Lecture 1
Elliptic curves over finite fields

First steps

Research School: Algebraic curves over finite fields
CIMPA-ICTP-UNESCO-MESR-MINECO-PHILIPPINES
University of the Phillipines Diliman, July 22, 2013

Francesco Pappalardi
Dipartimento di Matematica e Fisica
Universita Roma Tre

Elliptic curves over Fq

F. Pappalardi

CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /F5

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Proto—-History (from WIKIPEDIA)

Giulio Carlo, Count Fagnano, and Marquis
de Toschi (December 6, 1682 —
September 26, 1766) was an ltalian
mathematician. He was probably the first
to direct attention to the theory of elliptic
integrals. Fagnano was born in Senigallia.

He made his higher studies at the Collegio
Clementino in Rome and there won great
distinction, except in mathematics, to
which his aversion was extreme. Only after
his college course he took up the study of
mathematics.

Later, without help from any teacher, he
mastered mathematics from its
foundations.

Some of His Achievements:
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Length of Ellipses
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The length of the arc of a plane
curve y = f(x), f: [a, b] — Ris:

b
f= / /1 + (F(1))2at
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Applying this formula to £:
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If y is the integrand, then we have the identity:

YA(1 —x?) =1+ 3% )
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curve y = f(x), f: [a, b] — Ris:

b
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1
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0

If y is the integrand, then we have the identity:

y2(1 —x?) =1+3x2

Apply the invertible change of variables:

{x:1—2/t
Y=

Arrive to

=1 -4 +6t—3
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What are Elliptic Curves?
Reasons to study them

Elliptic Curves
@ are curves and finite groups at the same time
® are non singular projective curves of genus 1

@ have important applications in Algorithmic Number Theory
and Cryptography

O are the topic of the Birch and Swinnerton-Dyer conjecture
(one of the seven Millennium Prize Problems)

@ have a group law that is a consequence of the fact that
they intersect every line in exactly three points (in the
projective plane over C and counted with multiplicity)

0 represent a mathematical world in itself ... Each of them
doesl!!
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® K c C,dimg K < oo is a number field

e QVd],deQ
e Q[a], f(e) = 0, f € Q[X] irreducible

Finite fields

® F,={0,1,...,p— 1} is the prime field;

® [, is afinite field with g = p” elements
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@ Vn e N, we fix an Fgn
@ We also require that Fgn C Fgm if n | m
O WeletF, = U]Fqn

neN

» Fact: F, is algebraically closed
(i.e. Vf € Fg[x],0f > 1,3a € Fq, f(a) = 0)

If F(x,y) € Q[x, y] a point of the curve F = 0, means (xo, o) € C?sit. F(x0, o) = 0.
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» Fact: F, is algebraically closed
(i.e. Vf € Fg[x],0f > 1,3a € Fq, f(a) = 0)

If F(x,y) € Q[x, y] a point of the curve F = 0, means (xo, o) € C?sit. F(x0, o) = 0.
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The (general) WeierstraB Equation

An elliptic curve E over a IFy (finite field) is given by an equation

E:y?+aixy+azy = x5+ apx® + ayx + ag

)

where ajy, as, a», as, as € ]Fq
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The (general) WeierstraB Equation

An elliptic curve E over a IFy (finite field) is given by an equation

E:y?+aixy+azy = x5+ apx® + ayx + ag
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where ajy, as, a», as, as € Fq
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The (general) WeierstraB Equation

An elliptic curve E over a IFy (finite field) is given by an equation

E:y?+aixy+azy = x5+ apx® + ayx + ag

where ajy, as, a», as, as € Fq

The equation should not be singular
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Tangent line to a plane curve

Given f(x,y) € Fq[x, y] and a point (xo, yo) such that
f(xo0, o) = 0, the tangent line is:

55 (X0, ¥0) (X — X0) + 57 (X0, Yo)(¥ — yo) = 0
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Tangent line to a plane curve

Given f(x,y) € Fq[x, y] and a point (xo, yo) such that
f(xo0, o) = 0, the tangent line is:

55 (X0, ¥0) (X — X0) + 57 (X0, Yo)(¥ — yo) = 0

5 (x0.%0) = 5 (%0, ¥0) = O,
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Tangent line to a plane curve

Given f(x,y) € Fq[x, y] and a point (xo, yo) such that
f(xo0, o) = 0, the tangent line is:

55 (X0, ¥0) (X — X0) + 57 (X0, Yo)(¥ — yo) = 0

28 (X0, %) = 3L (%0, ¥0) =0,

such a tangent line cannot be computed and we say that
(X0, Yo) is singular
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Tangent line to a plane curve

Given f(x,y) € Fq[x, y] and a point (xo, yo) such that
f(xo0, o) = 0, the tangent line is:

55 (X0, Y0)(X = x0) + 57 (X0, Yo)(¥ — o) = 0

28 (X0, %) = 3L (%0, ¥0) =0,

such a tangent line cannot be computed and we say that
(X0, Yo) is singular

Definition

A non singular curve is a curve without any singular point
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Tangent line to a plane curve

Given f(x,y) € Fq[x, y] and a point (xo, yo) such that
f(xo0, o) = 0, the tangent line is:

5 (X0, ¥0) (X — x0) + 57 (X0, o) (¥ — ¥0) = 0

28 (X0, %) = 3L (%0, ¥0) =0,

such a tangent line cannot be computed and we say that
(X0, Yo) is singular

Definition
A non singular curve is a curve without any singular point
Example

The tangent line to x2 + y? = 1 over F; at (2,2) is

xX+y=4

Elliptic curves over Fq

F. Pappalardi

CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations

The Discriminant
Elliptic curves /F,
Elliptic curves /Fj

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Singular points Elliptic curves over Fgq
The classical definition F. Pappalardi
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Singular points
The classical definition

Definition

A singular point (xo, o) on a curve f(x, y) = 0 is a point such

that
g_f(X07y0) =0
6_y(X07YO) = 0

<X
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Singular points
The classical definition

Definition

A singular point (xo, o) on a curve f(x, y) = 0 is a point such
that

So, at a singular point there is no (unique) tangent line!! In the
special case of Weierstral3 equations:

E:y?+aixy+azy = x5+ apx® + ayx + ag
we have
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Singular points
The classical definition

Definition

A singular point (xo, o) on a curve f(x, y) = 0 is a point such
that

So, at a singular point there is no (unique) tangent line!! In the
special case of Weierstral3 equations:

E:y?+aixy+azy = x5+ apx® + ayx + ag
we have

aXZO

a1y = 3x2 4+ 2axx + a4
ay:o

2y +aix+a3=0
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Singular points
The classical definition
Definition

A singular point (xo, o) on a curve f(x, y) = 0 is a point such
that

So, at a singular point there is no (unique) tangent line!! In the
special case of Weierstral3 equations:

E:y?+aixy+azy = x5+ apx® + ayx + ag

we have

aXZO
ay:o

a1y = 3x2 4+ 2axx + a4
2y+aix+az=0

We can express this condition in terms of the coefficients
ai, as, as, as, as.
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The Discriminant of an Equation
The condition of absence of singular points in terms of ay, a,, as, a4, as
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The Discriminant of an Equation
The condition of absence of singular points in terms of ay, a,, as, a4, as
With a bit of Mathematica

Ell:=-a_6-a_4x-a_2x"2-x"3+a_3y+ta_lxy+y~ 2;
SS := Solve[{D[Ell,x]==0,D[Ell,y]==0}, {y,x}];
Simplify[ReplaceAll[E11l,SS[[1]]]*ReplaceAll[E11l,SS[[2]]1]]

we obtain
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The Discriminant of an Equation
The condition of absence of singular points in terms of ay, a,, as, a4, as
With a bit of Mathematica

Ell:=-a_6-a_4x-a_2x"2-x"3+a_3y+ta_lxy+y 2;
SS := Solve[{D[Ell,x]==0,D[Ell,y]==0}, {y,x}];
Simplify[ReplaceAll[E11l,SS[[1]]]*ReplaceAll[E11l,SS[[2]]1]]

we obtain

1
Al = e (-&lasas — 8a3arazas — 16ara5azas + 36858524

— aial — 8aapa — 16a54: + 96a;aza; + 6445+
&ag + 12ataas + 48afasas + 64a3a; — 3643 azas
—144a1ara38 — 7285 2485 — 288arasas + 43243
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The Discriminant of an Equation
The condition of absence of singular points in terms of ay, a,, as, a4, as
With a bit of Mathematica

Ell:=-a_6-a_4x-a_2x"2-x"3+a_3y+ta_lxy+y 2;
SS := Solve[{D[Ell,x]==0,D[Ell,y]==0}, {y,x}];
Simplify[ReplaceAll[E11l,SS[[1]]]*ReplaceAll[E11l,SS[[2]]1]]

we obtain
A/ S
£ 2433

(-&lasas — 8a3arazas — 16ara5azas + 36858524

— aial — 8aapa — 16a54: + 96a;aza; + 6445+
&ag + 12ataas + 48afasas + 64a3a; — 3643 azas
—144a1ara38 — 7285 2485 — 288arasas + 43243

Definition

The discriminant of a Weierstraf3 equation over Fq, g = p”,

p>5is

Af =33AF
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The discriminant of E /Fo. Elliptic curves over fq
F. Pappalardi

E:y?+aixy+asy = x°+ ax® + asx + @, a; € Fou J
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The discriminant of £ /F»-

E:y?+aixy + asy = X3 + apx? + asx + ag, aj € Faa

If p = 2, the singularity condition becomes:

8)(:0

aly =x2+a

aix+as3=0
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The discriminant of £ /F»-

E:y?+aixy + asy = X3 + apx? + asx + ag, aj € Faa

If p = 2, the singularity condition becomes:

Ox =0 a1y:x2+a4
—
9y =0 aix+az3=0

Classification of WeierstraB equations over Fs«
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The discriminant of £ /F»-

E:y?+aixy + asy = X3 + apx? + asx + ag, aj € Faa

If p = 2, the singularity condition becomes:

Ox=0 | ary =x%+as
9y =0 aix+az3=0

Classification of WeierstraB equations over Fs«

e Case a; #0:

El:=a6+adx+a2x”"2+x"3+al3y+talxy+y”~2;
Simplify[ReplaceAll [El, {x—a3/al,y— ((a3/al) “2+ad)/al}]]

)
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The discriminant of £ /F»-

E:y?+aixy + asy = X3 + apx? + asx + ag, aj € Faa

If p = 2, the singularity condition becomes:

Ox=0 | ary =x%+as
9y =0 aix+az3=0

Classification of WeierstraB equations over Fs«

o Case a; #0:

El:=a6+adx+a2x”"2+x"3+al3y+talxy+y”~2;
Simplify[ReplaceAll [El, {x—a3/al,y— ((a3/al) “2+ad)/al}]]

)
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The discriminant of E /Fo. Fllptic curves over £
F. Pappalardi

E:y?+aixy+asy = x5+ ax® + ayx + @, aj € Fan )

If p = 2, the singularity condition becomes:

¥

» CIMPA
Ox=0 ay =X +a4 Introduction

ay = 0 a1X + as = 0 History
length of ellipses
why Elliptic curves?
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Classification of WeierstraB equations over Fs« “s’:‘:u:::f;?nsqua"ms
e Case a 75 0: Elliptic curves /F,

1 -

Elliptic curves /Fg

Poi infinity of E
El:=a6+adx+a2x”"2+x"3+aldy+alxy+y’2; :Z;;:tve'np::rl;yo
Simplify[ReplaceAll [El, {x—a3/al,y— ((a3/al) “2+ad)/al}]] T DR

Points at infinity
we Obtain Homogeneous Coordinates
The sum of points
: o 2 4 4 3.3 4\ /46
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Structure of E(F,
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e Case a; = 0 and as # 0: curve non singular (Ag :



The discriminant of £ /F»-

E:y?+aixy+asy = x5+ ax® + ayx + @, aj € Fan )

If p = 2, the singularity condition becomes:

Ox =0 a1y:x2+a4
—
9y =0 aix+az3=0

Classification of WeierstraB equations over Fs«

o Case a; #0:

El:=a6+adx+a2x”"2+x"3+al3y+talxy+y”~2;
Simplify[ReplaceAll [El, {x—a3/al,y— ((a3/al) “2+ad)/al}]]

we obtain

A = (dlas + dasas + ala:d; +atd] + ala + &)/ |

e Case a; = 0 and a3 # 0: curve non singular (Ag := as)

e Case a; = 0 and as = 0: curve singular
(X0, Y0), (X6 = au, y& = aras + as) is the singular point!
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Special WeierstraB equation of £ /F,.,p # 2

E:y?+aixy+azy = x5+ apx® + ayx + ag

ai € ]Fpot

J
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Special WeierstraB equation of £ /F,.,p # 2

E:y?+aixy+azy = x5+ apx® + ayx + ag

aj € ]Fpa

If we “complete the squares” by applying the transformation:

{

X < X
ajx+a
yey-"1572

J
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Special WeierstraB equation of £ /F,.,p # 2

E:y?+aixy+azy = x5+ apx® + ayx + ag

aj € ]Fpa

If we “complete the squares” by applying the transformation:

{

X — X
ajx+a
yey-"1572

J

the Weierstraf3 equation becomes:

E':y? =x®+ apx® + ayx + a ]

wherea’2:a2+§,ag:a4+%,aé:ae+§
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Special WeierstraB equation of £ /F,.,p # 2

E:y?+aixy+asy=x3+ax>+ax+a acFp

If we “complete the squares” by applying the transformation:

{x<—x
aq x+a
yey-"1572

the Weierstraf3 equation becomes:

E':y?=x3+ apx® + ayx + a ]

wherea’zzag+§,ag:a4+%,aé:as+§

If p > 5, we can also apply the transformation

Elliptic curves over Fq

F. Pappalardi

O
CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

Elliptic curves /F,
Elliptic curves /Fg

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Special WeierstraB equation of £ /F,.,p # 2

E:y?+aixy+asy=x3+ax>+ax+a acFp

If we “complete the squares” by applying the transformation:

{x<—x
aq x+a
yey-"1572

the Weierstraf3 equation becomes:

E':y?=x3+ apx® + ayx + a ]

wherea’zzaﬁ%ag:a4+%,aé:as+§

If p > 5, we can also apply the transformation

a/
X+ x— £
y<y

obtaining the equations:

Elliptic curves over Fq

F. Pappalardi

CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

Elliptic curves /F,
Elliptic curves /Fg

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Special WeierstraB equation of £ /F,.,p # 2

E:y?+aixy+asy=x3+ax>+ax+a acFp

If we “complete the squares” by applying the transformation:

{x<—x
aq x+a
yey-"1572

the Weierstraf3 equation becomes:

E':y?=x3+ apx® + ayx + a ]

2
wherea’zza2+§,ag:a4+%,aé:as+%

If p > 5, we can also apply the transformation

/
xexf%z
y<y

obtaining the equations:

E”:y2:x3+a”x+ag ]

2512 aya,

where &) = &, — s

"o
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Special WeierstraB equation for E/Fza
Case a; #0

E:y2+a1xy+a3y=x3+a2x2+a4x+a6

Ap = Hostdimatdiadtaidraiad
E -— a?
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Special WeierstraB equation for E/Fza
Case a; #0

E:y?+aixy + azy = x3 + apx® + ayx + ag

Ag = dagtdiaautaiapdi+aldi+ajay+ay
o= 6
a.
1

If we apply the affine transformation:

{x —— &x+ag/a
SR |
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Special WeierstraB equation for E/Fza

Case a; #0

E:y?+axy +asy = x°+ ax* + ax + 2
Af = Dag+dayayta sl +d d+aai+al

5
Ch

If we apply the affine transformation:

we obtain

{x —— &x+ag/a
SR |

.2 _ 3 a; a 2
Surprisingly Ag = Ag/a8

Ag
&

Elliptic curves over Fq

F. Pappalardi

¥
CIMPA

Introduction
History
length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

Elliptic curves /F,
Elliptic curves /Fg

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Special WeierstraB equation for E/Fza
Case a; #0

E:y?+aixy + azy = x3 + apx® + ayx + ag
Ag = dastaaataiadtaladraai+a]
= 2
1

If we apply the affine transformation:

{x —— &x+ag/a
SR |

we obtain

E’:y2+xy=x3+(§§+§)x2+éﬁ
1 1

5
&

Surprisingly Ag = Ag/a8

With Mathematica

El:=a6+adx+a2x”"2+x"3+al3yt+talxy+y~2;
Simplify[PolynomialMod[ReplaceAll [El,

{x->al”2 x+a3/al, y->al”3y+(al”2a4+a3"2)/al"3}],2]]
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Special WeierstraB equation for E/Fza
Casea; —0and Ag:= a3 #0

E:y?+aixy + asy = x° + apx® + asx + ag

aj € Foa

J
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Special WeierstraB equation for E/Fza

Casea; —0and Ag:= a3 #0

E:y?+aixy + asy = x° + apx® + asx + ag

aj € Foa

J

If we apply the affine transformation:

{

X<— X+ a
y<—Vy

J
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Special WeierstraB equation for E/Fza
Casea; —0and Ag:= a3 #0

E:y?+aixy+asy=x3+ax?+ax+a & €Fa

If we apply the affine transformation:

{X(—X-‘rag
y<—Yy

we obtain

E:y®+asy = x° + (as + &)X + (a6 + 22) |
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Special WeierstraB equation for E/Fza
Casea; —0and Ag:= a3 #0

E:y?+aixy+asy=x3+ax?+ax+a & €Fa

J

If we apply the affine transformation:

{X(—X-‘rag
y<—Yy

we obtain

E:y®+asy = x° + (as + &)X + (a6 + 22) |

With Mathematica

El:=a6+tadx+a2x"2+x"3+al3yty~2;
Simplify[PolynomialMod[ReplaceAll [El, {x—>x+a2,y->y}],2]]

)
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Special WeierstraB equation for E/Fza
Casea; —0and Ag:= a3 #0

E:y?+aixy+asy =x3+ ax?+ ax + as

aj € Foa

J

If we apply the affine transformation:

we obtain

E:y®+asy = x° + (as + &)X + (a6 + 22u) |

With Mathematica

El:=a6+tadx+a2x"2+x"3+al3yty~2;
Simplify[PolynomialMod[ReplaceAll [El, {x—>x+a2,y->y}],2]]

J

Definition

Two WeierstraB3 equations over Fq are said (affinely) equivalent if

there exists a (affine) change of variables that takes one into the other
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Special WeierstraB equation for E/F2Q Elliptic curves over Fg
Case a; = 0 and AE = as ;ﬁ 0 F. Pappalardi

E:y?taxytay=x*+ax’+ax+a acFa |

If we apply the affine transformation:

AU

CIMPA
{X — X+ a \ Introduction
— Histor)

a / Ieng(hyof ellipses

. why Elliptic curves?
we obtain Fotds
2 V3 2 WeierstraB Equations
E:y*+ay=x"+(as+a&)x + (8 + aa4) |

Elliptic curves /F

With Mathematica SR/

Point at infinity of £
El:=a6+tadx+a2x"2+x"3+a3y+ty”2;

Projective Plane

Simplify[PolynomialMod[ReplaceAll [El, {x->x+a2,y->y}],2]] J Homogeneous Polynomials
Points at infinity

Homogeneous Coordinates

Definition

The sum of points

Two WeierstraB3 equations over Fq are said (affinely) equivalent if Examples
there exists a (affine) change of variables that takes one into the other oo )

Structure of E(F3)
Further Examples

Exercise

Prove that necessarily the change of

2
X — UX+Tr
{ r,s,t,u € Fq

variables has form

y+— Uy + uPsx + t



The WeierstraB equation Fillpic curves over Fq
Classification of simplified forms R R

et

After applying a suitable affine transformation we can always

assume that E/F4(q = p") has a Weierstra3 equation of the
following form CIMPA
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The WeierstraBB equation
Classification of simplified forms

After applying a suitable affine transformation we can always
assume that E/F4(q = p") has a Weierstra3 equation of the
following form

Example (Classification)

E p Ag

y2=x*+Ax+B >5 | 448 4 278°
Vrxy=x*+ax+a | 2 | &

Y2+ agy = X° + asx + ag 2 as

2 3 2 4A°C — A2B? — 18ABC
Yy =x"+Ax"+Bx+C 3 14B° 4 27C2
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The WeierstraBB equation
Classification of simplified forms

After applying a suitable affine transformation we can always

assume that E/F4(q = p") has a Weierstra3 equation of the
following form

Example (Classification)

E p Ag

y2=x*+Ax+B >5 | 448 4 278°
Vrxy=x*+ax+a | 2 | &

Y2+ agy = X° + asx + ag 2 as

2 3 2 4A°C — A2B? — 18ABC
Yy =x"+Ax"+Bx+C 3 14B° 4 27C2

Definition (Elliptic curve)

An elliptic curve is the data of a non singular Weierstral3
equation (i.e. Ag #0)
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The WeierstraBB equation
Classification of simplified forms

After applying a suitable affine transformation we can always

assume that E/F4(q = p") has a Weierstra3 equation of the
following form

Example (Classification)

E p Ag

y2=x*+Ax+B >5 | 448 4 278°
Vrxy=x*+ax+a | 2 | &

Y2+ agy = X° + asx + ag 2 as

2 3 2 4A°C — A2B? — 18ABC
Yy =x"+Ax"+Bx+C 3 14B° 4 27C2

Definition (Elliptic curve)

An elliptic curve is the data of a non singular Weierstral3
equation (i.e. Ag #0)

Note: If p > 3, Ag # 0 < x® + Ax? + Bx + C has no double root
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Elliptic curves over [,

All possible Weierstral3 equations over [ are:
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Elliptic curves over [,

All possible Weierstral3 equations over [ are:

Weierstral3 equations over o
Q)2+ xy=x3+x2+1

© y2+xy=x>+1

© y*+y=x>+x

Q) +y=x+x+1
@y +y=x

@y +y=x>+1
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Elliptic curves over [,

All possible Weierstral3 equations over [ are:
Weierstral3 equations over o

Q)2+ xy=x3+x2+1

® y+xy=x3+1

© y>+y=x"+x

Oy +y=x"+x+1

@y +y=x

@y +y=x>+1

However the change of variables

X4+ Xx+1
y+—y+x

takes the sixth

curve into the fifth. Hence we can remove the sixth from the

list.
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Elliptic curves over [,

All possible Weierstral3 equations over [ are:
Weierstral3 equations over o

Q)2+ xy=x3+x2+1

® y+xy=x3+1

© y>+y=x"+x

Oy +y=x"+x+1

@y +y=x

@y +y=x>+1

. 1 .
However the change of variables XX takes the sixth

y+—y+x
curve into the fifth. Hence we can remove the sixth from the
list.

Fact:
There are 5 affinely inequivalent elliptic curves over Fo
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Elliptic curves in characteristic 3

Via a suitable transformation (x — u?x +r,y — u3y + u?sx +1t)
over I3, 8 inequivalent elliptic curves over F3 are found:
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Elliptic curves in characteristic 3

Via a suitable transformation (x — u?x +r,y — u3y + u?sx +1t)
over I3, 8 inequivalent elliptic curves over F3 are found:

Weierstral3 equations over [F3
O y>=x3+x

@ y2=x"—x

Q@ )y°=x3-—x+1

0O y>=x3—x-1

0 > =x3+x2+1
@y2:X3—|—X2—1

@ y>=x3—x2+1
@y2:X3_X2_1
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Elliptic curves in characteristic 3

Via a suitable transformation (x — u?x +r,y — u3y + u?sx +1t)
over I3, 8 inequivalent elliptic curves over F3 are found:

Weierstral3 equations over F3
O y>=x3+x

@ y2=x"—x

Q@ )y°=x3-—x+1

0 )y°=x3-—x-1

0 y>=x3+x2+1
@y2:X3+X2—1

@ y>=x3—x2+1
@yZ:XS—x271
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Elliptic curves in characteristic 3

Via a suitable transformation (x — v?x +r,y — 3y + u?sx + )
over IF3, 8 inequivalent elliptic curves over 3 are found:

Weierstral3 equations over F3
O y>=x3+x

@ y2=x"—x

Q@ )y°=x3-—x+1

0 )y°=x3-—x-1

0 y>=x3+x2+1
9y2:X3—|—X2—1

@ y>=x3—x2+1
@y2:X37X2*1
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Elliptic curves in characteristic 3

Via a suitable transformation (x — v?x +r,y — 3y + u?sx + )
over IF3, 8 inequivalent elliptic curves over 3 are found:

Weierstral3 equations over F3
O y>=x3+x

@ y2=x"—x

Q@ )y°=x3-—x+1

0 )y°=x3-—x-1

0 > =x3+x2+1

0 y2=x3+x2-1

@ y>=x3—x2+1
@y2:X37X2*1

Elliptic curves over Fq

F. Pappalardi
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Homogeneous Polynomials
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Exercise: Prove that

@ Over F5 there are 12 elliptic curves
® Compute all of them
® How many are there over IF4, over [F7 and over Fg?
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The projective Plane

Definition (Projective plane)

P(Fq) = (F3\ {0})/ ~
where 0 = (0,0,0) and
X=(x1,%,X3) ~ Y= (y1,¥2,)3) & X=2Xy,IN€F,
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The projective Plane

Definition (Projective plane)

P2(Fq) = (F5\ {0})/ ~
where 0 = (0,0,0) and
x:(X1,X2,X3)Ny=(Y1aY2,YS) <~ x:>‘y7E|A€]FE
Basic properties of the projective plane
Q@ PePx(Fg) = P=[x]={Mx:XeF;},xeF3 x#0;
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The projective Plane

Definition (Projective plane)

P2(Fq) = (F5\ {0})/ ~
where 0 = (0,0,0) and

X=(X,%,x3) ~Y=(¥1,Ye,¥3) & X=Xy, IN€F;

Basic properties of the projective plane
@ PecPy)Fy) = P=[x]={\x: Ae]F } xeF3,x#£0;

@ #[x] = qg— 1. Hence #P»(F,) = =q¢*+qg+1;

Elliptic curves over Fq
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The projective Plane

Definition (Projective plane)

P2(Fq) = (F5\ {0})/ ~
where 0 = (0,0,0) and

X=(X,%,x3) ~Y=(¥1,Ye,¥3) & X=Xy, IN€F;

Basic properties of the projective plane
(1) Pe]Pg(IFq):>P:[x]:{>\x:)\e]F*} xeF3,x#£0;
@ #[x] = g — 1. Hence #P»(Fq) =
O Pc PQ(IFQ),

=¢*+q+1;
by, 2] with (x,y.7) F3\ {0);
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The projective Plane

Definition (Projective plane)

P2(Fq) = (F3\ {0})/ ~
where 0 = (0,0,0) and
x:(X13X2,X3)Ny:(}’1a}’2,}’3) <~ x:)‘yaElAer
Basic properties of the projective plane
Q@ PePy(Fg) = P=[x]={Mx:XeF;},xeF3 x#0;
@ #[x] = g — 1. Hence #P»(Fq) = % =¢®+q+1;
® P e Py(Fy), P=:[x,y,z] with (x,y,Zz) € ]Fg \ {0};

O [x,y.z] =[x,y ,Z] < rank (X }}//, ZZ/> =1

X/
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The projective Plane

Definition (Projective plane)

P2(Fq) = (F3\ {0})/ ~
where 0 = (0,0,0) and
x:(X13X2,X3)Ny:(}’1a}’2,}’3) <~ x:)‘yaElAer

Basic properties of the projective plane

Q@ PePy(Fg) = P=[x]={Mx:XeF;},xeF3 x#0;

@ #[x] = g — 1. Hence #P»(F,) = % =g +q+1;

© P € Po(Fq), P =: [x,y, 2] with (x,y,2) € FJ\ {0};

X z
0 1y a-1y2) s rank (/) 2) -
(5) %(Fq) < {lines through 0 in F3} = {V C F3 : dim V =
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The projective Plane

Definition (Projective plane)

P2(Fq) = (F3\ {0})/ ~
where 0 = (0,0,0) and
x:(X13X2,X3)Ny:(}’1a}’2,}’3) <~ x:)‘yaED‘GFE

Basic properties of the projective plane

Q@ PePy(Fg) = P=[x]={Mx:XeF;},xeF3 x#0;

@ #[x] = g — 1. Hence #P»(F,) = % =g +q+1;

© P € Po(Fq), P =: [x,y, 2] with (x,y,2) € FJ\ {0};

X z

0 byl vzl o rne(f 1 Z) -

(5) ]ﬁ”i(Fq) «— {lines through 0 in F3} = {V C F3 : dim V =

O P2(Fy) «— {linesin F3},[a,b,c] — aX + bY +¢Z =0
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The projective Plane
Infinite and Affine points
e P=xy,0]

is a point at infinity
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The projective Plane
Infinite and Affine points
e P=|[x,y,0]
e P=[x,y,1]

is a point at infinity
is an affine point
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The projective Plane
Infinite and Affine points
e P=xy,0]
e P=[x,y,1]
o P e Py (Fy) is either affine or at infinity

is a point at infinity
is an affine point

Elliptic curves over Fgq
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P5(Fq) is either affine or at infinity
Az(Fq) := {[x,y, 1] : (x,y) € F5}

is a point at infinity
is an affine point

set of affine points
#As(Fg) = ¢°

Elliptic curves over Fq
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P5(Fq) is either affine or at infinity
A2(]FCI) = {[X,y, 1] : (X7y) € ]Fg}

P1(Fq) == {[x,,0] : (x,y) € F5\ {(0,0)}}

is a point at infinity
is an affine point

set of affine points

#ho(Fq) = q°
line at infinity

Elliptic curves over Fq

F. Pappalardi
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P5(Fq) is either affine or at infinity
A2(]Fq) = {[Xa.y7 1] : (X7y) € Fg}

P1(Fq) == {[x,¥,0]: (x,y) € F5\ {(0,0)}}

Po(Fq) = Az(Fq) U P1(Fq)

is a point at infinity
is an affine point

set of affine points

#82(Fq) = °

line at infinity
#P1(Fq) = q +1

disjoint union

Elliptic curves over Fq
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P5(Fq) is either affine or at infinity
A2(]Fq) = {[Xa.y7 1] : (X7y) € Fg}

P1(Fq) == {[x,¥,0]: (x,y) € F5\ {(0,0)}}

Po(Fq) = Az(Fq) U P1(Fq)

is a point at infinity
is an affine point

set of affine points

#82(Fq) = °

line at infinity
#P1(Fq) = q +1
disjoint union

P1(IF4) can be thought as set of directions of lines in Fg

Elliptic curves over Fq
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P>(Fy) is either affine or at infinity
A2(Fq) = {Ix,y,1] : (x,y) € Fg}

P1(Fq) == {[x,¥,0]: (x,y) € F5\ {(0,0)}}

Po(Fq) = Az(Fq) U P1(Fq)

is a point at infinity
is an affine point

set of affine points

#42(Fq) = ¢

line at infinity

disjoint union

P1(Fq) can be thought as set of directions of lines in F5
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P>(Fy) is either affine or at infinity
A2(Fq) = {Ix,y,1] : (x,y) € Fg}

P1(Fq) == {[x,¥,0]: (x,y) € F5\ {(0,0)}}

Po(Fq) = Az(Fq) U P1(Fq)

is a point at infinity
is an affine point

set of affine points

#42(Fq) = ¢

line at infinity
disjoint union

P1(Fq) can be thought as set of directions of lines in F5
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P>(Fy) is either affine or at infinity
A2(Fq) = {Ix,y,1] : (x,y) € Fg}

P1(Fq) == {[x,¥,0]: (x,y) € F5\ {(0,0)}}

Po(Fq) = Az(Fq) U P1(Fq)

is a point at infinity
is an affine point

set of affine points

#42(Fq) = ¢

line at infinity
disjoint union

P1(Fq) can be thought as set of directions of lines in F5
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o P,(K), K field, n > 3 is similarly defined;
o Pp(K) = Ap(K)UP,_1(K)
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P>(Fy) is either affine or at infinity
A2(Fq) = {Ix,y,1] : (x,y) € Fg}

P1(Fq) == {[x,¥,0]: (x,y) € F5\ {(0,0)}}

Po(Fq) = Az(Fq) U P1(Fq)

is a point at infinity
is an affine point

set of affine points

#42(Fq) = ¢

line at infinity
disjoint union

P1(Fq) can be thought as set of directions of lines in F5

Elliptic curves over Fq
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The projective Plane
Infinite and Affine points

P =[x,y,0]
P=[x,y,1]

P € P>(Fy) is either affine or at infinity
A2(Fq) = {Ix,y,1] : (x,y) € Fg}

P1(Fq) == {[x,¥,0]: (x,y) € F5\ {(0,0)}}

Po(Fq) = Az(Fq) U P1(Fq)

is a point at infinity
is an affine point

set of affine points

#42(Fq) = ¢

line at infinity
disjoint union

P1(Fq) can be thought as set of directions of lines in F5
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General construction

Py(K), K field, n > 3 is similarly defined;
Po(K) = Ap(K) UP,_1(K)

#Pn(Fq) ="+~ +q+1

Pn(K) «— {linesin K"}

Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of E(F,)
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Homogeneous Polynomials

Definition (Homogeneous polynomials)
g(Xi,..., Xm) € Fg[Xi,..., Xn] is said homogeneous if all its
monomials have the same degree. i.e.

9, Xm) = >

Jit+e+im=0g

. oy m 4. .
@y oo Xi 0 X @y i € Fg

Elliptic curves over Fq
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Homogeneous Polynomials
Definition (Homogeneous polynomials)

g(Xi,..., Xm) € Fg[Xi,..., Xn] is said homogeneous if all its
monomials have the same degree. i.e.

9, Xm) = >

Jit+e+im=0g

. oy m 4. .
@y oo Xi 0 X @y i € Fg

Properties of homogeneous polynomials - Projective Curves
e VA, FOAX,A\Y,\2) = NFF(X,Y,2)

Elliptic curves over Fq
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Homogeneous Polynomials
Definition (Homogeneous polynomials)

g(Xi,..., Xm) € Fg[Xi,..., Xn] is said homogeneous if all its
monomials have the same degree. i.e.

9, Xm) = >

Jit+e+im=0g

. oy Jm 5. .
@y oo Xi 0 X @y i € Fg

Properties of homogeneous polynomials - Projective Curves
o YA, FOAX,\Y,\2) = \NFF(X,Y,2)

o If P= [Xo, Yo,Zo] S PZ(FQ), then
F(Xo, Yo, 2y) = 0 depends only on P, not on X, Yo, 4

Elliptic curves over Fq
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Homogeneous Polynomials
Definition (Homogeneous polynomials)

g(Xi,..., Xm) € Fg[Xi,..., Xn] is said homogeneous if all its
monomials have the same degree. i.e.

9, Xm) = >

Jit+e+im=0g

. oy Jm 5. .
@y oo Xi 0 X @y i € Fg

Properties of homogeneous polynomials - Projective Curves
o VA, F(AX,AY,AZ) = XFF(X,Y,2)
o If P =[Xo, Yo, Zo] € Po(Fg), then
F(Xo, Yo, Zy) = 0 depends only on P, not on Xg, Yo, 2
o F(P)=0< F(Xy, Yo,2) = 0 is well defined

Elliptic curves over Fq
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Homogeneous Polynomials

Definition (Homogeneous polynomials)
g(Xi,..., Xm) € Fg[Xi,..., Xn] is said homogeneous if all its
monomials have the same degree. i.e.

g X, Xm) = >

Ji++im=0g

. oy Jm 5. .
@y oo Xi 0 X @y i € Fg

Properties of homogeneous polynomials - Projective Curves
o VA, F(AX,AY,AZ) = XFF(X,Y,2)
o If P =[Xo, Yo, Zo] € Po(Fg), then
F(Xo, Yo, Zy) = 0 depends only on P, not on Xg, Yo, 2
e F(P)=0<« F(Xo, Yo,24) = 0 is well defined

¢ Projective curve F(X,Y,Z) = 0 the set of P € Fo(Fy) s.t.

F(P)=0

Elliptic curves over Fq
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Homogeneous Polynomials

Definition (Homogeneous polynomials)
g(Xi,..., Xm) € Fg[Xi,..., Xn] is said homogeneous if all its
monomials have the same degree. i.e.

g X, Xm) = >

Ji++im=0g

. oy Jm 5. .
@y oo Xi 0 X @y i € Fg

Properties of homogeneous polynomials - Projective Curves
o VA, F(AX,AY,AZ) = XFF(X,Y,2)
o If P =[Xo, Yo, Zo] € Po(Fg), then
F(Xo, Yo, Zy) = 0 depends only on P, not on Xg, Yo, 2
e F(P)=0<« F(Xo, Yo,24) = 0 is well defined

e Projective curve F(X,Y,Z) = 0 the set of P € F»(Fy) s.t.

F(P)=0
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Homogeneous Polynomials

Definition (Homogeneous polynomials)
g(Xi,..., Xm) € Fg[Xi,..., Xn] is said homogeneous if all its
monomials have the same degree. i.e.

g X, Xm) = >

Ji++im=0g

. oy Jm 5. .
@y oo Xi 0 X @y i € Fg

Properties of homogeneous polynomials - Projective Curves
o VA, F(AX,AY,AZ) = XFF(X,Y,2)
o If P =[Xo, Yo, Zo] € Po(Fg), then
F(Xo, Yo, Zy) = 0 depends only on P, not on Xg, Yo, 2
e F(P)=0<« F(Xo, Yo,24) = 0 is well defined

e Projective curve F(X,Y,Z) = 0 the set of P € F»(Fy) s.t.

F(P)=0

Example

Projective line aX + bY + ¢Z = 0; Z = 0, line at infinity
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Points at infinity of a plane curve

Definition (Homogenized polynomial)
If f(va) € ]Fq[XaY]a

Fi(X,Y,Z) = Z9

agd
zZ'z

)
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Points at infinity of a plane curve
Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

XY

Fi(X,Y,2) =275, 5)

e [ is homogenoeus, the homogenized of f
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Points at infinity of a plane curve
Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

XY

Fi(X,Y,2) =275, 5)

e F;is homogenoeus, the homogenized of f
o 8Ff = of
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Points at infinity of a plane curve
Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

X

Y
mxnazﬁw??)

e F;is homogenoeus, the homogenized of f
o aFf = of
e if f(x0, ¥0) = 0, then F¢(xo, yo,1) =0
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Points at infinity of a plane curve

Definition (Homogenized polynomial)
If f(va) € ]Fq[XaY]a

XY

_ zoarg N T
Ff(X7 sz) =Z f(zv Z)
Ff is homogenoeus, the homogenized of f
OF; = of

if f(xo0, Y0) = 0, then F:(xo, ¥0,1) =0

the points of the curve f = 0 are the affine points of the
projective curve Ff = 0
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Points at infinity of a plane curve

Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

XY

_ zoarg N T
Ff(X7 sz) =Z f(Zv Z)
Ff is homogenoeus, the homogenized of f
OF; = of

if f(xo0, Y0) = 0, then F:(xo, ¥0,1) =0

the points of the curve f = 0 are the affine points of the
projective curve Fr =0
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Points at infinity of a plane curve
Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

X

Y
Fi(X,Y,2) = Zaff(?, ?)

Ff is homogenoeus, the homogenized of f
OF; = of
if f(xo0, Y0) = 0, then F:(xo, ¥0,1) =0

the points of the curve f = 0 are the affine points of the
projective curve Fr =0

Example (homogenized curves)
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Points at infinity of a plane curve

Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

Fi(X,Y,Z) = Z9

Xy
Z2’'Z

Ff is homogenoeus, the homogenized of f
OF; = of
if f(xo0, Y0) = 0, then F:(xo, ¥0,1) =0

the points of the curve f = 0 are the affine points of the

projective curve Fr =0

Example (homogenized curves)

curve
line
conic

affine curve
ax+by=c

ax? + by? =1

homogenized (projective curve)
aX+bY=cZ
ax?+by?=22
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Points at infinity of a plane curve

Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

Fi(X,Y,Z) = Z9

Xy
Z2’'Z

Ff is homogenoeus, the homogenized of f
OF; = of
if f(xo0, Y0) = 0, then F:(xo, ¥0,1) =0

the points of the curve f = 0 are the affine points of the

projective curve Fr =0

Example (homogenized curves)

curve
line
conic

affine curve
ax+by=c

ax? + by? =1

homogenized (projective curve)
aX+bY=cZ
ax?+by?=22

Z = 0 (line at infinity)
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Points at infinity of a plane curve

Definition (Homogenized polynomial)
it f(x,y) € Fq[x, y],

Fi(X,Y,Z) = Z9

Xy
Z2’'Z

Ff is homogenoeus, the homogenized of f
OF; = of
if f(xo0, Y0) = 0, then F:(xo, ¥0,1) =0

the points of the curve f = 0 are the affine points of the

projective curve Fr =0

Example (homogenized curves)

curve
line
conic

affine curve
ax+ by =c

ax? + by? =1

homogenized (projective curve)
aX+bY=cZ
ax?+by?=22

Z = 0 (line at infinity)

Not the homogenized of anything
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Points at infinity of a plane curve

Definition

If f € Fq[x, y] then

{la, 8,0] € Po(Fq) : Fe(a, 8,0) = 0}

is the set of points at infinity of f = 0.

(i.e. the intersection of the curve and Z = 0, the line at infinity)
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Points at infinity of a plane curve
Definition
If f € Fq[x, y] then
{la, B,0] € Po(Fy) : F(c, 5,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in IFE,
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Points at infinity of a plane curve
Definition
If f € Fq[x, y] then
{la, B,0] € Po(Fy) : F(c, 5,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in IFE,

Example (point at infinity)
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Points at infinity of a plane curve
Definition
If f € Fq[x, y] then
{la, B,0] € Po(Fy) : F(c, 5,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in IFE,
Example (point at infinity)

e line:ax +by+c=0 ~ [b, —a, 0]
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Points at infinity of a plane curve
Definition
If f € Fq[x, y] then
{la, B,0] € Po(Fy) : F(c, 5,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in IFE,
Example (point at infinity)

e line:ax+by+c=0 ~
e hyperbola: x2/a% — y?/b? = 1 ~

[bv —4a, O]
[a, £b, 0]
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Points at infinity of a plane curve
Definition
If f € Fq[x, y] then
{la, B,0] € Po(Fy) : F(c, 5,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in IFE,

Example (point at infinity)

e line:ax+by+c=0 ~ [b, —a, 0]
e hyperbola: x2/a% — y?/b? = 1 ~ [a,£b,0]
e parabola: y = ax® + bx + ¢ [0,1,0]

$
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Points at infinity of a plane curve

Definition

If f € Fg[x,y] then

{la, 8,0] € Po(Fq) : Fe(a, 8,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in IFE,

Example (point at infinity)

e line:ax+by+c=0 ~

e hyperbola: x2/a% — y?/b? = 1
e parabola: y = ax®> + bx + ¢

§

$

o elliptic curve:
Y2+ aixy + asy = X° + apX® + asx + ag

~

[b, —a, 0]
[a,+b,0]
[0,1,0]

[0,1,0]
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Points at infinity of a plane curve

Definition

If f € Fg[x,y] then

{la, 8,0] € Po(Fq) : Fe(a, 8,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in ]Ff7

Example (point at infinity)

e line:ax+by+c=0 ~

e hyperbola: x2/a% — y?/b? = 1
e parabola: y = ax®> + bx + ¢

§

$

o elliptic curve:
Y2 +aixy +asy = x3+ ax® + asx + a

[b, —a, 0]
[a,+b,0]
[0,1,0]

~ [0,1,0]
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Points at infinity of a plane curve

Definition
If f € Fq[x, y] then

{la, 8,0] € Po(Fq) : Fe(a, 8,0) = 0}

is the set of points at infinity of f = 0.
(i.e. the intersection of the curve and Z = 0, the line at infinity)

The points of Z = 0 are directions of lines in ]Ff7

Example (point at infinity)

o line:ax+by+c=0 ~ [b, —a, 0]
e hyperbola: x2/a% — y?/b? = 1 ~ [a,£b,0]
e parabola: y = ax® + bx + ¢ ~ [0,1,0]
o elliptic curve:

y2+aixy+agy=x3+ax®+ax+a ~ [0,1,0]

E /F 4 elliptic curve, oo :=[0,1,0]
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Projective lines
tangent lines to projective curves

Definition
If P =[x1,y1,21], Q = [X2, y2, 2] € P2(Fg), the projective line
through P, Qs
X Y Z
pq: det|xq y1 z1|=0
Xo Y2 22
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Projective lines
tangent lines to projective curves

Definition
If P =[x1,y1,21], Q = [X2, y2, 2] € P2(Fg), the projective line
through P, Q is
X Y Z
',q: det | x4  zZi| = 0
Xo Y2 22

Definition

The tangent line to a projective curve F(X, Y,Z) =0 ata non
singular point P = [Xq, Yo, 2] (F(Xo, Yo,20) = 0) is

28 (%o, Yo, Z0)X + 5%(X0, Yo, 20)Y + 35 (X, Yo, Z0)Z = 0
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Projective lines
tangent lines to projective curves

Definition

If P= [X1,y1 R 21]7 Q= [Xg,yg, Zg] E Pg(Fq), the projective line
through P, Q is

X Y Z
',q: det | x4  zZi| = 0
Xo Yo 22

Definition

The tangent line to a projective curve F(X, Y,Z) =0 ata non
singular point P = [Xq, Yo, 2] (F(Xo, Yo,20) = 0) is

28 (%o, Yo, Z0)X + 5%(X0, Yo, 20)Y + 35 (X, Yo, Z0)Z = 0

Exercise (Prove that)

© P belongs to its (projective) tangent line

Elliptic curves over Fq

F. Pappalardi

CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /F5

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity

The sum of points

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Projective lines
tangent lines to projective curves

Definition

If P= [X1,y1 R 21]7 Q= [Xg,yg, Zg] E Pg(Fq), the projective line
through P, Q is

X Y Z
',q: det | x4  zZi| = 0
Xo Yo 22

Definition

The tangent line to a projective curve F(X, Y,Z) =0 ata non
singular point P = [Xq, Yo, 2] (F(Xo, Yo,20) = 0) is

28 (%o, Yo, Z0)X + 5%(X0, Yo, 20)Y + 35 (X, Yo, Z0)Z = 0

Exercise (Prove that)

© P belongs to its (projective) tangent line

® P affine = its tangent line is the homogenized of the affine
tangent line
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Projective lines
tangent lines to projective curves

Definition

If P= [X1,y1 R 21]7 Q= [Xg,yg, Zg] E Pg(Fq), the projective line
through P, Q is

X Y Z
',q: det | x4  zZi| = 0
Xo Yo 22

Definition

The tangent line to a projective curve F(X, Y,Z) =0 ata non
singular point P = [Xq, Yo, 2] (F(Xo, Yo,20) = 0) is

28 (%o, Yo, Z0)X + 5%(X0, Yo, 20)Y + 35 (X, Yo, Z0)Z = 0

Exercise (Prove that)

© P belongs to its (projective) tangent line

® P affine = its tangent line is the homogenized of the affine
tangent line

@O the tangent line to E/F4 at co = [0,1,0] is Z = 0 (line at
infinity)

Elliptic curves over Fq

F. Pappalardi

CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points
The Discriminant
Elliptic curves /F,
Elliptic curves /F5

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity

The sum of points

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



The deﬁnition Of E(Fq) Elliptic curves over Fg
F. Pappalardi
Let E/F, elliptic curve, oo := [0, 1,0]. Set o

E(Fq) = {[X, Y,Z] € Po(Fq) : Y2Z+aXYZ+a3YZ? = X° + apX?Z + ayXZ? + as2°}

or equivalently

CIMPA

E(Fq) = {(x,y) €F5: y* + axy + asy = x° + @x® + ax + a5} U {o0} oaueton
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The definition of E(Fy)
Let E/Fy elliptic curve, oo := [0, 1, 0]. Set
E(Fq) = {[X, Y,Z] € Po(Fq) : Y2Z+aXYZ+a3YZ? = X° + apX?Z + ayXZ? + as2°}
or equivalently

E(Fq) = {(x,y) €F5: y* + aixy + asy = x* + apx* + aux + as} U {0}

We can think either
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The definition of E(Fy)
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The definition of E(Fy)
Let E/Fy elliptic curve, oo := [0, 1, 0]. Set
E(Fq) = {[X, Y. Z] € Po(Fq) : Y2Z+aXYZ+a3YZ? = X3+ apX?Z + asXZ? + 2 2°}
or equivalently

E(Fq) = {(x,y) €F5: y* + aixy + asy = x* + apx* + aux + as} U {0}

We can think either
o E(Fq) C P2(Fyg) --» geometric advantages
o E(Fq) C F5U {00} --» algebraic advantages
oo might be though as the “vertical direction”

Definition (line through points P, Q € E(Fy))

line through Pand Q if P# Q

Ip.q: g .
tangentlineto EatP ifP=Q

projective or affine
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Definition (line through points P, Q € E(Fy))

line through Pand Q if P# Q
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or equivalently
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Definition (line through points P, Q € E(Fy))

line through Pand Q if P# Q

Ip.q: g .
tangentlineto EatP ifP=Q

projective or affine

o f #(rP70 n E(Fq)) >2 = #(f/{a n E(Fq)) =3
if tangent line, contact point is counted with multiplicity

® Io00 N E(Fg) = {00, 00,00}
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The definition of E(Fy)
Let E/Fy elliptic curve, oo := [0, 1, 0]. Set
E(Fq) = {[X, Y, Z] € Po(Fq) : Y2Z+aXYZ+a3YZ% = X° + 2 XPZ + ayXZ? + as 2%}
or equivalently

E(Fq) = {(x,y) €F5: y* + aixy + asy = x* + apx* + aux + as} U {0}

We can think either
o E(Fq) C P2(Fyg) --» geometric advantages
o E(Fq) C F5U {00} --» algebraic advantages
oo might be though as the “vertical direction”

Definition (line through points P, Q € E(Fy))

line through Pand Q if P# Q

Ip.q: g .
tangentlineto EatP ifP=Q

projective or affine

o f #(rP70 n E(Fq)) >2 = #(f/{a n E(Fq)) =3

if tangent line, contact point is counted with multiplicity
® lo,00 NE(Fg) = {00,00,00}
o rpg:aX+bZ =0 (vertical) = co =[0,1,0] € rp q
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History (from WIKIPEDIA)

Carl Gustav Jacob Jacobi
(10/12/1804 — 18/02/1851) was
a German mathematician, who
made fundamental contributions
to elliptic functions, dynamics,
differential equations, and
number theory.

Some of His Achievements:

Theta and elliptic function
Hamilton Jacobi Theory
Inventor of determinants

Jacobi Identity
[A, [B, Cll + [B, [C, All + [C, [A, B]] = 0
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(10/12/1804 — 18/02/1851) was
a German mathematician, who
made fundamental contributions
to elliptic functions, dynamics,

differential equations, and
number theory.

Some of His Achievements:

Theta and elliptic function
Hamilton Jacobi Theory
Inventor of determinants
Jacobi Identity

[A,[B, Cll + [B, [C, All + [C, [A, B]] = 0

—xy+y2+y:x3—3x2+x+l

Elliptic curves over Fq

F.

re.qN E(Fq) ={P,Q, R}
rFI,oo N E(Fq) = {007 R: Rl}

P+e Q=R

Ip,00 N E(Fq) = {P, 00, P'}

—P=F

PP
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Properties of the operation “+”

Theorem

The addition law on E(Fy) has the following properties:

(@) P+£ Qe E(Fy)

VP, Q € E(F,)
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Properties of the operation “+”

Theorem

The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+tecc=c0+gP=P VP e E(Fyg)

Elliptic curves over Fq

F. Pappalardi

ol
CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Properties of the operation “+”

Theorem

The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+poo=o00+gP=P VP € E(Fy)
() P+e(—P)=0oc VP ¢ E(Fy)
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Properties of the operation “+”

Theorem
The addition law on E(Fy) has the following properties:

(@) P+e Qe E(Fg) VP, Q € E(Fq)
(b) P+poo=o00+gP=P VP € E(Fy)
(€) P+e(—P) =00 VP € E(Fy)
d) P+e(Q+eR)=(P+eQ)+eR VP,Q, R € E(F,)
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Properties of the operation “+”

Theorem
The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+poo=o00+gP=P VP € E(Fy)
() P4+e(—P)=o0 VP e E(Fq)
d) P+e(Q+eR)=(P+£Q)+e R VP, Q,R € E(Fq)
(e) )

e) P+reQ=Q+eP VP,Q e E(Fq

Elliptic curves over Fq

F. Pappalardi

CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points
The Discriminant
Elliptic curves /F,
Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Properties of the operation “+”

Theorem
The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+teoco=c0+gP=P VP e E(Fy)
(¢) P4+e(—P)= VP e E(Fyq)
(d) P+e(Q+eR) =(P+e Q) +eR VP,Q,R e E(Fq)
(e) )

e) PreQ=Q+eP VP, Q € E(Fq

Elliptic curves over Fq
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Properties of the operation “+”

Theorem
The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+poo=o00+gP=P VP € E(Fy)
() P4+e(—P)=o0 VP e E(Fq)
d) P+e(Q+eR)=(P+£Q)+e R VP, Q,R € E(Fq)
(e) PreQ=Q+eP VP, Qe E(Fy)

e (E(Fq),+£) commutative group

Elliptic curves over Fq

F. Pappalardi

CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Properties of the operation “+”

Theorem

The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+teoco=c0+gP=P VP € E(Fyq)
() P+e(—=P) = VP e E(Fyq)
(d) P+e(Q+eR) =(P+e Q) +eR VP,Q,R e E(Fq)
(e) PreQ=Q+eP VP, Qe E(Fy)
e (E(Fg), +£) commutative group

o All group properties are easy except associative law (d)
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Properties of the operation “+”

Theorem

The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+teoco=c0+gP=P VP € E(Fyq)
() P+e(—=P) = VP e E(Fyq)
(d) P+e(Q+eR) =(P+e Q) +eR VP,Q,R e E(Fq)
(e) PreQ=Q+eP VP, Qe E(Fy)
e (E(Fg), +£) commutative group

o All group properties are easy except associative law (d)

e Geometric proof of associativity uses Pappo’s Theorem
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Properties of the operation “+”

Theorem
The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q € E(Fy)
(b) P+teoco=c0+gP=P VP e E(Fy)
(¢) P4+e(—P)= VP e E(Fyq)
(d) P+e(Q+eR) =(P+e Q) +eR VP,Q,R e E(Fq)
(e) )

e) PreQ=Q+eP VP, Q € E(Fq

(E(Fq), +£) commutative group

All group properties are easy except associative law (d)
Geometric proof of associativity uses Pappo’s Theorem
We shall comment on how to do it by explicit computation
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Properties of the operation “+”

Theorem

The addition law on E(Fy) has the following properties:

(@) P+eQ e E(Fy) YP, Q € E(F,)
b) Pteoo=ocotgP=P VP € E(F,)
(©) P+e(—P) =0 VP € E(Fy)
(d) P+£(Q+£R)=(P+£ Q)+ R VP, Q,R € E(Fy)
€ P+eQ=Q+¢ P VP, Q € E(F,)

(E(Fq), +£) commutative group

All group properties are easy except associative law (d)
Geometric proof of associativity uses Pappo’s Theorem
We shall comment on how to do it by explicit computation

can substitute F; with any field K; Theorem holds for
(E(K), +E)
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Properties of the operation “+”

Theorem
The addition law on E(Fy) has the following properties:

(@) P+e Q€ E(Fg) VP,Q e E(Fy)
(b) P+teoco=c0+gP=P VP e E(Fy)
() P+e(—=P) = VP e E(Fyq)
(d) P+e(Q+eR) =(P+e Q) +eR VP,Q,R e E(Fq)
(e) )

e) P+reQ=Q+eP VP,Q e E(Fq

(E(Fq), +£) commutative group

All group properties are easy except associative law (d)
Geometric proof of associativity uses Pappo’s Theorem
We shall comment on how to do it by explicit computation
can substitute I, with any field K; Theorem holds for
(E(K), +E)

e In particular, if E/Fq, can consider the groups E(F,) or
E(Fgn)
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Computing the inverse —P U

F. Pappalardi

E:y?+anxy+ay = x° + ax? + ax + 3 |
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Computing the inverse — P

E:y2+a1xy+a3y=x3+a2x2+a4x+aeJ
If P = (xi,y1) € E(Fq)
Definition: —P := P" where rp o, N E(Fq) = {P, o0, P'}
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Computing the inverse —P

E:y2+a1xy+a3y=x3+a2x2+a4x+a6J
It P = (x1,y1) € E(Fq)
Definition: —P := P" where rp o, N E(Fq) = {P, o0, P'}

Write P' = (x{, ¥). Since rp» : X = Xy = X{ = Xy and y;
satisfies

y2taixiy+agy — (X7 +axi+axi+as) = (y—yi)(y—yi) |
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Computing the inverse —P

E:y?+anxy+ay = x° + ax? + ax + 3 |

It P = (x1,y1) € E(Fq)

Definition: —P := P" where rp o, N E(Fq) = {P, o0, P'}

Write P' = (x{, ¥). Since rp» : X = Xy = X{ = Xy and y;

satisfies

y2taixiy+agy — (X7 +axi+axi+as) = (y—yi)(y—yi) |

Soyi + Y

= —ayXx1 — as (both coefficients of y) and

—P=—(x1,y1) = (x1,—a1 x4 —33—Y1)J
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Computing the inverse —P

E:y2+a1xy+a3y=x3+a2x2+a4x+asJ
It P=(x1,y1) € E(Fq)
Definition: —P := P" where rp o, N E(Fq) = {P, o0, P'}

Write P' = (x{, ¥). Since rp» : X = Xy = X{ = Xy and y;
satisfies

y2taixiy+asy — (X7 +axi+ax+as) = (y—y1)(y—1) |

So y1 + y; = —aix1 — as (both coefficients of y) and
—P=—(x,1) = (1, —ax —as—y1) |
So, if Py = (x1,y1), P2 = (X2, y2) € E(Fg),

Definition: Py +g P> = —Ps where rp, p, N E(Fq) = {P1, Pa, P3}J
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Computing the inverse —P

E:y2+a1xy+a3y=x3+a2x2+a4x+asJ
If P=(x1,y1) € E(Fy)
—P = P where rp .o N E(Fg) = {P, 00, P'}

Write P' = (x{, ¥). Since rp» : X = Xy = X{ = Xy and y;
satisfies

y2taixiy+asy — (X7 +axi+ax+as) = (y—y1)(y—1) |

So y1 + y; = —aix1 — as (both coefficients of y) and
—P=—(x,1) = (x1,—aix1 —as —y1) |
So, if Py = (x1,1), P2 = (X2, y2) € E(Fy),

Py +g P> = —P3 where rp, p, N E(Fg) = {P41, P, P3}J

Finally, if P; = (x3, y3), then
Pi4+£gP2 = —P3 = (X3, —a1X3—33—}’3)J
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Lines through points of £

E:y?+aixy + asy = x3 + axx® + ayx + as

where ay, as, &, a4, as € Fy,
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Lines through points of £

E:y?+aixy + asy = x3 + axx® + ayx + as

where ay, as, &, as, 8 € Fq,
P1 = (X17}’1)7P2 = (X2ay2) S E(]Fq)
© P # Py and x; # X —

rp,p, Y =AX+v

)\:}’2—}’1 V:}’1X2—X1Y2

X2—X17 Xo — Xq
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F. Pappalardi

¥
CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of £(F,)
Structure of E(F3)
Further Examples



Lines through points of £
E:y?+aixy + asy = x° + ax® + ayx + as

where ay, as, &, as, 8 € Fq,
P1 = (X17}’1)7P2 = (X2ay2) S E(]Fq)
°P17épgandX1§£X2 — fP1,P23y=/\X—|-1/

N = Yo = )i v — YiXo — X1 )2
X2—X17 Xo — Xq

9P17£P2andx1:x2 — I'p, P, © X = Xq
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Lines through points of £
E:y?+aixy + asy = x° + ax® + ayx + as

where a1, a3, a2, a4, 8 € Fq,
P1 = (X17y1)aP2 = (X2ay2) S E(]Fq)
°P17épgandX1§£X2 — fP1,P23y=/\X—|-1/

)\:y2_Y1

V_%&—Mh
Xo— Xy

Xo — Xq

@ Py # Py and x; = xo = TP 5 28 =%
© Pi=Pyand2y; +aixs +a#0 = rpp, iy =AX+v

_ 3 +2ax +a - ay

__33}’1+X13—a4X1—236
2y1 +aixi +as

2y1 +aixq + as

A

Elliptic curves over Fq

F. Pappalardi

ol
CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Lines through points of £

E:y2+aixy+asy =x3+ ax?+ ax + a

where a1, a3, a2, a4, 8 € Fq,
P1 = (X17y1)aP2 = (X2ay2) S E(]Fq)
°P17épgandX1§£X2 — fP1,P23y=/\X—|-1/

)\:y2_Y1

V_%&—Mh
X — Xy

Xo — Xq

® P #£Pand xy = xo - Ipy Py - X = X4
®@ Pi=Pand2y; +aixi+a#0 = rpp, Yy =Ix+v

_ 3 +2ax +a - ay

_ ah +x3 — asxy — 2ap
2y1 +aixi +as

2y1 +aixq + as

A

O Pi=FPand2y;+aixi+az=0 = rp.p,: X=X

Elliptic curves over Fq

F. Pappalardi

ol
CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Lines through points of £
E:y?+aixy + asy = x° + ax® + ayx + as

where a1, a3, a2, a4, 8 € Fq,
P1 = (X17y1)aP2 = (X2ay2) S E(]Fq)

Q@ P #Pand xy # xo — re,p, Y =AX+v

)\_Y2—Y1 V_Y1X2—X1Y2
X2—X17 Xo — Xq

® P # P>and x1 = xo = Ip Py o X = Xy

®@ Pi=Pand2y; +aixi+a#0 = rpp, Yy =Ix+v

. 3X12 +2axX1 + as — a1y

_ Ayt X3 — asxy — 2ag

A= ;
2y1 +aixq + a3 2y1 + anxq + as

O Pi=Pand2y; +aixi+a=0 = rpp: X=X
O 1P X=X

foope 2 Z =0
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Intersection between a line and E

We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,

'py.P, mE(IE‘CI) = {P17P27P3} J
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Intersection between a line and E

We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,

Ip, P, mE(IE‘CI) = {P1,P2,P3} J

We find the intersection:

ey, P, M E(Fq) = {

E:y?+aixy + asy = X° + apx® + asX + as
Y =AX+v

py Py

Elliptic curves over Fq

F. Pappalardi

¥
CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of £(F,)
Structure of E(F3)
Further Examples



Intersection between a line and E

We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,

Ip, P, mE(IE‘Q) = {P1,P2,P3} J

We find the intersection:

ey, P, M E(Fq) = {

py Py

E:y?+aixy + asy = X° + apx® + asX + as
Y =AX+v

Substituting

()\X-i- V)2 “F a1x()\x+ V) 4 33()\X+ V) =x3 + 32X2 + asx + as

Elliptic curves over Fq

F. Pappalardi

ol
CIMPA

Introduction
History

length of ellipses
why Elliptic curves?
Fields

WeierstraB Equations
Singular points

The Discriminant

Elliptic curves /F,

Elliptic curves /Fs

Point at infinity of £
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

Examples
Structure of E(F,)
Structure of E(F3)
Further Examples



Intersection between a line and £
We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,
Ipyp, N E(Fq) = {P1,P2,P3} J

We find the intersection:

_ JE:yPtaxytay=x"+ax®taxta
rPth a E(Fq) a {rP1,P2 Yy =AX+v

Substituting

()\X 4+ V)2 “F 31X(>\X 4 V) 4 33()\X 4 V) =x3 + 32X2 + asx + as
Since x; and x» are solutions, we can find x3 by comparing

X2 + apXx® + agx + a5 — ((Ax + 1/)2 + aix(Ax +v)+as(Ax +v)) =
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Intersection between a line and £
We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,
Ipyp, N E(Fq) = {P1,P2,P3} J

We find the intersection:

_ JE:yPtaxytay=x"+ax®taxta
rPth a E(Fq) a {rP1,P2 Yy =AX+v

Substituting

()\X 4+ V)2 “F 31X(>\X 4 V) 4 33()\X 4 V) =x3 + 32X2 + asx + as
Since x; and x» are solutions, we can find x3 by comparing

X2 + apXx® + agx + a5 — ((Ax + 1/)2 + a1 x(Ax + v) + az(Ax + v))
X3+(327/\2781/\)X2+-'- =
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Intersection between a line and £
We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,
Ipyp, N E(Fq) = {P1,P2,P3} J

We find the intersection:

_ JE:yPtaxytay=x"+ax®taxta
rPth a E(Fq) a {rP1,P2 Yy =AX+v

Substituting

()\X 4+ V)2 “F 31X(>\X 4 V) 4 33()\X 4 V) =x3 + 32X2 + asx + as
Since x; and x» are solutions, we can find x3 by comparing

X2 + apXx® + agx + a5 — ((Ax + 1/)2 + a1 x(Ax + v) + az(Ax + v))
X3+(327/\2781/\)X2+-'- =

(X = X)X — x)(X — Xa3) = X° — (X1 + Xo + X3)x° + - - -
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Intersection between a line and £
We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,
Ipyp, N E(Fq) = {P1,P2,P3} J

We find the intersection:

_ JE:yPtaxytay=x"+ax®taxta
rPth a E(Fq) a {rP1,P2 Yy =AX+v

Substituting

()\X 4+ V)2 “F 31X(>\X 4 V) 4 33()\X 4 V) =x3 + 32X2 + asx + as
Since x; and x» are solutions, we can find x3 by comparing

X2 + apXx® + agx + a5 — ((Ax + 1/)2 + a1 x(Ax + v) + az(Ax + v))
X3+(327/\2731/\)X2+-'- =

(x = x1)(x = x)(x — X3) = x° — (x1 + X + xe)x° + - - -

Equating coeffcients of x2,

x3:)\2—a1)\—a2—x1—xz, Ys=Ag+v
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Intersection between a line and £
We want to compute Pz = (X3, y3) Where rp, p, 1 ¥ = AX + v,
Ipyp, N E(Fq) = {P1,P2,P3} J

We find the intersection:

_ JE:yPtaxytay=x"+ax®taxta
rPth a E(Fq) a {rP1,P2 Yy =AX+v

Substituting

()\X 4+ V)2 “F 31X(>\X 4 V) 4 33()\X 4 V) =x3 + 32X2 + asx + as
Since x; and x» are solutions, we can find x3 by comparing

X2 + apXx® + agx + a5 — ((Ax + 1/)2 + a1 x(Ax + v) + az(Ax + v))
X3+(327/\2731/\)X2+-'- =

(x = x1)(x = x)(x — X3) = x° — (x1 + X + xe)x° + - - -

Equating coeffcients of x2,

x3:)\2—a1)\—a2—x1—xz, Ys=Ag+v
Finally

P3:(>\2—a1>\—a2—x1 —X2,>\3—a1>\2—>\(a2+x1 +X2)—|—l/)
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Formulas for Addition on £ (Summary) Ellptic curves over Fq

F. Pappalardi

E:y?+aixy + asy = x° + apx® + asx + a J
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Formulas for Addition on E (Summary)

E:y?+aixy + asy = x° + apx® + asx + a

Pi = (x1,y1), P2 = (X2, y2) € E(Fg) \ {o0},
Addition Laws for the sum of affine points
o |f P-| 75 P2
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Formulas for Addition on E (Summary)

E:y?+aixy + asy = x° + apx® + asx + a |

Pi = (x1,y1), P2 = (X2, y2) € E(Fg) \ {o0},

Addition Laws for the sum of affine points
o [f P1 75 Pg

N — Pi4+ePs =00 |
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Formulas for Addition on £ (Summary) Ellptic curves over Fq
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E:y?+aixy + asy = x° + apx® + asx + a J
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Formulas for Addition on £ (Summary) Ellptic curves over Fq
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E:y?+aixy + asy = x° + apx® + asx + a J
Pi = (x1,y1), P2 = (X2, y2) € E(Fg) \ {o0},
Addition Laws for the sum of affine points Introduction
° |f P1 # P2 :I::()I'r\yofellipses
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Formulas for Addition on E (Summary)

E:y?+aixy + asy = x° + apx® + asx + a

Pi = (x1,y1), P2 = (X2, y2) € E(Fg) \ {o0},
Addition Laws for the sum of affine points

o [f P1 75 Pg
® Xi = Xo
o Xy #£ Xo

= L2Ah

X2—Xq

L4 |fP1=P2

o 2y1+aix+az3=0

v = Y1Xo — Yo X4
T X

Py +e P> = oo |
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Formulas for Addition on E (Summary)

E:y?+aixy + asy = x° + apx® + asx + a

Pi = (x1,y1), P2 = (X2, y2) € E(Fg) \ {o0},
Addition Laws for the sum of affine points
o |f P1 75 P2
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Formulas for Addition on E (Summary)

E:y?+aixy + asy = x° + apx® + asx + a

Pi = (x1,y1), P2 = (X2, y2) € E(Fg) \ {o0},
Addition Laws for the sum of affine points
o |f P1 75 P2
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Formulas for Addition on E (Summary)

E:y?+aixy + asy = x° + apx® + asx + a

Pi = (x1,y1), P2 = (X2, y2) € E(Fg) \ {o0},
Addition Laws for the sum of affine points

o |fP1 #Pz
® X1 = Xo
o Xy #£ Xo
L4 |fP1 =P2
A =
Then
Py +e P, =

N\ = Yo—)1
T X=X

21 +aix+a3=0
2y1+aix+as #0

3x2+2apxi+ay—ayy

2yy+aix+as

v = Y1Xo — Yo X4
T X

=

9 2y +ayxq+as

__ an +x13 —ayXxy —2ag

Pi+e P> =

)
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Formulas for Addition on £ (Summary for special equation)

E:y?=x3+Ax+B

P1 = (X17y1)7P2 = (X23y2) € E(Fq)\{oo}!
Addition Laws for the sum of affine points

° |fP17éP2

® X1 = Xo
X1 #£ X

cliP =P,

.y1:0
* 1 #0

Then

Pi+e P2 = (X — X1 — Xo, =A% + A(x1 + X2) — v/) J

Pi+e Po = 2P = o0 |

Pi4+E Py =0 |
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A Finite Field Example

Over [F, geometric pictures don’t make sense.

Example

Let E: y? = x® — 5x + 8/F37,
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A Finite Field Example

Over [F, geometric pictures don’t make sense.
Example

Let E : y2 = x3 —5X—|—8/F37, P= (6,3),02 (9,10) € E(F37)
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A Finite Field Example

Over [F, geometric pictures don’t make sense.

Example

Let E: y? = x3 —5x +8/Fs7, P=(6,3),Q=(9,10) € E(F37)

rpQ:y=27x+26 rpp:y=11x+11

J
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A Finite Field Example

Over [F, geometric pictures don’t make sense.

Example

Let E: y? = x3 —5x +8/Fs7, P=(6,3),Q=(9,10) € E(F37)
rpQ:y=27x+26 rpp:y=11x+11 J

rp,oNE(Fs7) =

y2=x3-5x+8

y=27x+26

={(6,3),(9,10),(11,27)}
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A Finite Field Example

Over [F, geometric pictures don’t make sense.

Example

Let E: y? = x3 —5x +8/Fs7, P=(6,3),Q=(9,10) € E(F37)

rpQ:y=27x+26 rpp:y=11x+11 J

y2=x3-5x+8
re gNE(F37) =
P (Fa7) {y:27x+26

={(6,3),(9,10),(11,27)}

y2=x3—-5x+8
re.p N E(F37) =
PP 1 EFar) {y:11x+11

= {(6,3),(6,3),(35,26)}

4
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A Finite Field Example

Over [F, geometric pictures don’t make sense.

Example

Let E: y? = x3 —5x +8/Fs7, P=(6,3),Q=(9,10) € E(F37)
rpQ:y=27x+26 rpp:y=11x+11

J

y2=x3-5x+8
re gNE(F37) =
P (Fa7) {y:27x+26

={(6,3),(9,10),(11,27)}

y2=x3—-5x+8
re.p N E(F37) =
PP 1 EFar) {y:11x+11

= {(6,3),(6,3),(35,26)}
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A Finite Field Example

Over [F, geometric pictures don’t make sense.

Example

Let E: y? = x3 —5x +8/Fs7, P=(6,3),Q=(9,10) € E(F37)
rpQ:y=27x+26 rpp:y=11x+11 J

y2=x3-5x+8

y = 27x + 26 ={(6,3),(9,10),(11,27)}

I’prﬂE(]F37) = {

4

y2=x3—-5x+8

Ie.p N E(F37) = { = {(6a 3)7 (6’ 3)’ (357 26)}
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, 3, . .., nx € N> such that
Q||| ng

Furthermore ny, ..., ng (Group Structure) are unique
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, 3, . .., nx € N> such that
@ ni|n|---|ng
OG=Chpa - @Cy

Furthermore ny, ..., ng (Group Structure) are unique
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, 3, . .., nx € N> such that
@ ni|n|---|ng
0 G=Ch o - @Cy,

Furthermore ny, ..., ng (Group Structure) are unique
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, 3, . .., nx € N> such that
Q@ni|nm|---|ng
O G=Chd - ®Cp

Furthermore ny, ..., ng (Group Structure) are unique

Example (One can verify that:)

Ca400 ® C72 @ Cias0 = Ci2 @ Ceo @ Cis200
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, 3n, . .., nx € N> such that
Q@ni|nm|---|ng
O G=Chd - ®Cp

Furthermore ny, ..., ng (Group Structure) are unique

Example (One can verify that:)

Co400 @ Cr2 @ Cyaap = Ci2 @ Ceo @ Cis200

Shall show Wednesday that

E(F) = Cr®Cn 3Nk e N>°
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, 3ny, . .., nx € N> such that
@ ni|n|---|ng
0 G=Ch o - @Cy,

Furthermore ny, ..., ng (Group Structure) are unique

Example (One can verify that:)

Co400 @ Cr2 @ Cyaap = Ci2 @ Ceo @ Cis200

Shall show Wednesday that

E(F) = Cr®Cn 3Nk e N>°

(i.e. E(Fq) is either cyclic (n = 1) or the product of 2 cyclic
groups)
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Proof of the associativity

P+e(Q+eR)=(P+eQ)+eR

VP,Q,R e EJ
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Proof of the associativity

P+e(Q+eR)=(P+eQ)+eR VP,Q,R¢ EJ

We should verify the above in many different cases according if
Q=R P=Q P=Q+eR,...
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Proof of the associativity

P+e(Q+eR)=(P+eQ)+eR VP,Q,Re€ EJ

We should verify the above in many different cases according if

Q=R P=Q P=Q+eR,...
Here we deal with the generic case. i.e. All the points
+P,+R, +Q,+(Q +£ R), £(P +£ Q), o all different

Mathematica code

Lix_,y_,r_,s_]:=(s-y)/(r-x);

M[x_,y_,r_,s_]:=(yr-sx)/(r-x);

Al{x_,y_},{r_, s }1:={(Llx,y, r,51)% (x+r),

-(L[x,y,r,s]) +L[x,y,r,s] (x+tr)-M[x,y,r,s]}

Together [A[A[{x,y},{u,v}], {h,k}]-A[{x,y},Al{u,v}, {h,k}]]]

det = Det [ ({{1,x1,%3-y3}, {1, %2, %3-v5}, {1, %3, X3-v3}}) ]

PolynomialQ[Together [Numerator [Factor[res([[1]]]]/det],
{x1,%2,%3,Y1,Y2,Y3}]

PolynomialQ[Together [Numerator [Factor[res([[2]]]]/det],
{®1,%2,%3,Y1,Y2,Y3}]
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Proof of the associativity

P+e(Q+eR)=(P+eQ)+eR VP,Q,Re€ EJ

We should verify the above in many different cases according if

Q=R P=Q P=Q+eR,...
Here we deal with the generic case. i.e. All the points
+P,+R, +Q,+(Q +£ R), £(P +£ Q), o all different

Mathematica code

Lix_,y_,r_,s_]:=(s-y)/(r-x);

M[x_,y_,r_,s_]:=(yr-sx)/(r-x);

Al{x_,y_},{r_, s }1:={(Llx,y, r,51)% (x+r),

-(L[x,y,r,s]) +L[x,y,r,s] (x+tr)-M[x,y,r,s]}

Together [A[A[{x,y},{u,v}], {h,k}]-A[{x,y},Al{u,v}, {h,k}]]]

det = Det [ ({{1,x1,%3-y3}, {1, %2, %3-v5}, {1, %3, X3-v3}}) ]

PolynomialQ[Together [Numerator [Factor[res([[1]]]]/det],
{x1,%2,%3,Y1,Y2,Y3}]

PolynomialQ[Together [Numerator [Factor[res([[2]]]]/det],
{®1,%2,%3,Y1,Y2,Y3}]

® runsin 2 seconds on a PC
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Proof of the associativity

P+e(Q+eR)=(P+eQ)+eR VP,Q,R¢ EJ

We should verify the above in many different cases according if

Q=R P=Q P=Q+eR,...
Here we deal with the generic case. i.e. All the points
+P,+R, +Q,+(Q +£ R), £(P +£ Q), o all different

Mathematica code

Lix_,y_,r_,s_]:=(s-y)/(r-x);

M[x_,y_,r_,s_]:=(yr-sx)/(r-x);

Al{x_,y_},{r_, s }1:={(Llx,y, r,51)% (x+r),

-(L[x,y,r,s]) +L[x,y,r,s] (x+tr)-M[x,y,r,s]}

Together [A[A[{x,y},{u,v}], {h,k}]-A[{x,y},Al{u,v}, {h,k}]]]

det = Det [ ({{1,x1,%3-y3}, {1, %2, %3-v5}, {1, %3, X3-v3}}) ]

PolynomialQ[Together [Numerator [Factor[res([[1]]]]/det],
{x1,%2,%3,Y1,Y2,Y3}]

PolynomialQ[Together [Numerator [Factor[res([[2]]]]/det],
{®1,%2,%3,Y1,Y2,Y3}]

® runsin 2 seconds on a PC

® For an elementary proof:
“An Elementary Proof of the Group Law for Elliptic Curves.” Department of
Mathematics: Rice University. Web. 20 Nov. 2009.

http://math.rice.edu/ friedl/papers/AAELLIPTIC.PDF
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Proof of the associativity

P+e(Q+eR)=(P+eQ)+eR VP,Q,Re€ EJ

We should verify the above in many different cases according if
Q=R P=Q,P=Q+eAR,...

Here we deal with the generic case. i.e. All the points

+P,+R, +Q,+(Q +£ R), £(P +£ Q), o all different

Mathematica code
Lix_,y_,r_,s_]:=(s-y)/(r-x);
M[x_,y_,r_,s_]:=(yr-sx)/(r-x);
Al{x_,y_},{r_, s }1:={(Llx,y, r,51)% (x+r),
-(L[x,y,r,s]) +L[x,y,r,s] (x+tr)-M[x,y,r,s]}
Together [A[A[{x,y},{u,v}], {h,k}]-A[{x,y},Al{u,v}, {h,k}]]]
det = Det [ ({{1,x1,%3-y3}, {1, %2, %3-v5}, {1, %3, X3-v3}}) ]
PolynomialQ[Together [Numerator [Factor[res([[1]]]]/det],
{x1,%2,%3,Y1,Y2,Y3}]
PolynomialQ[Together [Numerator [Factor[res([[2]]]]/det],
{®1,%2,%3,Y1,Y2,Y3}]

® runsin 2 seconds on a PC

® For an elementary proof:
“An Elementary Proof of the Group Law for Elliptic Curves.” Department of
Mathematics: Rice University. Web. 20 Nov. 2009.
http://math.rice.edu/ friedl/papers/AAELLIPTIC.PDF

® More cases to check. e.g P +£2Q = (P+£ Q) +£ Q
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EXAMPLE: Elliptic curves over [

From our previous list:

Groups of points

E

E(F2)

Y2+ xy =x3+x2+1
Y24+ xy =x3 +1

Yty =x3+x

Y24y =x34+x+1

y+y=x®

{00,(0,1)}

{oe,(0,1),(1,0),(1,1)}

{0, (0,0),(0, 1),

(1,0), (1, 1)}
{oo}

{00,(0,0),(0,1)}
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EXAMPLE: Elliptic curves over [

From our previous list:

Groups of points

E E(F2) |E(F2)]
Y24+ xy =x3 4+ x% +1 {00,(0,1)} 2
Y2+ xy =x3+1 {00,(0,1),(1,0),(1,1)} | 4
Y24y =x+x {0, (0,0),(0, 1),
(1,0),(1,1)} 5
Y+y=x3+x+1 {oo} 1
yrry=x° {c0,(0,0),(0, 1)} 3

So for each curve E(F») is cyclic except possibly for the second

for which we need to distinguish between C, and C, & Co..
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EXAMPLE: Elliptic curves over [

From our previous list:

Groups of points

E E(F2) |E(F2)]
Y24+ xy =x3 4+ x% +1 {00,(0,1)} 2
Y2+ xy =x3+1 {00,(0,1),(1,0),(1,1)} | 4
Y24y =x+x {0, (0,0),(0, 1),
(1,0),(1,1)} 5
Y+y=x3+x+1 {oo} 1
yrry=x° {c0,(0,0),(0, 1)} 3

So for each curve E(F») is cyclic except possibly for the second

for which we need to distinguish between C, and C, & Co..

Note: each C;,i =1,...,5 is represented by a curve /F»
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EXAMPLE: Elliptic curves over I3

From our previous list:

Groups of points

Elliptic curves over Fq

F. Pappalardi

oY

CIMPA

Introduction
History
length of ellipses
why Elliptic curves?
Fields

ye=x3+x+1

{0, (0,1),(0,2), (1,0), (2. 1), (2.2)}

y2=x3 — x>+ 1

{OO’ (071)’(0)2)7 (171)?(172)7}

Wei 3 Equations
Singular points
The Discriminant
Elliptic curves /F,
Elliptic curves /Fs

Point at infinity of £
Projective Plane

V2 =x3 X2 1

{0, (2,0))}

j E E(Fs) [E(Fs)
1 y2=x3+x {0, (0,0), (2, 1), (2,2)} 4
2 y?=x3—x {o0, (1,0), (2,0), (0,0)} 4
3 y2 = X3 — X+ 1 {0, (0,1),(0,2), (1, 1), (1,2), (2, 1), (2,2)} 7
4 y?=x3-—x-1 Jioo) 1
5] y?=x3+x%-1 {00, (1,1, (1,2)} 3
6 6
7 5
8 2

Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of E(F,)

Further Examples
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EXAMPLE: Elliptic curves over I3

From our previous list:

Groups of points

Elliptic curves over Fq

F. Pappalardi

Each E;(TF3) is cyclic except possibly for E;(F3) and Ex(F3) that
could be either C4 or C> & C,. We shall see that:

CIMPA
/ ) 3 Ei Ei (]FS ) | Ei (]FS ) | Introduction
1 ye=x>+x {0, (0,0),(2,1),(2,2)} 4 History
5 3 length of ellipses
2 ye=x°—-x {0, (1,0), (2,0), (0,0)} 4 why Elipic curves?
S| YP=x—x+1] (w0n02.01,02 @10 @2 7 e .
) 3 W 3 Equations
4 yo=Xx"—-—X—- 1 {0} 1 Singular points
The Discriminant
5 y>?=x3+x*-1 o0, (1,1),(1,2)} 3 o ——)
6 y2 =] X3 —+ X2 —+ 1 {o0, (0,1), (0,2), (1,0), (2, 1), (2, 2)} 6 E"_‘p“ccﬁwesm
> 3 > Point at infinity of £
7| y-=x°—x+1 {0, (0,1),(0,2),(1,1),(1,2), } 5 Projectve Fars
8 y?=x3-—x>-1 {0, (2,0))} 2 ey

Homogeneous Coordinates
The sum of points

Examples
Structure of E(F)

Further Examples
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EXAMPLE: Elliptic curves over I3

From our previous list:

Groups of points

Elliptic curves over Fq

F. Pappalardi

Each E;(TF3) is cyclic except possibly for E;(F3) and Ex(F3) that
could be either C4 or C> & Co. We shall see that:

Ei(F3) = C4

and

Ex(F3) = Co® G J

CIMPA
/ Ei Ei (]FS ) | Ei (]FS ) | Introduction
1 y2=x3+x {00, (0,0), (2,1), (2,2)} 4 Hisory
2 5 3 length of ellipses
ye=x°—-x {0, (1,0), (2,0), (0,0)} 4 why Eliptc curves?
3 }/2 =X — X+ 1| (0.01.0.2.01.1.(1.2).21).22) 7 Fields
3 Wei 3 Equations
4 =x°—x—1 {0} 1 Singular points
The Discriminant
5 y>?=x3+x*-1 o0, (1,1),(1,2)} 3 o ——)
6 y2 = X3 + X2 + 1 {o0, (0, 1), (0,2), (1,0), (2. 1), (2,2)} 6 E"_‘puccu_rves/]&
> 3 > Point at infinity of £
7| y-=x°—x+1 {0, (0,1),(0,2),(1,1),(1,2), } 5 Projectve Fars
8 y?=x3—x-1 {00, (2,0))} 2 ER—

Homogeneous Coordinates
The sum of points

Examples
Structure of E(F)
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EXAMPLE: Elliptic curves over I3

From our previous list:

Groups of points

Elliptic curves over Fq

F. Pappalardi

Each E;(TF3) is cyclic except possibly for E;(F3) and Ex(F3) that
could be either C4 or C> & Co. We shall see that:

Eq(F3) = Cy and

Ex(F3) = Co® G J

Note: each C;,i =1,...,7 is represented by a curve /Fj3

CIMPA

! Ei Ei (]FS ) | Ei (]FS ) | Introduction
1 y2P=x"+x {0.(0.,0). (2.1).(2,2)} 4

5 3 length of ellipses
2 ye=x°—-x {0, (1,0), (2,0), (0,0)} 4 why Elipic curves?
3| VP=X—x+1] =0n020002e0e02) 7 e

5 3 Wei 3 Equations
4 yo=Xx"—-—X—- 1 {0} 1 :ihng;\arpoin(s‘
5 y>?=x3+x*-1 o0, (1,1),(1,2)} 3 o ——)
6 y2 = X3 + X2 + 1 {o0, (0, 1), (0,2), (1,0), (2. 1), (2,2)} 6 E"_‘puccu_rves/]&
> 3 > Point at infinity of £

7| y-=x°—x+1 {0, (0,1),(0,2),(1,1),(1,2), } 5 Projectve Fars
8 y?=x3—x-1 {00, (2,0))} 2 ER—

Homogeneous Coordinates
The sum of points

Examples
Structure of E(F)
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EXAMPLE: Elliptic curves over [F5 and [,

VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)

e By y?’=x3+1and B : y?=x3+2

both order 6
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EXAMPLE: Elliptic curves over [F5 and [,

VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)

e Ei:y’=x3+1and B :y?=x3+2

both order 6
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EXAMPLE: Elliptic curves over F5 and I, Flipte curves overf
VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}. F- Peppaiere
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs) g
CIMPA
° E1 a y2 = X3 aF 1 and E2 5 _y2 = X3 aF 2 bO'[h Order 6 Introduction
History
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EXAMPLE: Elliptic curves over [F5 and [,
VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)

e Ei:yl=x3+1and E:y?=x3+2 both order 6
+— 2Xx E; and E; affinely equivalent
« 3y over F5[v/3] = Fas (twists)
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EXAMPLE: Elliptic curves over [F5 and [,
VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)

e Ei:yl=x3+1and E:y?=x3+2 both order 6

+— 2Xx E; and E; affinely equivalent
y «— 3y over Fs[v/3] = Fas (twists)
e E3:y2=x3+xand E;:y? =x3+x+2 order 4
E3(]F5) ~CopCo E4(F5) =~ Cy
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EXAMPLE: Elliptic curves over [F5 and [,
VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)
e Ei:yl=x3+1and E:y?=x3+2 both order 6

2x E; and E; affinely equivalent

y «— 3y over Fs[v/3] = Fas (twists)
e Ey:y?=x3+xand E;: y? =x3 + x+2
E3(Fs) =

order 4
Ca Co E4(F5) >~ Cy
e Es:y?=x3+4xand Es: y? = x5 +4x + 1

Es(Fs) =

both order 8

Co x ®Cy EG(FS) =~ Cg
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EXAMPLE: Elliptic curves over [F5 and [,
VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)
e Ei:yl=x3+1and E:y?=x3+2 both order 6

2x E; and E; affinely equivalent

y «— 3y over Fs[v/3] = Fas (twists)
e Ey:y?=x3+xand E;: y? =x3 + x+2
E3(Fs) =

order 4
Ca Co E4(F5) >~ Cy
e Es:y?=x%+4xand Es: y? = x3 +4x + 1

Es(Fs) =

both order 8
Co x ©Cy EG(F5) >~ Cq

¢ Eriyf=x+x+1 order 9 and E;(Fs) = Co
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EXAMPLE: Elliptic curves over [F5 and [,
VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)
e Ei:yl=x3+1and E:y?=x3+2 both order 6

2x E; and E; affinely equivalent

y «— 3y over Fs[v/3] = Fas (twists)
e Ey:y?=x3+xand E;: y? =x3 + x+2
E3(Fs) =

order 4
Ca Co E4(F5) >~ Cy
e Es:y?=x%+4xand Es: y? = x3 +4x + 1

Es(Fs) =

both order 8
Co x ©Cy EG(F5) >~ Cq

o Eriyf=x+x+1 order 9 and E;(Fs) = Cq
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EXAMPLE: Elliptic curves over [F5 and [,
VE /Fs (12 elliptic curves), #E(Fs) € {2,3,4,5,6,7,8,9,10}.
vn,2 < n<103'E/Fs5 : #E(Fs) = n with the exceptions:

Example (Elliptic curves over Fs)

e Ei:yl=x3+1and E:y?=x3+2 both order 6

E; and E, affinely equivalent

2X
y +— V3y

over Fs[v/3] = Fas (twists)
e E3:yl=x3+xand E;:y? =x3+x+2 order 4
Ex(F5) = Co®Cy  Ey(Fs)= Cs
e E5s:y?=x%+4xand Es: y?> = x>+ 4x +1 both order 8

Es(Fs) = Co x ®Cs  Es(Fs) = Cs

o Eriyf=x+x+1 order 9 and E;(Fs) = Cq

Exercise: Classify all elliptic curves over F, = Fp[¢],£2 = ¢ + 1 J
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