Dipartimento di Matematica

Roma TRE




AL310 - Istituzioni di Algebra Superiore
ex TE1 - Teoria delle Equazioni e Teoria di Galois


a.a. 2010/2011 -
I Semestre




AVVISI

Votazione 1° Esonero
            Votazione 2° Esonero

Votazione Appello A


ATTENZIONE!  l'appello del 14 Settembre è stato spostato al 16 Settembre, ore 10

Date degli appelli:
18 Gennaio 2011 9:30       2 Febbraio 2011 9:30       6 Giugno 2011 9:30      16 Settembre 2011 10:00


Crediti: 7

Docente:
Stefania Gabelli                                                                                  Orario di ricevimento primo semestre: Giovedì, ore 14,30-16
Esercitatore: Antonio Cigliola                             
                                       Orario di ricevimento primo semestre: su appuntamento





Orario delle lezioni:  Lunedì e Giovedì, ore 11-13
                                                   Diario delle Lezioni
   
Orario delle esercitazioni: 
   Martedì, ore 11-13                                          Diario delle Esercitazioni e Tutorato
Orario del tutorato:                Martedì, ore 14-16



Informazioni generali

Questo è un corso di base di cultura generale.

Programma di massima:
Elementi di Teoria dei Campi. Gruppi di Galois e Ampliamenti di Galois. La Corrispondenza di Galois. Alcune applicazioni della Corrispondenza di Galois: Costruzioni con riga e compasso, Risolubilità delle equazioni polinomiali.  Programma definitivo (disponibile a fine corso)

Per seguire il corso è indispensabile possedere una buona padronanza dei seguenti argomenti:


Dai corsi di  AL110 (ex AL1)
e AL210 (ex AL2):
Gruppi di permutazioni: cicli e teorema di decomposizione, trasposizioni, parità di una permutazione. Gruppi alterni.
Gruppi finiti di ordine basso e loro sottogruppi. Azioni di gruppi. Il campo dei numeri complessi. Numeri algebrici e trascendenti. Radici complesse dell'unità. Anelli di polinomi a coefficienti in un campo: algoritmo della divisione, massimo comune divisore, fattorizzazione in elementi irriducibili. Criteri di irriducibilità per un polinomio a coefficienti razionali. Ideali e quozienti di anelli di polinomi. Anelli di polinomi su domini a fattorizzazione unica. Il Lemma di Gauss.

Dal corso di  GE110 (ex GE1)
:
Spazi vettoriali. Basi. Matrici e sistemi di equazioni lineari. Il teorema di Rouchè-Capelli. Applicazioni lineari e matrici associate.

Testo consigliato:

Altri testi utili:



Esoneri ed Esami

Modalità di esame: L'esame finale consiste di una prova scritta e di un colloquio orale. Sono previste due prove scritte di valutazione intermedia (esoneri): gli studenti che abbiano conseguito la sufficienza in entrambe queste prove sono esonerati dal sostenere la prova di esame scritta purché accedano alla prova orale negli appelli della prima sessione utile (appelli A e B).

Per sostenere l'esame è obbligatorio prenotarsi presso il Portale di Ateneo; tale prenotazione è possibile fino a 5 giorni prima della data di inizio appello.

Calendario degli Esami


 Esoneri


  Testo Soluzioni
I  Esonero pdf





II  Esonero pdf





Recupero I Esonero






 

Esami
 
  Testo Soluzioni
Appello A pdf





Appello B pdf





Appello X pdf





Appello C pdf