P such that DP is not a v–domain.
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Remark. Note that a similar situation holds for CIC domains; i.e., if D is
CIC then it may be that for some multiplicative set S of D the ring of
fractions DS is not a completely integrally closed domain.

A well known example in this connection is the ring E of entire functions.
For E is a completely integrally closed Bézout domain that is infinite
dimensional (Henriksen (1952, 1953)).

Localizing E at one of its prime ideals of height greater than one would
give a valuation domain of dimension greater than one, which is obviously
not completely integrally closed.

For another example of a CIC domain that has non–CIC rings of fractions,
look at the integral domain of integer-valued polynomials Int(Z).

This is a two-dimensional Prüfer non-Bézout domain.
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It is well known that if {Dλ | λ ∈ Λ} is a family of overrings of D with
D =

⋂
λ∈Λ Dλ and if each Dλ is a completely integrally closed

(respectively, integrally closed) domain then so is D.

It is natural to ask if in the above statement “completely integrally
closed/integrally closed domain” is replaced by “v–domain” the statement
is still true.

The answer in general is no, because by Krull’s theorem every integrally
closed integral domain is expressible as an intersection of a family of its
valuation overrings and of course a valuation domain is a v–domain.

But, an integrally closed domain is not necessarily a v–domain. (A very
explicit example is given by Q + XR[X ], where R is the field of real
numbers and Q is the algebraic closure of Q in R.)
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If however each of Dλ is a ring of fractions of D, then the answer is yes.

A slightly more general statement is given next.

Proposition 4

Let {Dλ | λ ∈ Λ} be a family of flat overrings of D such that
D =

⋂
λ∈Λ Dλ. If each of Dλ is a v–domain then so is D.

From the previous considerations, we have the following addition to the
existing picture:

PvMD ⇒ locally PvMD ⇒ locally v–domain ⇒ v–domain.
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§5 v–domains, polynomials and rational functions

As for the case of integrally closed domains and of completely integrally
closed domains, it is well known that, given an integral domain D and an
indeterminate X over D,

D[X ] is a PvMD ⇔ D is a PvMD.

A similar statement holds for v–domains.
It follows from the fact that, the following statements are equivalent (D.D.
Anderson-Kwak-Zafrullah (1995)).

(i) For every F ∈ f(D), F v is v–invertible in D.

(ii) For every G ∈ f(D[X ]), G v is v–invertible in D[X ].

This equivalence is essentially based on a polynomial characterization of
integrally closed domains given by Querré (1980).
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From the previous equivalence, we deduce immediately that every
F ∈ f(D) is v–invertible if and only if every G ∈ f(D[X ]) is v–invertible
and this proves the following:

Theorem 5

Given an integral domain D and an indeterminate X over D, D is a
v-domain if and only if D[X ] is a v–domain.

Note that a much more interesting and general result was proved in terms of
pseudo-integral closures by Anderson-Houston-Zafrullah (1991),
i.e., let H be a commutative cancellative monoid and seteH := {x ∈ qg(H) | ∃L ∈ f(H) with xLv ⊆ Lv}, then D̃[H] = eD[ eH].

Therefore, D[H] is a v–domain if and only if D is a v–domain and H is pseudo-integral

closed.
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Theorem 6

Let D be an integral domain with quotient field K and let X be an
indeterminate over D. Set

VD := {g ∈ D[X ] | cD(g) is v–invertible}
TD := {g ∈ D[X ] | cD(g) is t–invertible}.

(a) TD and VD are multiplicative sets of D[X ] with TD ⊆ VD .
Furthermore, VD (or, equivalently, TD) is saturated if and only if D is
integrally closed.

(b) Suppose that D is an integrally closed domain, then the following are
equivalent:

(i) D is a v-domain (respectively, a PvMD).
(ii) VD = D[X ]\{0} (respectively, TD = D[X ]\{0}).
(iii) D[X ]VD

(respectively, D[X ]TD
) is a field (or, equivalently,

D[X ]VD
= K (X ) (respectively, D[X ]TD

= K (X ))).
(iv) Each nonzero element z ∈ K satisfies a polynomial f ∈ D[X ] such that

cD(f ) is v–invertible (respectively, t–invertible).
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§6 v–domains and domains with a divisor theory: a brief account

Borevich and Shafarevich (1966) introduced “domains with a divisor
theory” in order to generalize Dedekind domains and unique factorization
domains, along the lines of Kronecker’s classical theory of “algebraic
divisors” (see Kronecker (1882) and also H. Weyl (1940) and Edwards
(1990)).

Let D be an integral domain and set D• := D \ {0}. An integral domain
D is said to have a divisor theory if there is a factorial monoid H and a
semigroup homomorphism, denoted by (–): D• → H, given by a 7→ (a),
satisfying some properties related to the divisibility properties in D and H.

[Recall that a factorial monoid H is a commutative cancellative monoid such that every

element a ∈ H can be uniquely represented as a finite product of atomic (= irreducible)

elements of H, i.e., a = q1q2...qr , with r ≥ 0 and this factorization is unique up to the

order of factors (for r = 0 this product is set equal to identity of H.]
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After showing that Dedekind domains and UFD are particular domains
with a divisor theory, Borevich and Shafarevich do not enter into the
details of the determination of those integral domains for which a theory
of divisors can be constructed, but it is known that they coincide with the
Krull domains (see Aubert (1983) and Lucius (1998)).

Taking the above definition as a starting point, Lucius (1998) introduces a
more general class of domains, called the domains with GCD–theory.
An integral domain D is said to have a GCD–theory if there is a
GCD–monoid G and a semigroup homomorphism, denoted by
(–): D• → G, given by a 7→ (a), verifying essentially the same axioms of a
divisor theory (i.e., (1) a|b (in D) ⇔ (a)|(b) (in G); (2) a = b (in G) ⇔ a = b (in

the set of ideals of D), where a := {0 6= x ∈ D | a|(x) (in G)} ∪ {0}).

One of the main results obtained by Lucius is the following.

Theorem 7

Given an integral domain D, D is a ring with GCD–theory if and only if D
is a v–domain.
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The proof of the “if part” of the previous theorem is constructive and
provides explicitly the GCD–theory. The GCD–monoid is constructed, via
Kronecker function rings.
Recall that, when v is an e.a.b. operation (i.e., when D is a v–domain),
the Kronecker function ring with respect to v , Kr(D, v), is well defined
and it is a Bézout domain.
Let K be the monoid Kr(D, v)•, let U := U(Kr(D, v)) be the group of
invertible elements in Kr(D, v) and set G := K/U .
The canonical map:

[–] : D• → G =
Kr(D, v)•

U , a 7→ [a] (= the equivalence class of a in G)

defines a GCD–theory for D, called the Kroneckerian GCD–theory for the
v–domain D.
In particular, the GCD of elements in D is realized by the equivalence class
of a polynomial; more precisely, under this GCD–theory, let
a0, a1,...,an∈D•,
GCD(a0, a1, ..., an) := GCD([a0], [a1], ..., [an]) = [a0 + a1X + ... + anX

n].
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The proof of the “if part” of the previous theorem is constructive and
provides explicitly the GCD–theory. The GCD–monoid is constructed, via
Kronecker function rings.
Recall that, when v is an e.a.b. operation (i.e., when D is a v–domain),
the Kronecker function ring with respect to v , Kr(D, v), is well defined
and it is a Bézout domain.
Let K be the monoid Kr(D, v)•, let U := U(Kr(D, v)) be the group of
invertible elements in Kr(D, v) and set G := K/U .
The canonical map:

[–] : D• → G =
Kr(D, v)•

U , a 7→ [a] (= the equivalence class of a in G)

defines a GCD–theory for D, called the Kroneckerian GCD–theory for the
v–domain D.
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§7 Ideal-theoretic characterizations of v–domains

Nowadays, we know a very long list of equivalent statements concerning
ideal–theoretic properties, providing further characterizations of (several
classes of) v–domains. A first important step in this direction was made
with the paper the “A to Z” paper (Anderson-Anderson-Costa-Dobbs-
Mott-Zafrullah, 1989).

The next goal is to explore briefly this aspect of the v–domains theory.

Proposition 8

Let D be an integral domain. Then, D is a v–domain if and only if D is
integrally closed and (F1 ∩ F2 ∩ ... ∩ Fn)

v = F v
1 ∩ F v

2 ∩ ... ∩ F v
n for all

F1,F2, ...,Fn ∈ f(D) (i.e., the v–operation distributes over finite
intersections of finitely generated fractional ideals).

The “if part” is contained in the “A to Z” paper where the converse was
left open). The converse was proved few years later by Matsuda-Okabe
(1993).
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Note that, even for a Noetherian 1-dimensional domain, the v–operation
may not distribute over finite intersections of (finitely generated) fractional
ideals. For instance, here is an example due to W. Heinzer cited in (D.D.
Anderson-Cook, 2006).

Example 2

Let k be a field, X an indeterminate over k and set D := k[[X 3,X 4,X 5]],
F := (X 3,X 4) and G := (X 3,X 5).

Clearly, D is a non-integrally closed 1-dimensional local Noetherian domain
with maximal ideal M := (X 3,X 4,X 5) = F + G .

It is easy to see that F v = G v = M, and so
F ∩ G = (X 3) = (F ∩ G )v ( F v ∩ G v = M.
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In a recent work (Anderson-Anderson-Fontana-Zafrullah (2008)) we prove,
in the general setting of star operations, that several ideal-theoretic
statements are equivalent. Among them, in case of the star operation v , in
particular we obtain the following brand-new characterization of a
v -domain:

Proposition 9

Let D be an integral domain. Then,

D is a v-domain ⇔ ((A ∩ B)(A + B))v = (AB)v ∀A,B ∈ F(D) .
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