Università degli Studi Roma Tre Anno Accademico 2006/2007 AL2 - Algebra 2

Esercitazione 4

Giovedì 30 Novembre 2006

- 1. Sia $(A, +, \cdot)$ un anello arbitrario. Dimostrare che:
 - (a) 0a = 0 per ogni $a \in A$.
 - (b) -a = (-1)a per ogni $a \in A$ (A unitario).
 - (c) (-a)b = -(ab) per ogni $a, b \in A$.
 - (a) Per ogni $a \in A$, $0a = (0+0)a = 0a + 0a \Rightarrow 0a = 0$.
 - (b) Per ogni $a \in A$, $(-1)a + a = (-1)a + 1a = (-1+1)a = 0a = 0 \Rightarrow (-1)a = -a$
 - (c) Per ogni $a, b \in A, (-a)b + ab = (-a+a)b = 0b = 0 \Rightarrow (-a)b = -(ab).$
- 2. Sia $\langle \sqrt[3]{2} \rangle \subseteq \mathbb{C}$ il più piccolo sottoanello di \mathbb{C} che contiene $\sqrt[3]{2}$. Darne una descrizione esplicita.

 $\mathbb{C} \text{ è un anello commutativo unitario. Per definizione di sottoanello di anello unitario, } \langle \sqrt[3]{2} \rangle \text{ contiene } 1 \text{ e quindi tutto } \mathbb{Z}. \text{ Perciò } \mathbb{Z}[\sqrt[3]{2}] := \\ \langle \mathbb{Z} \cup \{\sqrt[3]{2}\} \rangle = \langle \sqrt[3]{2} \rangle. \text{ Sappiamo inoltre che, essendo } \mathbb{C} \text{ commutativo e unitario, } \mathbb{Z}[\sqrt[3]{2}] = \left\{ \sum_{i=0}^r a_i (\sqrt[3]{2})^i \text{ con } a_i \in \mathbb{Z} \text{ per ogni } i = 0, \dots, r \text{ e } r \geq 0 \right\} \\ = \left\{ a_0 + a_1 \sqrt[3]{2} + a_2 \sqrt[3]{2}^2, \ a_0, a_1, a_2 \in \mathbb{Z} \right\}.$

- 3. Si consideri $R := \mathbb{Q}[\sqrt{2} + \sqrt{3}].$
 - (a) Dimostrare che $\sqrt{2} + \sqrt{3} \in U(R)$.
 - (b) Dimostrare che $R = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$.
 - (a) Sia $\alpha := \sqrt{2} + \sqrt{3}$. $\alpha = \sqrt{2} + \sqrt{3} \Rightarrow \alpha^2 = 2 + 3 2\sqrt{6} \Rightarrow (\alpha^2 5)^2 = 24$ $\Rightarrow \alpha^4 - 10\alpha^2 + 1 = 0 \Rightarrow 1 = \alpha^2(10 - \alpha^2) \Rightarrow \alpha^{-1} = \alpha(10 - \alpha^2) \in \mathbb{Q}[\alpha]$.
 - (b) \subseteq è ovvia. Dimostriamo ora \supseteq , cioé dimostriamo che $\sqrt{2}, \sqrt{3} \in R$: $1 = (\sqrt{3} \sqrt{2})(\sqrt{3} + \sqrt{2}) \Rightarrow 1/(\sqrt{3} + \sqrt{2}) = \sqrt{3} \sqrt{2}$. Quindi, per il punto precedente, $\sqrt{3} \sqrt{2} \in R$. Ma anche $\sqrt{3} + \sqrt{2} \in R$, quindi $\sqrt{3} \sqrt{2} + \sqrt{3} + \sqrt{2} = 2\sqrt{3} \in R$, cioé $\sqrt{3} \in R$. Analogamente anche $\sqrt{2} \in R$ e l'asserto è dimostrato.
- 4. Trovare tutti gli endomorfismi (sott.: unitari) dell'anello \mathbb{R} .

Sia $\phi : \mathbb{R} \to \mathbb{R}$ un omomorfismo, $\phi(1) = 1$. Chiaramente, allora, $\phi(n) = n$ per ogni $n \in \mathbb{Z}$ e quindi $\phi(q) = q$ per ogni $q \in \mathbb{Q}$.

Ora osserviamo che se a>0 allora $\phi(a)>0$. Infatti $a>0 \Rightarrow a=(\sqrt{a})^2 \Rightarrow \phi(a)=\phi(\sqrt{a})^2>0$.

Sia ora $x \in \mathbb{R} \setminus \mathbb{Q}$. Supponiamo per assurdo che $\phi(x) > x$. Allora $\exists q \in \mathbb{Q}$ t.c. $x < q \le \phi(x)$. Siccome q - x > 0 segue che $\phi(q) - \phi(x) > 0$. Assurdo $(\phi(q) = q)$. Perciò $\phi(x) \le x$. Analogamente si esclude il caso $\phi(x) < x$. Perciò $\phi(x) = x$. Quindi ϕ è l'identità.

5. Si consideri

$$R := M_2(\mathbb{Q}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{Q} \right\}$$

e se ne determinino tutti gli ideali bilateri.

Gli unici ideali bilateri di R sono $\{0\}$ e R. Infatti: sia I ideale bilatero $\neq \{0\}$. Allora $\exists g \in R$ con $g \neq 0$, $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{Q}$. Per semplicità supponiamo $a \neq 0$. Allora $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1/a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Quindi $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in R$. Analogamente $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1/a & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, quindi anche $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in I$. Ma allora $\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in R$, e perciò I = R.

- 6. Sia $f(X) \in \mathbb{D}[X]$, con \mathbb{D} dominio di integrità. Nei casi seguenti dire se le affermazioni sono vere o false:
 - (a) $\mathbb{D} = \mathbb{C}$, $f(X) = 3X^5 + 7X + 1$. f(X) è irriducibile.
 - (b) $\mathbb{D} = \mathbb{R}$, $f(X) = X^4 + X + 1$. f(X) è irriducibile.
 - (c) Tutti i polinomi di primo grado in $\mathbb{D}[X]$ sono irriducibili.
 - (d) \mathbb{D} campo. Tutti i polinomi di primo grado in $\mathbb{D}[X]$ sono irriducibili.
 - (e) Se f(X), deg $(f) \ge 2$, ha una radice in \mathbb{D} allora f(X) è riducibile.
 - (f) Se f(X) è riducibile allora f(X) ha una radice in \mathbb{D} .
 - (g) $\mathbb{D} = \mathbb{Q}$, $f(X) = X^{101} + 2$. f è irriducibile.
 - (h) $\mathbb{D} = \mathbb{Q}$, $f(X) = X^3 + 7X + 3$. f è riducibile.
 - (i) $\mathbb{D} = \mathbb{Z}$, $f(X) = X^5 + X + 2$. f è riducibile.
 - (a) Falsa. Tutti e soli i polinomi irriducibili su \mathbb{C} sono i polinomi di primo grado. Quindi f è riducibile.
 - (b) Falsa. Tutti e soli i polinomi irriducibili su \mathbb{R} sono i polinomi di primo grado e i polinomi di secondo grado senza radici reali.
 - (c) Falsa. Ad esempio se $\mathbb{D} = \mathbb{Z}$ e f(X) = 2X allora f è riducibile in \mathbb{Z} in quanto $f = 2 \cdot X$.
 - (d) Vera. Sia f(X) un polinomio di primo grado. Supponiamo f(X) = g(X)h(X). Allora $\deg(f(X)) = \deg(g(X)) + \deg(h(X))$, quindi o g(X) o h(X) ha grado 0, cioé è una costante non nulla e quindi invertibile per ipotesi.

- (e) Vera. Sia α una radice di f. Per il teorema di divisione con resto si ha: $f(X) = (X \alpha)q(X) + r(X)$ con $q(X), r(X) \in \mathbb{D}[X]$, $\deg(r(X)) < \deg((X \alpha)) = 1$. Quindi r(X) ha grado 0, i.e. $r(X) = c \in \mathbb{D}$. Inoltre $0 = f(\alpha) = r(\alpha)$, cioé c = 0. Perciò $f(X) = (X \alpha)q(X)$ con q(X) di grado almeno uno (e perciò non invertibile). Quindi f(X) è riducibile.
- (f) Falsa. $X^4 + 1$, ad esempio, è riducibile in \mathbb{R} ma non ha radici.
- (g) Vera. Basta applicare il criterio di Eisenstein al polinomio a coeff. interi f(X).
- (h) Falsa. f, se fosse riducibile, si dovrebbe poter scrivere come prodotto di un polinomio di primo grado ed uno di secondo grado. Perciò f dovrebbe avere una radice in \mathbb{Q} . Le radici razionali vanno ricercate tra i divisori di 3: $\pm 1, \pm 3$. Con semplici conti si vede che f non ha radici e che quindi è irriducibile.
- (i) Vera. f(-1) = 0.
- 7. Si consideri l'anello $C:=\mathbb{R}[X]/I$, dove I è l'ideale (X^2+1) . Trovare l'inverso di X+I in C.

$$X^2 + 1 + X(-X) = 1 \Rightarrow (X^2 + 1 + I) + (X + I)(-X + I) = 1 + I$$
. Siccome $X^2 + 1 + I = 0 + I$, in C , si ha che $-X + I$ è l'inverso di $X + I$ in C .

- 8. Descrivere i nuclei dei seguenti omomorfismi di anelli e dire se sono ideali primi o massimali:
 - (a) $\phi : \mathbb{R}[X,Y] \to \mathbb{R}$ t.c. $\phi(f(X,Y)) = f(0,0)$.
 - (b) $\phi : \mathbb{R}[X] \to \mathbb{C}$ t.c. $\phi(f(X)) = f(2+i)$.
 - (a) Chiaramente $(X,Y) \subseteq \ker \phi$. Sia ora $f \in \mathbb{R}[X,Y]$ t.c. $f \in \ker \phi$. $f = \sum_{i=0,j=0}^{i=r,j=s} a_{i,j} X^i Y^j$. Dato che f(0,0) = 0 allora $a_{0,0} = 0$ e perciò $f \in (X,Y)$. Quindi $\ker \phi = (X,Y)$. Dato che ϕ è suriettiva e \mathbb{R} un campo, $\ker \phi$ è un ideale massimale (e primo).
 - (b) I polinomi reali che hanno come radice 2+i devono necessariamente avere come radice anche 2-i. Quindi ker $\phi=((X-(2+i))(X-(2-i)))=(X^2-4X+5)$. X^2-4X+5 è irriducibile e $\mathbb{R}[X]$ è un PID: quindi (X^2-4X+5) è un ideale massimale (e primo).
- 9. Dire se i seguenti ideali I sono primi o no nell'anello R:
 - (a) $R := \mathbb{Z}, I := (17).$
 - (b) $R := \mathbb{Z}[X], I := (14, X).$
 - (c) $R := \mathbb{Z}_3[X], I := (X^2 + X + 1).$
 - (a) Ogni elemento primo genera un ideale primo. Quindi, essendo 17 primo in $\mathbb{Z},\,I$ è un ideale primo.
 - (b) $14 \in I$ ma né 2 né 7 sono in I. Quindi I non è primo.

- (c) $X^2+X+1=(X-1)^2$ in R, quindi X^2+X+1 è riducibile in R e perciò l'ideale da esso generato non è primo (elemento primo \Rightarrow elemento irriducibile).
- 10. Sia D dominio di integrità. Provare che D[X] è un PID se, e solo se, D è un campo.

Il 'se' è già stato dimostrato a lezione: D campo $\Rightarrow D[X]$ è un ED e quindi un PID

Per il 'solo se' ragioniamo in questo modo: X è un elemento irriducibile di D[X]. Ma allora (X) è un ideale massimale nell'insieme degli ideali principali di D[X]. Ma D[X] è PID quindi (X) è un ideale massimale. Perciò $D\cong D[X]/(X)$ è un campo.