Università degli studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM1 - A.A. 2006/2007 Tutore: Dott. Nazareno Maroni

Soluzioni del tutorato n.10 del 21/12/2006

Esercizio 1. Dire se convergono le seguenti serie:

- 1) $\sum_{n=0}^{+\infty} \frac{\cos(\pi n)}{n+2} = \sum_{n=0}^{+\infty} (-1)^n \frac{1}{n+2}$ e quindi converge per Leibniz.
- 2) $\frac{1}{n}\sin\left(\frac{1}{n+1}\right) \leqslant \frac{1}{n^2} = b_n$ e $\sum b_n$ è una serie armonica generalizzata convergente e quindi per il confronto converge anche $\sum_{n=0}^{+\infty} \frac{\cos(\pi n)}{n+2}$.
- 3) Notare che $\ln\left(1+\frac{1}{n^3}\right) \leqslant \frac{1}{n^3}$, quindi $\sum_{n=1}^{+\infty} \ln\left(1+\frac{1}{n^3}\right)$ converge.
- 4) Applicate il criterio del rapporto, si ha che $\sum_{n=1}^{+\infty} \frac{1}{\binom{3n}{n}}$ converge.
- 5) Si ha che $n! < n^n$ e quindi $\frac{1}{\sqrt[n]{n!}} > \frac{1}{\sqrt[n]{n^n}} = \frac{1}{n}$ e quindi $\sum_{n=1}^{+\infty} (n!)^{-\frac{1}{n}}$ diverge.
- 6) $n + e^n < 2e^n$ e quindi $a_n = \frac{n+e^n}{n!} < \frac{2e^n}{n!} = b_n$ e $\sum b_n$ converge (lo si può vedere applicando il criterio del rapporto) e quindi converge anche $\sum a_n$.

Esercizio 2. Dire per quali $x \in \mathbb{R}$ convergono le seguenti serie:

- 1) Valutiamo la convergenza assoluta della serie. $e^{-n}|\sin(n!x)| \leqslant e^{-n}$, $\lim_{n \to +\infty} n^2 e^{-n} = 0$, quindi $n^2 e^{-n} \leqslant 1$ per n grande, ovvero $e^{-n} \leqslant \frac{1}{n^2}$, quindi $\sum_{n=0}^{+\infty} e^{-n} \sin(n!x)$ converge assolutamente e quindi converge $\forall x \in \mathbb{R}$.
- 2) $\sum_{n=0}^{+\infty} x^{x^n}$ non converge mai.
- 3) $x \neq 0$, $\begin{cases} x > 0 & \text{non converge} \\ x < 0 & \text{converge} \end{cases}$
- 4) $x \neq -1$, $\begin{cases} x > 1 & \text{converge} \\ x < -1 & \text{converge} \\ -1 < x \leqslant 1 & \text{non converge} \end{cases}$

Esercizio 3. Trovare estremo superiore ed estremo inferiore dei seguenti insiemi, dire se sono, rispettivamente, massimo e minimo:

- Sappiamo che $-1 \leqslant \sin x \leqslant 1$; consideriamo $x = \frac{\pi}{4}$, se n = 2 abbiamo che $\sin(nx) = 1$, se $n = 6 \sin(nx) = -1$, quindi $\sup A = \max A = 1$ e inf $A = \min A = -1$.
- $\sup B = 1$, $\inf B = -1$.
- Sappiamo che per $|x| \le 1$, $x \ne 0$ la serie non converge e quindi sup $C = +\infty$. Per |x| > 1 la serie converge e converge al valore $y = \frac{|x|}{|x|-1}$, quindi non dobbiamo far altro che calcolare l'estremo inferiore dell'insieme $Y = \left\{y|y = \frac{|x|}{|x|-1}, \ |x| > 1\right\}$ ed è inf Y = 1, quindi inf C = 1.
- $\sup D = +\infty$, $\inf D = 0$.