Università degli studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM1 - A.A. 2006/2007 Tutore: Dott. Nazareno Maroni

Soluzioni del tutorato n.3 del 17/10/2006

- 1. Trovare, se esistono, estremo superiore e inferiore dei seguenti insiemi, specificando se sono, rispettivamente, massimo e minimo.
 - A) Notiamo che per n=0 si ha $x=-\frac{3}{2}$, possiamo notare invece che per $n\geqslant 1$ $\frac{2n+3}{3n-2}>0$, questo implica che $-\frac{3}{2}\leqslant x\ \forall x\in A$ e quindi poiché $-\frac{3}{2}\in A$ è inf $A=\min\{x\in A\}=-\frac{3}{2}$.

Possiamo vedere che $\forall n \geqslant 1$ $x_n \geqslant x_{n+1}$, infatti: $\frac{2n+3}{3n-2} \geqslant \frac{2(n+1)+3}{3(n+1)-2} \ \forall n \geqslant 1 \Leftrightarrow \ldots \Leftrightarrow 13 \geqslant 0 \ \forall n \geqslant 1$, questo ci dice che per n=1 x=5 è tale che $5 \geqslant x \ \forall x \in A$ ed è quindi sup $A=\max\{x\in A\}=5$.

- B) Possiamo notare che se $n \ge 2$ $\frac{2n+1}{n^2-2} > 0$, mentre per n = 0 $x = -\frac{1}{2}$ e per n = 1 x = -3, quindi $-3 \le x \ \forall x \in B \Rightarrow \inf B = \min\{x \in B\} = -3$. Possiamo far vedere che gli elementi di B decrescono col crescere di $n, \ n \ge 2$ ovvero: $\frac{2n+1}{n^2-2} \ge \frac{2(n+1)+1}{(n+1)^2-2} \ \forall n \ge 2$, quindi il valore di x per n = 2 è il valore massimo: $\sup B = \max\{x \in B\} = \frac{5}{2}$.
- C) Consideriamo separatamente gli elementi positivi e quelli negativi e cerchiamo l'estremo superiore tra i positivi, l'estremo inferiore tra i negativi. inf $C = \min\{x \in C\} = -2$, sup $C = \max\{x \in C\} = 1$.
- D) inf $D = \min\{x \in D\} = \frac{1}{3}$, l'insieme non è superiormente limitato quindi è sup $D = +\infty$: va quindi dimostrato che $\forall M \ \exists x \in D : x > M$, ovvero $\forall M \ \exists n : x_n > M$.
- E) $\sup E = \max\{x \in E\} = \frac{1}{4}, \inf E = \min\{x \in E\} = -\frac{1}{7}.$
- F) $\inf F = \min\{x \in F\} = 0$, $\sup F = \max\{x \in F\} = \frac{3\log 3}{10}$.
- G) $\inf G = \min\{x \in G\} = -3, \sup G = \max\{x \in G\} = \frac{6}{7}.$
- H) $\inf H = \min\{x \in H\} = 0, \sup H = +\infty.$
- I) $\sup I = +\infty$, $\inf I = \min\{x \in I\} = -1$.
- 2. Dimostrare che se $X,Y\subset\mathbb{R},\ X,Y\neq\emptyset$ e $X+Y=\{x+y|x\in X,y\in Y\},$ allora:
 - (i) $\sup(X+Y)=\sup X+\sup Y$: dimostriamo prima che vale il \leq , poi che vale il \geq , il che implica l'uguaglianza.
 - $\sup(X + Y) \leqslant \sup X + \sup Y$: sappiamo che $x \leqslant \sup X \ \forall x \in X$ e che $y \leqslant \sup Y \ \forall y \in Y$, quindi $x + y \leqslant \sup X + \sup Y \ \forall x \in X, y \in Y$, ciò implica che $\sup X + \sup Y$ è un maggiorante dell'inseme X + Y e poiché $\sup(X + Y)$ è il più piccolo dei maggioranti si ha la disuguaglianza $\sup(X + Y) \leqslant \sup X + \sup Y$.
 - $\sup(X+Y)\geqslant\sup X+\sup Y$: sappiamo, per definizione di estremo superiore, che $\forall \epsilon>0 \; \exists \bar{x}\in X, \bar{y}\in Y: \; \bar{x}>\sup X-\frac{\epsilon}{2}, \; \bar{y}>\sup Y-\frac{\epsilon}{2}\Rightarrow x+y>\sup X+\sup Y-\epsilon$ e poiché $\sup(X+Y)$ è un maggiorante di $x+y\; \forall x\in X, y\in Y,$ in particolare è $\sup X+Y\geqslant \bar{x}+\bar{y}\Rightarrow\sup(X+Y)>\sup X+\sup Y-\epsilon\; \forall \epsilon>0\Rightarrow\sup(X+Y)\geqslant\sup X+\sup Y.$
 - (ii) $\inf(X + Y) = \inf X + \inf Y$: si procede in maniera analoga.

3. Dimostrare che se $X, Y \subset \mathbb{R}, X, Y \neq \emptyset, X \subset Y$, allora:

$$\inf Y \leqslant \inf X \leqslant \sup X \leqslant \sup Y$$
.

Ovviamente è inf $X \leq \sup X$, inoltre $\sup Y$ è un maggiorante per Y e poiché $X \subset Y$ è anche un maggiorante per gli elementi di X, ma $\sup X$ è il più piccolo dei maggioranti di $X \Rightarrow \sup X \leq \sup Y$; inf Y essendo un minorante per Y è anche minorante degli elementi di X, poiché $X \subset Y$, ma inf X è il più grande dei minoranti di $X \Rightarrow \inf Y \leq \inf X$.

- 4. Dimostrare che se $X \subset \mathbb{R}, \ X \neq \emptyset, \ X_t = \{tx | x \in X, t \in \mathbb{R}^+\},$ allora:
 - (i) $\sup X_t = t \sup X$: come sopra dimostriamo che valgono sia il \leq che il \geq .
 - $\sup X_t \leqslant t \sup X$: sappiamo che $x \leqslant \sup X \ \forall x \in X \Rightarrow tx \leqslant t \sup X \ \forall x \in X \Rightarrow t \sup X$ è un maggiorante dell'insieme X_t e poiché $\sup X_t$ è il più piccolo dei maggioranti di X_t è $\sup X_t \leqslant t \sup X$.
 - $\sup X_t \geqslant t \sup X$: t è fissato e sappiamo che $\forall \epsilon > 0 \ \exists \bar{x} \in X : \ \bar{x} > \sup X \frac{\epsilon}{t} \Rightarrow t \bar{x} > t \sup X \epsilon$ e poiché $\sup X_t$ è un maggiorante di $tx \ \forall x \in X$ è $\sup X_t \geqslant t \bar{x}$ e quindi $\sup X_t > t \sup X \epsilon \ \forall \epsilon > 0 \Rightarrow \sup X_t \geqslant t \sup X$.
 - (ii) inf $X_t = t \inf X$: si procede in maniera analoga.