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1 Introduction and Background Results

The notions of t-invertibility, v-invertibility and w-invertibility, that generalize the
classical concept of (d-)invertibility (these definitions will be recalled in Section 2),
have been introduced in the recent years for a better understanding of the mul-
tiplicative (ideal) structure of integral domains. In particular, t-invertibility has
a key role for extending the notion of class group from Krull domains to general
integral domains (cf. [8–10] and the survey paper [7]). An interesting chart of a
large set of various t-, v-, d-invertibility based characterizations of several classes of
integral domains can be found at the end of [4]; some motivations for introducing
the w-invertibility and the first properties showing the “good” behaviour of this
notion can be found in [47] (cf. also [30]). The concept of star operation (or equiva-
lently, ideal system, cf. the books by Jaffard [33], Gilmer [24] and Halter-Koch [27])
provides an abstract setting for approaching these different aspects of invertibility.
A recent paper by Zafrullah [51] gives an excellent and updated survey of this point
of view.

After the introduction in 1994, by Okabe and Matsuda [44], of the notion of
semistar operation, as a more general and natural setting for studying multiplica-
tive systems of ideals and modules, many authors have investigated the possible
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extensions to the semistar setting of different aspects of the classical theory of ideal
systems, based on the pioneering work by Krull, Noether, Prüfer and Lorenzen from
1930’s (cf. for instance [12, 13, 15–19, 28, 29, 37–43, 45]).

A natural development of this work leads to investigate the concept of invert-
ibility in the semistar setting. This is the purpose of the present paper, in which
we will show the existence of a “theoretical obstruction” for extending many re-
sults, proved for star-invertibility, to the semistar case. For this reason, we will
be forced to introduce two distinct notions of invertibility in the semistar setting
(called ?-invertibility and quasi-?-invertibility; the explicit definitions will be given
in Section 2). We will discuss the motivations of these “two levels” of invertibility
and we will extend, accordingly, many classical results proved for the d-, v-, t- and
w-invertibility.

Among the main properties proved in this work, we mention the following:
(a) several characterizations of ?-invertibility and quasi-?-invertibility and neces-
sary and sufficient conditions for the equivalence of these two notions; (b) the re-
lations between the ?-invertibility (or quasi-?-invertibility) and the invertibility (or
quasi-invertibility) with respect to the semistar operation of finite type (denoted by
?

f
) and to the stable semistar operation of finite type (denoted by ?̃), canonically

associated to ? (in the case that ? = v is the Artin v-operation, then ?
f

= t and
?̃ = w); (c) a characterization of the H(?)-domains in terms of semistar-invertibility
(note that the H(?)-domains generalize in the semistar setting the H-domains in-
troduced by Glaz and Vasconcelos [26], more precisely, we will see in Section 2 that
an H-domain coincides with an H(v)-domain); (d) for a semistar operation of finite
type, a nonzero finitely generated (fractional) ideal I is ?-invertible (or equivalently,
quasi-?-invertible in the stable semistar case) if and only if its extension to the Na-
gata semistar ring INa(D, ?) is an invertible ideal of Na(D, ?) (the definition of
Na(D, ?) will be recalled at the end of this section).

Let D be an integral domain with quotient field K. Let F (D) denote the set of
all nonzero D-submodules of K and let F (D) be the set of all nonzero fractional
ideals of D, that is, E ∈ F (D) if E ∈ F (D) and there exists a nonzero d ∈ D with
dE ⊆ D. Let f(D) be the set of all nonzero finitely generated D-submodules of K.
Then obviously f(D) ⊆ F (D) ⊆ F (D).

A map ? : F (D) → F (D), E 7→ E?, is called a semistar operation on D if for
all x ∈ K with x 6= 0 and all E, F ∈ F (D), the following properties hold (cf. for
instance [13]):

(?1) (xE)? = xE?;
(?2) E ⊆ F implies E? ⊆ F ?;
(?3) E ⊆ E? and E?? := (E?)? = E?.

Recall that [13, Theorem 1.2 and p. 174], for all E, F ∈ F (D), we have:

(EF )? = (E?F )? = (EF ?)? = (E?F ?)? ;
(E + F )? = (E? + F )? = (E + F ?)? = (E? + F ?)?

, if (E : F ) 6= (0);
(E : F )? ⊆ (E? : F ?) = (E? : F ) = (E? : F )? ;
(E ∩ F )? ⊆ E? ∩ F ? = (E? ∩ F ?)?

, if E ∩ F 6= (0).



Semistar Invertibility on Integral Domains 647

When D? = D, we say that ? is a (semi)star operation since, restricted to F (D),
it is a star operation.

For star operations, it is very useful the notion of ?-ideal , that is, a nonzero
ideal I ⊆ D such that I? = I. For semistar operations, we need a more general
notion, that coincides with the notion of ?-ideal when ? is a (semi)star operation.
We say that a nonzero (integral) ideal I of D is a quasi-?-ideal if I? ∩D = I. For
example, it is easy to see that if I? 6= D?, then I?∩D is a quasi-?-ideal that contains
I (in particular, a ?-ideal is a quasi-?-ideal). Note that I? 6= D? is equivalent to
I? ∩D 6= D.

A quasi-?-ideal which is also a prime ideal is called quasi-?-prime. A maximal
element in the set of all proper quasi-?-ideals of D is called quasi-?-maximal. We
denote by QSpec?(D) (respectively, QMax?(D)) the set of all quasi-?-prime ideals
(respectively, quasi-?-maximal ideals).

If ? is a semistar operation on D, then we can consider a map ?
f

: F (D) → F (D)
defined for each E ∈ F (D) as follows: E?

f :=
⋃ {F ? |F ∈ f(D), F ⊆ E}. It is

easy to see that ?
f

is a semistar operation on D, called the semistar operation of
finite type associated to ?. Note that for each F ∈ f(D), F ? = F ?

f . A semistar
operation ? is called a semistar operation of finite type if ? = ?

f
. It is easy to see

that (?
f
)
f

= ?
f

(i.e., ?
f

is of finite type).
If ?1 and ?2 are two semistar operations on D, we say that ?1 ≤ ?2 if E?1 ⊆ E?2

for each E ∈ F (D). In this situation, it is easy to see (E?1)?2 = E?2 = (E?2)?1 .
Obviously, for each semistar operation ?, we have ?

f
≤ ?.

The following result, with a different terminology, was proved in [13] (cf. also
[19, Lemma 2.3]).

Lemma 1.1. Let ? be a semistar operation on an integral domain D. Assume that
? is non-trivial and ? = ?

f
. Then:

(1) Each proper quasi-?-ideal is contained in a quasi-?-maximal ideal.
(2) Each quasi-?-maximal ideal is quasi-?-prime.
(3) Set Π? := {P ∈ Spec(D) | P 6= 0, P ? ∩ D 6= D}, then QSpec?(D) ⊆ Π?

and the set of maximal elements Π?
max of Π? is non-empty and coincides with

QMax?(D).

For the sake of simplicity, we will denote simply by M(?) the set QMax?(D) of
the quasi-?-maximal ideals of D.

If ∆ ⊆ Spec(D), the map ?∆ : F (D) → F (D), E 7→ E?∆ :=
⋂ {EDP |P ∈ ∆},

is a semistar operation. If ? = ?∆ for some ∆ ⊆ Spec(D), we say that ? is a spectral
semistar operation. In particular, if ∆ = {P}, then ?{P} is the semistar operation
on D defined by E?{P} := EDP for each E ∈ F (D). We say that a semistar
operation is stable if (E ∩F )? = E?∩F ? for any E, F ∈ F (D). A spectral semistar
operation is stable [13, Lemma 4.1].

If ? is a semistar operation on D, we denote by ?̃ the semistar operation ?M(?
f
)

induced by the set M(?
f
) of the quasi-?

f
-maximal ideals of D. The semistar oper-

ation ?̃ is stable and of finite type and ?̃ ≤ ?
f

(cf. [13, p. 181], where the semistar
operation ?̃ is defined, in an equivalent way, by using localizing systems, and also [3,
Section 2] for an analogous construction in the star setting). Note that when ? = v
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(where, as usual, v denotes the (semi)star operation defined by Ev := (D : (D : E))
for each E ∈ F (D)), then ?̃ coincides with the (semi)star operation denoted by w
by Wang and McCasland (cf. [47–49]).

The following lemma is not difficult to prove (cf. [19, Corollary 3.5(2)], and [3,
Theorem 2.16] for the analogous result in the case of star operations).

Lemma 1.2. Let ? be a semistar operation on an integral domain D. Then
M(?

f
) = M(?̃).

In the next proposition, we recall how a semistar operation on an integral domain
D induces canonically a semistar operation on an overring T of D (cf. [44, Lemma
45], and [20] for the notation used here).

Proposition 1.3. Let D be an integral domain and T an overring of D. Let
ι : D ↪→ T be the embedding of D in T , and let ?ι : F (T ) → F (T ) be defined by
E?ι := E?. Then:

(1) ?ι is a semistar operation on T .
(2) If ? is of finite type on D, then ?ι is of finite type on T .
(3) If T = D?, then ?ι is a (semi)star operation on D?.
(4) If ? is stable, then ?ι is stable.

If R is a ring and X an indeterminate over R, then the ring

R(X) := {f/g | f, g ∈ R[X], c(g) = R},

where c(g) is the content of the polynomial g, is called the Nagata ring of R [24,
Proposition 33.1].

The following result is proved in [19, Proposition 3.1] (cf. also [34, Proposition
2.1]).

Proposition 1.4. Let ? be a non-trivial semistar operation on an integral domain
D and set N(?) := ND(?) := {h ∈ D[X] | h 6= 0, (c(h))? = D?}. Then:

(1) N(?) is a saturated multiplicative subset of D[X] and

N(?) = N(?
f
) = D[X] \

⋃
{Q[X] | Q ∈M(?

f
)}.

(2) Max(D[X]N(?)) = {Q[X]N(?) | Q ∈ M(?
f
)} and M(?

f
) coincides with the

canonical image in Spec(D) of Max
(
(D[X])N(?)

)
.

(3) D[X]N(?) =
⋂ {DQ(X) | Q ∈M(?

f
)}.

We set Na(D, ?) := D[X]N(?) and we call it the Nagata ring of D with respect
to the semistar operation ?. Obviously, Na(D, ?) = Na(D, ?

f
) and, when ? = d (the

identity (semi)star operation) on D, then Na(D, d) = D(X).

2 Semistar Invertibility

Let ? be a semistar operation on an integral domain D. Let I ∈ F (D), we say
that I is ?-invertible if

(
II−1

)? = D?. In particular, when ? = d (respectively, v,
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t (:= v
f
), w (:= ṽ)) is the identity (semi)star operation (respectively, the v-operation,

t-operation, w-operation), we reobtain the classical notion of invertibility (respec-
tively, v-invertibility, t-invertibility, w-invertibility) of a fractional ideal.

Lemma 2.1. Let ?, ?1, ?2 be semistar operations on an integral domain D. Let
Inv(D, ?) be the set of all ?-invertible fractional ideals of D and Inv(D) (instead
of Inv(D, d)) the set of all invertible fractional ideals of D. Then:

(0) D ∈ Inv(D, ?).
(1) If ?1 ≤ ?2, then Inv(D, ?1) ⊆ Inv(D, ?2). In particular, Inv(D) ⊆ Inv(D, ?̃) ⊆

Inv(D, ?
f
) ⊆ Inv(D, ?).

(2) I, J ∈ Inv(D, ?) if and only if IJ ∈ Inv(D, ?).
(3) If I ∈ Inv(D, ?), then I−1 ∈ Inv(D, ?).
(4) If I ∈ Inv(D, ?), then Iv ∈ Inv(D, ?).

Proof. (0) and (1) are obvious.
(2) Note that if I, J ∈ Inv(D, ?), then D? =

(
II−1

)? (
JJ−1

)? ⊆ (
II−1JJ−1

)? ⊆(
IJ(IJ)−1

)? ⊆ D?. Thus, IJ ∈ Inv(D, ?). Conversely, if IJ ∈ Inv(D, ?), then
D? = ((IJ)(D : IJ))? = (I(J(D : IJ)))?. Since (J(D : IJ)) ⊆ (D : I), it follows
that (I(D : I))? = D?. Similarly, (J(D : J))? = D?.

(3) D? =
(
II−1

)? ⊆ (
(I−1)−1I−1

)? ⊆ D?.
(4) It follows from (3). 2

Remark 2.2. (a) Note that D is the unit element of Inv(D, ?) with respect to the
standard multiplication of fractional ideals of D. Nevertheless, Inv(D, ?) is not a
group in general (under the standard multiplication) because for I ∈ Inv(D, ?),
I−1 ∈ Inv(D, ?) but II−1 6= D if I 6∈ Inv(D). For instance, let k be a field, X
and Y two indeterminates over k, and let D := k[X, Y ](X,Y ). Then D is a local
Krull domain with maximal ideal M := (X, Y )D. Let ? = v, then clearly Mv = D
since ht(M) = 2, thus M is v-invertible but M is not invertible in D since it is not
principal. Therefore, (MM−1)v = D, but M = MM−1 ( D. We will discuss later
what happens if we consider the semistar (fractional) ideals semistar invertible with
the “semistar product”.

(b) Let I ∈ F (D). Assume that I ∈ Inv(D, ?) and (D? : I) ∈ F (D), then we will
see later that (D? : I) = (D : I)? (Lemma 2.10, Remark 2.13(d1) and Proposition
2.16), more precisely,

(
I−1

)?
= (D : Iv)? = (D? : I)? = (D? : I) = (I?)−1

.

However, in this situation, we may not conclude that (D? : I) (or (D : I)?)
belongs to Inv(D, ?) (even if (D : I) ∈ Inv(D, ?) by Lemma 2.1(3)). As a matter
of fact, more generally, if J ∈ Inv(D, ?) and J? ∈ F (D), then J? does not belong
necessarily to Inv(D, ?).

For instance, let K be a field and X, Y two indeterminates over K, set T :=
K[X, Y ] and D := K +Y K[X, Y ]. Let ?{T} be the semistar operation on D defined
by E?{T} := ET for each E ∈ F (D). Then J := Y D is obviously invertible (hence
?{T}-invertible) in D and J?{T} = JT = Y T = Y K[X, Y ] = (D : T ) is a nonzero
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(maximal) ideal of D (and, at the same time, a (prime) ideal of T ), but J?{T} is
not ?{T}-invertible in D because

(J?{T}(D : J?{T}))?{T}

= (JT (D : JT ))T = (Y T (D : Y T ))T
= (Y TY −1(D : T ))T = (T (Y T ))T = Y T ( T = D?{T} .

(c) Note that the converses of (3) and (4) of Lemma 2.1 are not true in general.
For instance, take an integral domain D that is not an H-domain (recall that an
H-domain is an integral domain D such that if I is an ideal of D with I−1 = D,
then there exists a finitely generated J ⊆ I such that J−1 = D [26, Section 3]).
Then there exists an ideal I of D such that Iv = I−1 = D and It ( D. It follows
that

(
I−1Iv

)t = D (and so I−1 and Iv are t-invertibles), but
(
II−1

)t = It ( D,
that is, I is not t-invertible. On the other hand, note that, trivially, I is v-invertible.

An explicit example is given by a 1-dimensional non-discrete valuation domain
V with maximal ideal M . Clearly, V is not an H-domain [26, (3.2d)], M−1 =
Mv = V [24, Exercise 12, p. 431] and M t =

⋃ {Jv | J ⊆ M, J finitely generated}
=

⋃ {J | J ⊆ M, J finitely generated} = M ( V . In this case, M−1 and Mv are
obviously t-invertibles, but M is not t-invertible.

If I ∈ F (D), we say that I is ?-finite if there exists J ∈ f(D) such that J? = I?.
It is immediate to see that if ?1 ≤ ?2 are semistar operations and I is ?1-finite, then
I is ?2-finite. In particular, if I is ?

f
-finite, then it is ?-finite.

We notice that, in the previous definition of ?-finite, we do not require that J ⊆
I. The next result shows that, with this “extra” assumption, ?-finite is equivalent
to ?

f
-finite.

Lemma 2.3. Let ? be a semistar operation on an integral domain D with quotient
field K. Let I ∈ F (D). Then the following are equivalent :

(i) I is ?
f
-finite.

(ii) There exists J ⊆ I, J ∈ f(D) such that J? = I?.

Proof. It is clear that (ii) implies (i) since J? = J?
f if J is finitely generated. On

the other hand, suppose I is ?
f
-finite. Then I?

f = J
?
f

0 with J0 = (a1, a2, . . . , an)D
for some family {a1, a2, . . . , an} ⊆ K. Since J0 ⊆ I?

f , there exists a finite family of
finitely generated fractional ideals of D, J1, J2, . . . , Jn ⊆ I, such that ai ∈ J?

i for
i = 1, 2, . . . , n. It follows that

I?
f = J

?
f

0 ⊆ (
J

?
f

1 + J
?
f

2 + · · ·+ J
?
f

n

)?
f = (J1 + J2 + · · ·+ Jn)?

f ⊆ I?
f .

Set J := J1 +J2 + · · ·+Jn. Then J is finitely generated, J ⊆ I and J?
f = I?

f , thus
J? = I?. 2

Remark 2.4. Extending the terminology introduced by Zafrullah [50] in the star
setting (cf. also [51, p. 433]), given a semistar operation on an integral domain
D, we can say that I ∈ F (D) is strictly ?-finite if I? = J? for some J ∈ f(D)
with J ⊆ I. With this terminology, Lemma 2.3 shows that ?

f
-finite coincides with
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strictly ?-finite. This result was already proved in the star setting by Zafrullah [50,
Theorem 1.1]. Note that Querré [46] studied the strictly v-finite ideals, using often
the terminology of quasi-finite ideals.

Examples of ?-finite ideals that are not ?
f
-finite (when ? is the v-operation) are

given in [22, Section (4c)], where the authors describe domains with all the ideals
v-finite (called DVF-domains), that are not Mori domains (that is, such that not
all the ideals are t-finite).

Lemma 2.5. Let ? be a semistar operation on an integral domain D and let
I ∈ F (D). Then I is ?

f
-invertible if and only if (I ′I ′′)? = D? for some I ′ ⊆ I,

I ′′ ⊆ I−1 and I ′, I ′′ ∈ f(D). Moreover, I ′? = I? and I ′′? =
(
I−1

)?.

Proof. The “if” part is trivial. For the “only if” part, if
(
II−1

)?
f = D?

f , then
H? = D? for some H ⊆ II−1, H ∈ f(D). Therefore, H = (h1, h2 . . . , hn)D with
hi = x1,iy1,i + x2,iy2,i + · · · + xki,iyki,i with the x’s in I and the y’s in I−1. Let
I ′ be the (fractional) ideal of D generated by the x’s and let I ′′ be the (fractional)
ideal of D generated by the y’s. Then H ⊆ I ′I ′′ ⊆ II−1 and so D? = (I ′I ′′)?,
and thus, also D? =

(
I ′I−1

)? = (II ′′)?. Moreover, I? = (ID?)? =
(
I
(
I ′I−1

)?)? =(
(II−1)?I ′

)? = (D?I ′)? = I ′?. In a similar way, we also obtain I ′′? =
(
I−1

)?. 2

A classical result due to Krull [33, Théorème 8, Chpt. I, §4] shows that for a
star operation of finite type, star-invertibility implies star-finiteness. The following
result gives a more complete picture of the situation in the general semistar setting.

Proposition 2.6. Let ? be a semistar operation on an integral domain D. Let
I ∈ F (D). Then I is ?

f
-invertible if and only if I and I−1 are ?

f
-finite (hence, in

particular, ?-finite) and I is ?-invertible.

Proof. The “only if” part follows from Lemma 2.5 and the fact that ?
f
≤ ?.

For the “if” part, note that by assumption I?
f = J ′?f = J ′? and (I−1)?

f =
J ′′?f = J ′′? with J ′, J ′′ ∈ f(D). Therefore,

(
II−1

)?
f = (J ′J ′′)?

f = (J ′J ′′)? =
(
J ′?J ′′?

)?
= (I?

(
I−1)?

)?
=

(
II−1

)?
= D?. 2

The next goal is to investigate when the ?-invertibility coincides with the ?
f
-

invertibility.
Let ? be a semistar operation on an integral domain D, we say that D is an

H(?)-domain if for each nonzero integral ideal I of D such that I? = D?, there
exists J ∈ f(D) with J ⊆ I and J? = D?. It is easy to see that for ? = v, the
H(v)-domains coincide with the H-domains introduced by Glaz and Vasconcelos
(Remark 2.2(c)).

Lemma 2.7. Let ? be a semistar operation on an integral domain D. Then D is
an H(?)-domain if and only if each quasi-?

f
-maximal ideal of D is a quasi-?-ideal

of D.

Proof. Assume that D is an H(?)-domain. Let Q = Q?
f ∩D be a quasi-?

f
-maximal

ideal of D. Assume that Q? = D?. Then for some J ∈ f(D) with J ⊆ Q,
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we have J? = D?, thus Q?
f = D?, which leads to a contradiction. Therefore,

Q?
f ∩ D ⊆ Q? ∩ D ( D, and hence, there exists a quasi-?

f
-maximal ideal of D

containing Q? ∩D. This is possible only if Q?
f ∩D = Q? ∩D.

Conversely, let I be a nonzero ideal of D with the property I? = D?. Then
necessarily I 6⊆ Q for each quasi-?

f
-maximal ideal Q of D (because, otherwise, by

assumption I ⊆ Q = Q?
f ∩ D = Q? ∩ D, and so I? ⊆ Q? ( D?). Therefore,

I?
f = D?. 2

Next result provides several characterizations of the H(?)-domains; note that in
the particular case that ? = v, the equivalence (i)⇔(iii) was already known [31,
Proposition 2.4] and the equivalence (i)⇔(iv) was considered in [47, Proposition
5.7].

Proposition 2.8. Let ? be a semistar operation on an integral domain D. The
following are equivalent :

(i) D is an H(?)-domain.
(ii) For each I ∈ F (D), I is ?-invertible if and only if I is ?

f
-invertible.

(iii) M(?
f
) = M(?).

(iv) M(?̃) = M(?).

Proof. Obviously, (iii)⇔(iv) by Lemma 1.2, and (iii)⇔(i) by Lemma 2.7, recalling
that a quasi-?-ideal is also a quasi-?

f
-ideal.

(iii)⇒(ii) Let I be a ?-invertible ideal of D. Assume that I is not ?
f
-invertible.

Then there exists a quasi-?
f
-maximal ideal M such that II−1 ⊆ M . But M is

also quasi-?-maximal since M(?
f
) = M(?). Thus, M? ( D?. It follows that

(II−1)? ⊆ M? ( D?, a contradiction. Hence, I is ?
f
-invertible.

(ii)⇒(i) Let I be a nonzero integral ideal of D such that I? = D?. Then
I ⊆ II−1 ⊆ D implies that

(
II−1

)? = D?, that is, I is ?-invertible. By assumption,
it follows that I is ?

f
-invertible, and so I is ?

f
-finite (Proposition 2.6). By Lemma

2.3, we conclude that there exists J ∈ f(D) with J ⊆ I and J? = I? = D?. 2

Let ? be a semistar operation of D. If we denote by ι : D ↪→ D? the embedding
of D in D? and by ?ι the (semi)star operation canonically induced on D? by ?
(defined as in Proposition 1.3), we note that if I ∈ Inv(D, ?), then I? ∈ Inv(D?, ?ι).
As a matter of fact, we have D? =

(
II−1

)? = (I?(D : I)?)? ⊆ (I?(D? : I?))? =
(I?(D? : I?))?ι ⊆ (D?)? = D?.

The next example shows that the converse does not hold (in other words, I?

may be in Inv(D?, ?ι) with I ∈ F (D) \ Inv(D, ?)), even if ? is a semistar operation
which is stable and of finite type.

Example 2.9. Let D be an almost Dedekind domain, that is not a Dedekind domain
(cf. for instance [23, Section 2 and the references]). Then in D there exists a
prime (= maximal) ideal P such that P is not invertible (otherwise, D would be
a Dedekind domain). Then P−1 = D [14, Corollary 3.1.3] since D is a Prüfer
domain. Consider the semistar operation ? := ?{P}. Let ιP : D ↪→ DP be the
canonical embedding, then P ? = PDP is ?ιP

-invertible since DP is a DVR, but(
PP−1

)? = (PD)? = P ? = PDP ( DP = D?, thus P is not ?-invertible.
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Let ι : D ↪→ D? be the canonical embedding. We say that I ∈ F (D) is quasi-
?-invertible if I? ∈ Inv(D?, ?ι) (that is, if (I(D? : I))? = D?). Note that I? ∈
Inv(D?, ?ι) implies that I? ∈ F (D?). We denote by QInv(D, ?) the set of all
quasi-?-invertible D-submodules of K, and when ? = d, we set QInv(D), instead of
QInv(D, d). We have already noticed that Inv(D, ?) ⊆ QInv(D, ?) and the inclusion
can be proper. Moreover, it is obvious that QInv(D) = Inv(D).

We have the following straightforward necessary and sufficient condition for a
D-submodule of K to be quasi-?-invertible.

Lemma 2.10. Let ? be a semistar operation on an integral domain D and I ∈
F (D). Then I is quasi-?-invertible if and only if there exists H ∈ F (D) such that
(IH)? = D?.

Next, we prove an analogue of Lemma 2.1 for quasi-?-invertible ideals.

Lemma 2.11. Let ?, ?1, ?2 be semistar operations on an integral domain D. Then:

(0) D? ∈ QInv(D, ?).
(1) If ?1 ≤ ?2, then QInv(D, ?1) ⊆ QInv(D, ?2). In particular, we have

QInv(D) ⊆ QInv(D, ?̃) ⊆ QInv(D, ?
f
) ⊆ QInv(D, ?).

(2) I, J ∈ QInv(D, ?) if and only if IJ ∈ QInv(D, ?).
(3) If I ∈ QInv(D, ?), then (D? : I) ∈ QInv(D, ?).
(4) If I ∈ QInv(D, ?), then Iv(D?) := (D? : (D? : I)) ∈ QInv(D, ?).

Proof. (0) and (1) are straightforward.
To prove (2), we notice that I, J ∈ QInv(D, ?) if and only if I?, J? ∈ Inv(D?, ?ι),

where ?ι is defined as above. It follows from Lemma 2.1(2) that I, J ∈ QInv(D, ?)
if and only if I?J? ∈ Inv(D?, ?ι). It is easy to see that this happens if and only if
(IJ)? ∈ Inv(D?, ?ι), that is, if and only if IJ ∈ QInv(D, ?).

(3) It is clear.
(4) This is an immediate consequence of Lemma 2.1(4) and the fact that (v(D?))ι

= vD? , where vD? is the v-operation of D?, ι is the canonical embedding of D in
D? and v(D?) is the semistar operation on D defined by Ev(D?) := (D? : (D? : E))
for each E ∈ F (D) (note that, obviously, ? ≤ v(D?)). 2

Corollary 2.12. Let ? be a semistar operation on an integral domain D, let v(D?)
be the semistar operation on D defined in the proof of Lemma 2.11(4), and let I ∈
F (D). If I is quasi-?-invertible, then I is quasi-v(D?)-invertible and I? = Iv(D?).

Proof. Let ι be the canonical embedding of D in D?. As we noted in the proof of
Lemma 2.11(4), (v(D?))ι = vD? . In order to show that I is quasi-v(D?)-invertible,
we prove that I? is vD? -invertible. But ?ι is a (semi)star operation on D? and
I? is ?ι-invertible, then by Lemma 2.1(1), I? is vD? -invertible since ?ι ≤ vD? [24,
Theorem 34.1(4)]. Therefore, I is quasi-v(D?)-invertible and I? =

(
Iv(D?)

)?
=

Iv(D?) since (D? : I) =
(
D? : Iv(D?)

)
(cf. also [51, p. 433] or [11, Lemma 2.1(3)] and

Remark 2.13(b1)). 2
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Remark 2.13. (a) Note that if I is a quasi-?-invertible ideal of D, then every ideal
J of D with I ⊆ J ⊆ I? ∩D is also quasi-?-invertible.

More precisely, let I, J ∈ F (D) (respectively, I, J ∈ F (D)), assume that J ⊆ I,
J? = I? and I is ?-invertible (respectively, quasi-?-invertible), then J is ?-invertible
(respectively, quasi-?-invertible).

Conversely, let I, J ∈ F (D), assume that J ⊆ I, J? = I? and J is quasi-?-
invertible, then I is quasi-?-invertible (but not necessarily ?-invertible, even if J is
?-invertible).

As a matter of fact, if I is ?-invertible, then D? = (I(D : I))? = (J(D : I))? ⊆
(J(D : J))? ⊆ D?. The quasi-?-invertible case is similar. Conversely, if J is quasi-?-
invertible, then D? = (J(D? : J))? = (I(D? : J))?, thus I is quasi-?-invertible and
(D? : J) = (D? : J)? = (D? : I)? = (D? : I) (cf. also (d1)).

Example 2.9 shows the parenthetical part of the statement. Let D, P and ?
be as in Example 2.9. Note that P ? is principal in (the DVR) D? = DP , thus
P ? = PDP = tDP for some nonzero t ∈ PDP . Therefore, if J := tD, then
J? = P ?, i.e., P is ?-finite. We already observed that P is quasi-?-invertible but
not ?-invertible, even if obviously J is (?-)invertible.

(b) Let I, H ′,H ′′, J, L ∈ F (D). The following properties are straightforward:

(b1) (IH ′)? = D? = (IH ′′)? =⇒ H ′? = H ′′? = (D? : I)? = (D? : I).

(b2) I ∈ QInv(D, ?), IJ ⊆ IL =⇒ J? ⊆ L?.

(b3) I ∈ QInv(D, ?), J ⊆ I? =⇒ ∃ L ∈ F (D), (IL)? = J?. (Take L := (D? : I)J .)

(b4) I, J ∈ QInv(D, ?), (IL)? = J? =⇒ L ∈ QInv(D, ?). (Set H := I(D? : J) and
note that (LH)? = D?.)

(b5) I, J ∈ QInv(D, ?) =⇒ (D? : IJ) = (D? : IJ)? = ((D? : I) (D? : J))?
.

(b6) I, J ∈ QInv(D, ?) =⇒ ∃ L ∈ QInv(D, ?), L ⊆ I?, L ⊆ J?. (Take z ∈ K, z 6= 0
such that zI ⊆ D?, zJ ⊆ D?, and set L := zIJ .)

(b7) I, J ∈ QInv(D, ?), I + J ∈ QInv(D, ?) =⇒ Iv(D?) ∩ Jv(D?) ∈ QInv(D, ?).
(Recall that ? ≤ v(D?) and note that:
((D? : I) (D? : J) (I + J))? =

(
((D? : I) I)? (D? : J)+(D? : I) ((D? : J) J)? )?

= ((D? : J) + (D? : I))? =
((

D? : Jv(D?)
)

+
(
D? : Iv(D?)

))?
=⇒

((D? : I) (D? : J) (I + J))v(D?) =
((

D? : Iv(D?)
)

+
(
D? : Jv(D?)

))v(D?)
=⇒

(D? : ((D? : I) (D? : J) (I + J))) =
(
D? :

((
D? : Iv(D?)

)
+

(
D? : Jv(D?)

)))
=(

D? :
(
D? : Iv(D?)

)) ∩ (
D? :

(
D? : Jv(D?)

))
= Iv(D?) ∩ Jv(D?).)

(b8) I, J ∈ QInv(D, ?), Iv(D?) ∩ Jv(D?) ∈ QInv(D, ?) =⇒ I + J ∈ QInv(D, v(D?)).
(Since Iv(D?) ∩ Jv(D?) = (D? : ((D? : I) (D? : J) (I + J))), and hence,(
D? :

(
Iv(D?) ∩ Jv(D?)

))
= ((D? : I) (D? : J) (I + J))v(D?), then apply (b4)

to conclude that I + J ∈ QInv(D, v(D?)).)

(c) A statement analogous to Corollary 2.12 holds for ?-invertibles: Let ? be a
semistar operation on an integral domain D, let v(D?) be the semistar operation
on D defined in the proof of Lemma 2.11(4), and let I ∈ F (D). If I is ?-invertible,
then I is v(D?)-invertible and I? = Iv(D?).
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(d) Mutatis mutandis, the statements in (b) hold for ?-invertibles. More pre-
cisely, let ? be a semistar operation on an integral domain D and let I, H ′,H ′′, J, L ∈
F (D), then:

(d1) I ∈ Inv(D, ?), (IH ′)? = D? = (IH ′′)? =⇒ H ′? = H ′′? =
(
I−1

)?
.

(d2) I ∈ Inv(D, ?), IJ ⊆ IL =⇒ J? ⊆ L?.

(d3) I ∈ Inv(D, ?), J ⊆ I? =⇒ ∃ L ∈ F (D), (IL)? = J?.

(d4) I, J ∈ Inv(D, ?), (IL)? = J? =⇒ L ∈ QInv(D, ?), (D? : L) = (I(D : J))?.
Note that under the present hypotheses, L ∈ Inv(D, ?) if and only if
(D : L)? = (I(D : J))?.

(d5) I, J ∈ Inv(D, ?) =⇒ (D : IJ)? = ((D : I) (D : J))?
.

(d6) I, J ∈ Inv(D, ?) =⇒ ∃ L ∈ Inv(D, ?), L ⊆ I, L ⊆ J.

(d7) I, J ∈ Inv(D, ?), I + J ∈ Inv(D, ?) =⇒ Iv(D?) ∩ Jv(D?) ∈ Inv(D, ?).

(d8) I, J ∈ Inv(D, ?), Iv(D?) ∩ Jv(D?) ∈ Inv(D, ?) =⇒ I + J ∈ Inv(D, v(D?)).

Our next goal is to extend Proposition 2.6 to the case of quasi-?
f
-invertibles.

We need the following:

Lemma 2.14. Let ? be a semistar operation on an integral domain D with quotient
field K, let ι : D ↪→ D? be the embedding of D in D?, let ?ι denote the (semi)star
operation canonically induced on D? by ?, and let I ∈ F (D). Then I is ?-finite if
and only if I? is ?ι-finite.

Proof. If I is ?-finite, then there exists J ∈ f(D) such that I? = J?. It is
clear that (JD?)?ι = I? with JD? ∈ f(D?). Thus, I? is ?ι-finite. Conversely,
let I? be ?ι-finite. Then there exists J0 ∈ f(D?), J0 = (a1, a2, . . . , an)D? with
{a1, a2, . . . , an} ⊆ K, such that J?

0 = J?ι
0 = I?ι = I?. Set J = (a1, a2, . . . , an)D ∈

f(D). Then J? = (a1D + a2D + · · · + anD)? = (a1D
? + a2D

? + · · ·+ anD?)? =
J?

0 = I?, and so I is ?-finite. 2

Proposition 2.15. Let ? be a semistar operation on an integral domain D and let
I ∈ F (D). Then I is quasi-?

f
-invertible if and only if I and (D? : I) are ?

f
-finite

(hence, ?-finite) and I is quasi-?-invertible.

Proof. Let ι : D ↪→ D? be the canonical embedding and let ?ι be the (semi)star
operation on D? canonically induced by ?.

For the “if” part, use the same argument of the proof of the “if” part of Propo-
sition 2.6.

For the “only if” part, since I is quasi-?
f
-invertible, (D? : I) is also quasi-?

f
-

invertible, thus we have that I?
f and (D? : I)?

f = (D? : I) are (?
f
)ι-invertibles.

Then I?
f and (D? : I) are (?

f
)ι-finite (Proposition 2.6) and then I and (D? : I)

are ?
f
-finite by Lemma 2.14. Clearly, I is quasi-?-invertible since ?

f
≤ ? (Lemma

2.11(1)). 2

It is natural to ask under which conditions a quasi-?-invertible fractional ideal is
?-invertible. Let I ∈ F (D) be quasi-?-invertible. Then (I(D? : I))? = D?. Suppose
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that I is also ?-invertible, i.e., (I(D : I))? = D?. Then

(D : I)? = ((D : I) (I(D? : I))?)? = (((D : I)I)? (D? : I))?

= (D? : I)? = (D? : I) = (D? : I?) ⊇ (D : I)?.

Therefore, we have the following (cf. also Remark 2.2(b)):

Proposition 2.16. Let ? be a semistar operation on an integral domain D. Let
I be a quasi-?-invertible fractional ideal of D. Then I is ?-invertible if and only if
(D : I)? = (D? : I) (i.e.,

(
I−1

)? = (I?)−1).

The following corollary is straightforward (in particular, part (2) follows imme-
diately from [13, proof of Remark 1.7]):

Corollary 2.17. Let ? be a semistar operation on an integral domain D, and let
I ∈ F (D).

(1) If ? is a (semi)star operation, then I is quasi-?-invertible if and only if I is
?-invertible.

(2) If ? is stable and I ∈ f(D), then I is quasi-?-invertible if and only if I is
?-invertible.

We notice that if ? is a semistar operation of finite type, ?-invertibility depends
only on the set of quasi-?-maximal ideals of D. Indeed, it is clear that I ∈ F (D)
is ?-invertible if and only if

(
II−1

)? ∩ D is not contained in any quasi-?-maximal
ideal. Then from Lemma 1.2, we deduce immediately the following general result
(cf. [13, Proposition 4.25]):

Proposition 2.18. Let ? be a semistar operation on an integral domain D. Let
I ∈ F (D). Then I is ?

f
-invertible if and only if I is ?̃-invertible.

A classical example due to Heinzer can be used for describing the content of the
previous proposition.

Example 2.19. Let K be a field and X an indeterminate over K. Set D :=
K[[X3, X4, X5]] and M := (X3, X4, X5)D. It is easy to see that D is a one-
dimensional Noetherian local integral domain with maximal ideal M . Let ? := v,
note that in this case, v = ? = ?

f
= t and M(v) = {M} since M = (D : K[[X]]).

Therefore, w = ṽ = d. In this situation, Inv(D, v) = Inv(D, t) = Inv(D, w) =
Inv(D) = {zD | z ∈ K, z 6= 0}. But v = t 6= w = d because in general (I ∩ J)t is
different from It ∩ J t in D since D is not a Gorenstein domain (cf. [2, Theorem 5,
Corollary 5.1] and [35, Theorem 222]).

A result “analogous” to Proposition 2.18 does not hold, in general, for quasi-
semistar-invertibility, as we show in the following:

Example 2.20. Let D be a pseudo-valuation domain with maximal ideal M such
that V := M−1 is a DVR (for instance, take two fields k ( K and let V := K[[X]],
M := XK[[X]] and D := k + M). Consider the semistar operation of finite type
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? := ?{V } defined by E?{V } := EV for each E ∈ F (D). It is clear that M is the
only quasi-?-maximal ideal of D. Thus, ?̃ = ?{M} = d, the identity (semi)star
operation of D. We have (M(V : M))? = (M(V : M))V = V since V is a DVR.
Hence, M is quasi-?-invertible. On the other side, M is not invertible (i.e., not
quasi-?̃-invertible) since MM−1 = MV = M .

Under the assumption D? = D?̃, we have the following extension of Proposition
2.18 to the case of quasi-semistar-invertibility:

Proposition 2.21. Let ? be a semistar operation on an integral domain D. Sup-
pose D? = D?̃. Let I ∈ F (D). Then I is quasi-?

f
-invertible if and only if I is

quasi-?̃-invertible.

Proof. If I is quasi-?̃-invertible, then there exists J ∈ F (D) with (IJ)?̃ = D?̃. This
implies (IJ)?

f = D?
f since ?̃ ≤ ?

f
. Conversely, suppose there exists J ∈ F (D) such

that (IJ)?
f = D?

f . Then IJ ⊆ D?
f = D? = D?̃. Thus, (IJ)?̃ ⊆ D?̃. If (IJ)?̃ ( D?̃,

then (IJ)?̃ ∩D ( D is a quasi-?̃-ideal of D. It follows that (IJ)?̃ ∩D is contained
in a quasi-?̃-maximal ideal P of D. From Lemma 1.2, P is also a quasi-?

f
-maximal

ideal. Then (IJ)?
f ∩D ⊆ ((IJ)?̃ ∩D)?

f ⊆ P ?
f ( D?

f , a contradiction. Then I is
quasi-?̃-invertible. 2

Remark 2.22. (a) If ? is a semistar operation on an integral domain D, we already
observed (Remark 2.2(a)) that Inv(D, ?) is not a group with respect to the standard
multiplication of fractional ideals. In the set of the ?-invertible ?-fractional ideals,
i.e., in the set Inv?(D) := {I ∈ Inv(D, ?) | I = I?}, we can introduce a semistar
composition “×” in the following way: I × J := (IJ)?. Note that (Inv?(D),×) is
not a group in general because, for instance, it does not possess an identity element
(e.g., when D? ∈ F (D) \ F (D)).

On the other hand, QInv?(D) := {I ∈ QInv(D, ?) | I = I?} with the semistar
composition “×” introduced above is always a group, having as identity D? and
unique inverse of I ∈ QInv?(D) the D-module (D? : I) ∈ F (D), which belongs to
QInv?(D). This fact provides also one of the motivations for considering QInv(D, ?)
and QInv?(D) (and not only Inv(D, ?) and Inv?(D), as in the “classical” star case).

It is not difficult to prove: Let ? be a semistar operation on an integral domain
D, then:

(Inv?(D),×) is a group ⇐⇒ (D : D?) 6= (0).

As a matter of fact, (⇒) holds because D? ∈ Inv?(D) ⊆ F (D) and so (D : D?)
6= (0). (⇐) holds because (D : D?) 6= (0) implies that D? ∈ Inv?(D), and for each
I ∈ Inv?(D), we have (D? : I) ∈ F (D), thus (D : I)? = (D? : I) (Remark 2.13(d1))
and so the inverse of each element I ∈ Inv?(D) exists and is uniquely determined
in Inv?(D).

Note that, even if (Inv?(D),×) is a group, Inv?(D) could be a proper subset
of QInv?(D). For this purpose, take D, V, M as in Example 2.20, in this case,
D? = V and (D : V ) = M 6= (0), hence (Inv?(D),×) is a group, but M ∈
QInv?(D) \ Inv?(D).

(b) Note that if ? is a semistar operation on an integral domain D, the group
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(QInv?(D),×) can be identified with a more classic group of star-invertible star-
ideals. As a matter of fact, it is easy to see that

(QInv?(D),×) = (Inv?ι(D?),×′),
where ι : D → D? is the canonical embedding, ?ι is the (semi)star operation on D?

canonically associated to ? (Proposition 1.3), and the (semi)star composition “×′”
in Inv?ι(D?) is defined by E ×′ F := (EF )?ι .

(c) Let ?1, ?2 be two semistar operations on an integral domain D. If ?1 ≤ ?2,
then Inv(D, ?1) ⊆ Inv(D, ?2) and QInv(D, ?1) ⊆ QInv(D, ?2). Note that it is not
true in general that Inv?1(D) ⊆ Inv?2(D) or QInv?1(D) ⊆ QInv?2(D) because
there is no reason for a ?1-ideal (or module) to be a ?2-ideal (or module). For
instance, let T be a proper overring of an integral domain D, let ?1 := d be the
identity (semi)star operation on D and let ?1 := ?{T} be the semistar operation
on D defined by E?{T} := ET for each E ∈ F (D). If I is a nonzero principal
ideal of D, then obviously I ∈ Inv?1(D) (= Inv(D) = QInv?1(D)) but I does not
belong to QInv?2(D) (and in particular, it does not belong to Inv?2(D)) because
I?2 = IT 6= I.

Note that, even if Inv(D, ?1) = Inv(D, ?2) for some pair of semistar operations
?1 ≤ ?2, it is not true in general that Inv?1(D) ⊆ Inv?2(D). Take D, V,M as
in Example 2.20. Let ?1 := d be the identity (semi)star operation on D and let
?2 := ?{V }. In this case, Inv(D, ?1) = Inv(D, ?2) because ?1 = ?̃2 and ?2 =
(?2)f (Proposition 2.18). But Inv?2(D) ( Inv?1(D) = Inv(D) because Inv?2(D) ⊆
Inv?1(D) = Inv(D) since each ?2-ideal is obviously a ?1-ideal, and moreover, the
proper inclusion holds because, as above, a nonzero principal ideal of D belongs to
Inv(D) but not to Inv?2(D).

On the other hand, if ?1 ≤ ?2 are two star operations on D, then it is known
that Inv?1(D) ⊆ Inv?2(D) essentially because in this case, I ∈ Inv?1(D) implies
that I = I?1 = Iv and so I = I?2 [6, Proposition 3.3].

(d) Let ? be a semistar operation on an integral domain D, let v(D?) be the
semistar operation on D defined in Lemma 2.11(4) and let I, J ∈ F (D) (respectively,
I, J ∈ F (D)). Assume that I is a ?-invertible (respectively, quasi-?-invertible) ?-
ideal of D, then:

(IJv)? = (I : (D : J))
(
respectively,

(
IJv(D?)

)?
= (I : (D? : J))

)
.

Recall that since I = I?, we have (I : (D : J)) = (I : (D : J))?. It is obvious
that IJv ⊆ (I : (D : Jv)) = (I : (D : J)) and thus (IJv)? ⊆ (I : (D : J)).
Conversely, if z ∈ (I : (D : J)), then z(D : J) ⊆ I and so z(D : I) ⊆ Jv. Therefore,
z ∈ zD? = z((D : I)I)? ⊆ (IJv)?.

For the quasi-?-invertible case, if I = I?, then (I : (D? : J)) = (I : (D? : J))?

and I = ID?. It is obvious that IJv(D?) ⊆ (I : (D? : Jv(D?))) = (I : (D? : J)) and
thus

(
IJv(D?)

)? ⊆ (I : (D? : J)). Conversely, if z ∈ (I : (D? : J)), then z(D? : J) ⊆
I and so z(D? : I) ⊆ Jv(D?). Therefore, z ∈ zD? = z((D? : I)I)? ⊆ (

IJv(D?)
)?

.

In the next theorem, we investigate the behaviour of a ?-invertible ideal (when ?
is a semistar operation) with respect to the localizations at quasi-?-maximal ideals
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and in the passage to semistar Nagata ring. More precisely, in the spirit of Kaplan-
sky’s theorem on (d-)invertibility [35, Theorem 62], we extend a characterization
of t-invertibility proved in [36, Corollary 3.2] and two Kang’s results proved in the
star setting [34, Theorem 2.4 and Proposition 2.6].

Theorem 2.23. Let ? be a semistar operation on an integral domain D. Assume
that ? = ?

f
. Let I ∈ f(D). Then the following are equivalent :

(i) I is ?-invertible.
(ii) IDQ ∈ Inv(DQ) for each Q ∈M(?) (and then IDQ is principal in DQ).
(iii) INa(D, ?) ∈ Inv(Na(D, ?)).

Proof. (i)⇒(ii). If (II−1)? = D?, then II−1 6⊆ Q for each Q ∈ M(?). Since
I ∈ f(D), by flatness we have:

I−1DQ = (D : I)DQ = (DQ : IDQ) = (IDQ)−1.

Therefore, for each Q ∈M(?), since II−1 6⊆ Q, we have:

DQ = (II−1)DQ = IDQI−1DQ = IDQ(IDQ)−1.

(ii)⇒(iii). From the assumption and the proof of (i)⇒(ii), we have II−1 6⊆ Q for
each Q ∈ M(?). Since I ∈ f(D), by the flatness of the canonical homomorphism
D → D[X]N(?) = Na(D, ?), we have:

(I[X]N(?))−1 = (D[X]N(?) : I[X]N(?)) = (D : I)[X]N(?) = I−1[X]N(?).

Since II−1 6⊆ Q, (II−1)[X]N(?) 6⊆ Q[X]N(?) for each Q ∈ M(?). From [19, Propo-
sition 3.1(3)], we deduce

D[X]N(?) = (II−1)[X]N(?) = I[X]N(?)(I[X]N(?))−1,

where INa(D, ?) = I[X]N(?).
(iii)⇒(i). From the assumption and the previous considerations, we have:

D[X]N(?) = I[X]N(?)(I[X]N(?))−1 = (II−1)[X]N(?),

and thus (II−1)[X]N(?) 6⊆ Q[X]N(?) for each Q ∈ M(?). This fact implies that
II−1 6⊆ Q for each Q ∈ M(?). From [19, Lemma 2.4 (1)], we deduce immediately
that (II−1)? = D?. 2

Corollary 2.24. Let ? be a stable semistar operation of finite type on D, and let
I ∈ f(D). Then the conditions (i)–(iii) in Theorem 2.23 are equivalent to:
(iv) I is quasi-?-invertible.

Proof. Apply Corollary 2.17. 2

Remark 2.25. It is known [34, Proposition 2.6] (cf. also [5, Section 1] and [11,
Section 1]) that, if ? is a star operation of finite type on an integral domain D,
then an ideal I of D is ?-invertible if and only if it is ?-finite and locally principal
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(when localized at the ?-maximal ideals). As a matter of fact, by Proposition 2.6,
we have that if I is ?-invertible, then I is ?-finite. Moreover, (II−1)? = D implies
II−1 6⊆ Q for each ?-maximal ideal Q of D. It follows that IDQI−1DQ = DQ.
Thus, IDQ is invertible (hence, principal) in DQ. Conversely, assume that I? = J?

with J ∈ f(D), J ⊆ I. It is clear that I−1 = J−1, since Iv = (I?)v = (J?)v = Jv

and ? ≤ v [24, Theorem 34.1(4)]. Suppose I is not ?-invertible, i.e., (II−1)? ( D.
Then there exists a ?-maximal ideal Q of D such that II−1 ⊆ Q. It follows that
QDQ ⊇ IDQI−1DQ = IDQJ−1DQ = IDQ(JDQ)−1 ⊇ IDQ(IDQ)−1, which is a
contradiction since IDQ is principal.

We will see in a moment that the “if” part of a similar result for semistar
operations does not hold, even if I = I?. More precisely, we can extend partially
[21, Proposition 1.1] in the following way:

Let I ∈ F (D) and let ? be a semistar operation on D. The following properties
are equivalent :

(i) I is ?
f
-invertible.

(ii) (Q : I) ( (D : I) for each Q ∈M(?
f
).

(iii) (Q : I) ( (D : I) for each Q ∈M(?
f
) such that Q ⊇ I(D : I).

Moreover, each of the previous properties implies the following :
(iv) I is ?

f
-finite and IDQ ∈ Inv(DQ) for each Q ∈ M(?

f
) (and so IDQ is

principal in DQ).

As a matter of fact, (i)⇒(ii) because D? = (I(D : I))? and if (Q : I) = (D : I)
for some Q ∈ M(?

f
), then I(D : I) = I(Q : I) ⊆ Q, thus (I(D : I))?

f ⊆ Q?
f ( D?,

hence we reach a contradiction. (ii)⇒(iii) is trivial. For (iii)⇒(i), if I(D : I) ⊆ Q
for some Q ∈ M(?

f
), thus (D : I) ⊆ (Q : I) and hence (D : I) = (Q : I), which

contradicts (iii).
Finally, (ii)⇒(iv) because of Proposition 2.6 and for zQ ∈ (D : I) \ (Q : I),

we have zQI ⊂ D \ Q, and so zQIDQ = DQ, i.e., IDQ = (zQ)−1DQ for each
Q ∈M(?

f
).

But note that, in the semistar setting, (iv)6⇒(i), even in the case that I is a
?

f
-finite ?

f
-ideal, as the following example will show. However, we can re-establish

a characterization in the quasi-?-invertibility setting in the following way: If ? is
a semistar operation of finite type on an integral domain D and I ∈ F (D), then
I ∈ QInv(D, ?) if and only if I? is ?-finite and I?D?

M is principal for each ?ι-
maximal ideal M of D?.

Example 2.26. Let D be a valuation domain, P a nonzero non-maximal non-
invertible prime ideal of D such that DP is a discrete valuation domain. (For
instance, if K is a field and X, Y are two indeterminates over K, let D :=
K + XK[X](X) + Y K(X)[Y ](Y ) and P := Y K(X)[Y ](Y ); in this case, D is a two-
dimensional valuation domain, DP = K(X)[Y ](Y ) and P = PDP = Y DP ) Y D.)
Set ? := ?{P}. In this situation, ? = ?

f
and M(?) = {P}, thus ? = ?̃, i.e., ? is

a stable semistar operation of finite type on D. Note that P is in fact a ?-ideal
of D since P ? = PDP = P . Moreover, P ? = PDP = tDP = (tD)? for some
nonzero t ∈ DP , i.e., P is a nonzero principal ideal in D? = DP since DP is a
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DVR by assumption. Thus, P is a ?-ideal, ?-finite and locally principal, when
localized at the quasi-?-maximal ideal(s) of D. But P is not ?-invertible since
in this situation, (D : P ) = (P : P ) = DP [14, Proposition 3.1.5], and hence,
(P (D : P ))? = (P (P : P ))? = (PDP )? = P ? = P . Note also that in this situation,
P is quasi-?-invertible (because (P (D? : P ))? = (tDP t−1DP )? = DP = D?) and
D? = DP = (PDP : PDP ) = (P : P )DP = (P : P )?.

The next two results generalize [34, Theorems 2.12 and 2.14] to the semistar
setting.

Corollary 2.27. Let ? be a semistar operation on an integral domain D. Assume
that ? = ?

f
. Let h ∈ D[X], h 6= 0. Then:

c(h) ∈ Inv(D, ?) ⇐⇒ hNa(D, ?) = c(h)Na(D, ?).

In particular, c(h) ∈ Inv(D, ?) if and only if c(h) ∈ QInv(D, ?).

Proof. The proof of the first part of the statement is based on the following result
by D.D. Anderson [1, Theorem 1]: If R is a ring and h ∈ R[X], h 6= 0, then
hR(X) ⊆ c(h)R(X), and moreover, the following are equivalent:

(1) hR(X) = c(h)R(X).
(2) c(h) is locally principal (in R).
(3) c(h)R(X) is principal (in R(X)).

(⇒) By (i)⇒(ii) in Theorem 2.23, we have that c(h)DQ is principal for each
Q ∈M(?). Hence,

c(h)DQ[X]N(?) = c(h)(D[X]N(?))QD[X]N(?)
= c(h)DQ(X)

is principal for each Q ∈M(?). By applying Anderson’s result to the local ring R =
DQ, we deduce that hDQ(X) = c(h)DQ(X) for each Q ∈ M(?). The conclusion
follows from (2) and (3) in Proposition 1.4.

(⇐) If hNa(D, ?) = c(h)Na(D, ?), then by localization we obtain hDQ(X) =
c(h)DQ(X) for each Q ∈ M(?) (Proposition 1.4 and [24, Corollary 5.3]). By
Anderson’s result, we deduce that c(h)DQ is principal, i.e., c(h)DQ ∈ Inv(DQ) for
each Q ∈M(?). The conclusion follows from (ii)⇒(i) in Theorem 2.23.

The last part of the statement follows from the fact that Na(D, ?) = Na(D, ?̃)
[19, Corollary 3.5(3)] and from Corollary 2.17 and Proposition 2.18, or directly from
Corollary 2.24. 2

Proposition 2.28. Let ? be a semistar operation on an integral domain D. If H
is an invertible ideal of Na(D, ?), then H is principal in Na(D, ?).

Proof. We can assume that H ∈ Inv(Na(D, ?)) and H ⊆ Na(D, ?), then in par-
ticular, H = (h1, h2, . . . , hn)Na(D, ?) with hi ∈ D[X], 1 ≤ i ≤ n. For each
Q ∈ M(?

f
), by localization, we obtain that HDQ(X) = (h1, h2, . . . , hn)DQ(X) is

a nonzero principal ideal (Theorem 2.23 (iii)⇒(ii)). By a standard argument, if
di := deg(hi) for 1 ≤ i ≤ n, and if

h := h1 + h2X
d1+1 + h3X

d1+d2+2 + · · ·+ hnXd1+d2+···+dn−1+n−1 ∈ D[X],
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then it is not difficult to see HDQ(X) = hDQ(X) for each Q ∈ M(?
f
). From

Proposition 1.4(3), we deduce that HNa(D, ?) = hNa(D, ?). 2
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