

210 AA10/11 (Algebra:	gruppi, anelli e	camp	i)			4	APPE	ELLO	A		Roma, 11 Gennaio 201
olvere il massimo numero	o di esercizi acco A <i>CCETTANO R</i>	mpag ISPO	STE	o le r SCR	ispos ITTE	te cor SU_{2}	spie $4LTR$	gazio RI FO	ni chi	are ed essenz	ziali. Inserire le risposte ne = 4 punti. Tempo previsto:
Troppana domana dare	FIRMA	1	2	3	4	5	6	7	8	TOT.	
	111(11111		-					'		101	
Rispondere alle sequent	ti domande forne	endo 1	una g	iustif	icazio	one di	una	riga:			
a. È vero che tutti i g	gruppi ciclici infi	niti s	ono is	somoi	rfi?						
`											
b. È vero che ogni gr	uppo finito è iso	morfo	a un	sotte	ogrup	po di	GL_n	(\mathbf{Z}_2)	per u	n opportuno	$n \in \mathbf{N}$?
c. È vero che due ane	all: finiti con lo c	+	*******	d:	م داده		:	. :	 		
c. E vero che que ane	em mmu con io s	tesso	nume	ero di	еше	ешепс	1 SOIIC) ISOH	1101111		
d. E vero che qualsias	si dominio euclio	leo es	iste s	empr	e il m	nassim	o cor	mun c	liviso	re di due qua	alsiasi elementi non nulli?

2. Descrivere tutti i sottogruppi di $S_3 \times {\bf Z}_2$. 3. Dimostrare che il gruppo quoziente ${\bf R}/{\bf Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente \mathbf{R}/\mathbf{Z} è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente \mathbf{R}/\mathbf{Z} è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente \mathbf{R}/\mathbf{Z} è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente \mathbf{R}/\mathbf{Z} è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente \mathbf{R}/\mathbf{Z} è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente \mathbf{R}/\mathbf{Z} è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
$3.$ Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
3. Dimostrare che il gruppo quoziente ${f R}/{f Z}$ è isomorfo a gruppo dei numeri complessi di n	
	norma 1

7. Sia $A = \left\{ \begin{pmatrix} a & 5b \\ 4b & a \end{pmatrix}, a, b \in \mathbf{Z}_8 \right\}$. Dopo aver verificato che A è un sottoanello di $M_2(\mathbf{Z}_8)$, contarne il numero di elementi e dire se A è un dominio di integrità.

8. Determinare tutti i divisori dello zero dell'anello $(\mathbf{Z}/5\mathbf{Z})[X]/(x^2-1).$