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The division polynomials
Definition (Division Polynomials of E : y? = x® + Ax + B (p > 3))
Yo =0,¢1 = 1,92 =2y
3 =3x* + 6AX2 + 12Bx — A
g =4y(x8 + 5Ax* + 20Bx® — 5A?x? — 4ABx — 8B% — A%)

Yomit =Vmi2¥s — Ymo1¥3 1 form> 2

Yom = <g—;> (Umo¥i_y — Ym_2b?,q) form>3

The polynomial v, € Z[x, y] is the m" division polynomial
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The division polynomials
Definition (Division Polynomials of E : y2 = x® + Ax + B (p > 3))

Yo =0,91 = 1,942 =2y
3 =3x* + 6AX2 + 12Bx — A

Vg =4y(x® + 5Ax* + 20Bx® — 5AXx? — 4ABx — 8B° — A°)
Yomit =Umi2¥m — Pm 191 form>2
Yom = (g;) (wm-ﬁ—Zwm 1 1/Jm—2¢§7+1) form>3
The polynomial v, € Z[x, y] is the m™ division polynomial
Theorem (E : Y2 = X° + AX + Beelliptic curve, P = (x,y) € E)
= = ¢m(X) wm(x,y)
mP = m(x,y) = (%65 %62
where ¢m = X’d}m ¢m+1¢m 1,Wm = 2 ‘4y¢’" 2¢'m+1
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Points of order m
Definition (m-torsion point)

Let E/K and let K an algebraic closure of K.

Elm ={Pec E(K): mP= oo}J
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Elliptic curves over Fq

Points of order m
F. Pappalardi

Definition (m-torsion point)

Let E/K and let K an algebraic closure of K.
E[m] = {P € E(K) : mP =0} | Rdc“j“"*
Vesterday
Theorem (Structure of Torsion Points) TDGEPEILELD
Let E/K and m € N. If p = char(K) t m, :::o:a:::sisms
E[m = Cn®Cr |

Hasse’s Theorem
Frobenius endomorphism
proof

E[m] = Cm 2] Cm/ or E[m] = Cm/ 53] Cm/ J Legendre Symbols
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Points of order m
Definition (m-torsion point)

Let E/K and let K an algebraic closure of K.

E[m] = {P € E(K) : szoo}J

Theorem (Structure of Torsion Points)
Let E/K and m € N. If p = char(K) 1 m,
Em = Cy,® Cn J

Ifm=p'm ptm,

Em=Cn®Cw or E[m=Cy®Cun

J

Idea of the proof:
Let[m]: E — E,P— mP. Then

#E[m] = # Ker[m] < 9¢m = m?

equality holds iff pf m.

Elliptic curves over Fq

F. Pappalardi

CIMPA

Reminder from
Yesterday

The group structure
Weil Pairing

Endomorphisms
Separability

the degree of
endomorphism

Hasse’s Theorem
Frobenius endomorphism
proof

Legendre Symbols

Further reading

33



Remark.

o ER2m+ 1]\ {oo} = {(x,y) € E(K) : Yomi1(x) =

o E[2m]\ E[2] = {(x,y) € E(K) :

Y~ "am(x) = 0}

0}
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Remark.

o E2m+1]\ {0} = {(x,y) € E(K) : t2m1(x) = 0}
o E2m]\ E[2] = {(x,y) € E(K) : y~"¢2m(x) = 0}

Example
a(x) =2y(x® + 5AX* + 20Bx® — 5A°x% — 4BAx + (7A3 - 852))
s(x) =5x'2 + 62Ax"° 4 380Bx° — 105A%x® + 240BAX”
(—300A3 - 24032) x® — 696BA%x®
+ (—125A4 = 192032/4) x* + (—80BA° - 160033) X
(750A5 — 2408°A%) x* + (71OOBA4 — 6408°A) x
(A6 — 3282A° — 2563“)

e(x) =2y(6x"® + 144Ax"* 4 1344Bx"® — 728A%x™ + (72576A3 = 537682) x'°

— 9152BA%x° + (—1884A“ - 3974432A) X%+ (153613A3 - 4454453) x

+ (—2576A° — 53768°A%) x° + (—6720BA* — 322568°A) x°

728A° — 806482 A% — 107525“) x* 4 (—3584BA5 - 250885'3A2) x3

+(-
(144A7 — 30728%A% — 2764sB4A) X2
+(

192BA° — 512B° A° — 1228835) X+ (6A8 +192B2A° + 1024B4A2))
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Group Structure of E(IF)

Exercise

Use division polynomials in Sage to write a list of all curves E
over [Fyo3 such that E(F103) D E[6]. Do the same for curves
over Fsa.
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Group Structure of E(IF)

Exercise

Use division polynomials in Sage to write a list of all curves E
over [Fyo3 such that E(F103) D E[6]. Do the same for curves
over Fsa.

Corollary (Corollary of the Theorem of Structure for torsion)
Let E/Fq. 3n,k € N are such that

E(Fg) = Cn & Cox
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Group Structure Of E(]Fq) Elliptic curves over Fq

F. Pappalardi

Exercise

Use division polynomials in Sage to write a list of all curves E CIMPA

over [Fyo3 such that E(F103) D E[6]. Do the same for curves Reminder from
Yesterday

over F54 : Points of finite order

Corollary (Corollary of the Theorem of Structure for torsion) el Paiing
Endomorphisms

Let E/Fq. 3n, k € N are such that s
endomorphism
Hasse’s Theorem
Frobenius endomorphism

E(Fq) = Ch ® Crk fous

Legendre Symbols

Further reading

Theorem

Let E/Fq and n, k € N such that E(Fq) = C, ® Cpk. Then
niqg-1.

35



Weil Pairing

Let E/Kand me Ns.t. pt m. Then

Elm = Cy,® Chp J
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Weil Pairing
Let E/Kand me Ns.t. pt m. Then

Elm = Cy,® Chp J

We set
um::{XGR:Xm:ﬂ»J
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
um::{XGR:X’":ﬂ»J

1m is a cyclic group with m elements(since pt m)
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)

Theorem (Existence of Weil Pairing)

There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)
Theorem (Existence of Weil Pairing)

There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]
@ cn(P+e Q,R) =en(P, R)en(Q, R) (bilinearity)
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)

Theorem (Existence of Weil Pairing)
There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]

@ en(P+eQ R) =en(P,R)en(Q, R) (bilinearity)

® en(P,.R)=1YR € E[m| = P = oo (non degeneracy)
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

E[m] = Cn& Cn |

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)

Theorem (Existence of Weil Pairing)
There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]
©® en(P+eQ,R) =en(P,R)en(Q,R) (bilinearity)
® en(P,R) =1VR € E[m] = P = o (non degeneracy)
® en(P,P)=1
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

E[m] = Cn& Cn |

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)

Theorem (Existence of Weil Pairing)

There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]

O en(P+e Q,R) = en(P, R)en(Q, R) (bilinearity)

@ en(P.R) = 1VR € E[m] = P = oo (non degeneracy)
© en(P,P) =

0 ey(P.Q) = em(Q P)~!
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)
Theorem (Existence of Weil Pairing)

There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]

O en(P+e Q,R) = en(P, R)en(Q, R) (bilinearity)

® en(P,R)=1VYR € E[m| = P = oo (non degeneracy)

0 e,(P,Q)=en(Q,P)"!

(
(
® en(P,P) =1
(
O en(o

P,0Q) = gen(P, Q) Vo € Gal(K/K)
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)

Theorem (Existence of Weil Pairing)
There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]
©® en(P+eQ,R) =en(P,R)en(Q,R) (bilinearity)
® en(P,R)=1VYR € E[m| = P = oo (non degeneracy)
® en(P,P)=1
0 e,(P,Q)=en(Q,P)"!
@ en(oP,0Q) = gen(P, Q) Vo € Gal(K/K)

0O en(a(P),a(Q)) = en(P, Q)% Vo separable
endomorphism

I~ o~~~ o~~~
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
ym::{XGR:Xm=1}J

1m is a cyclic group with m elements(since pt m)

Theorem (Existence of Weil Pairing)
There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]
@ en(P+eQ R) =en(P,R)en(Q, R) (bilinearity)
® en(P,R) =1VR € E[m] = P = o (non degeneracy)
® en(P,P)=1
® en(P.Q) = en(Q.P)"
@ en(cP,0Q) = cen(P, Q) Vo € Gal(K/K)
(a

0@ en(a(P),a(Q)) = en(P, Q)% Vo separable
endomorphism
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Weil Pairing
Let E/Kand me Ns.t. pfm. Then

Elm = Cy,® Chp J

We set
ym::{XGR:X’":ﬂJ

1m is a cyclic group with m elements(since pt m)

Theorem (Existence of Weil Pairing)

There exists a pairing ey, : E[m]| x E[m] — un, called Weil
Pairing, s.t. VP, Q € E[m]

O en(P+e Q,R) = en(P, R)en(Q, R) (bilinearity)

® en(P,R)=1VYR € E[m| = P = oo (non degeneracy)

O en(P, Q) = em(07 P)_1
@ en(cP,0Q) = cen(P, Q) Vo € Gal(K/K)

0O en(a(P),a(Q)) = en(P, Q)%9° Yo separable
endomorphism

(
(
© en(P.P)=1
(
(

The last one needs to be discussed further!!!
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Properties of Weil pairing
@ E[m=Cna® Cy = E[m] has a Z/mZ—-basis

i.e. 3P,Q € E[m] : VR € E[m], 3o, 3 € Z/mZ,R = aP + Q

Elliptic curves over Fgq

F. Pappalardi

°
CIMPA

Reminder from
Yesterday
Points of finite order
The group structure

Endomorphisms
Separability
the degree of
endomorphism
Hasse’s Theorem
Frobenius endomorphism
proof

Legendre Symbols

Further reading



Properties of Weil pairing
Q@ E[m = Cr® Cp = E[m] has a Z/mZ-basis

i.e. IP,Qe€ E[m]: VR € E[m],3\o,8 € Z/mZ,R = aP + 5Q

® If (P, Q) is a Z/mZ-basis, then ¢ = en(P, Q) € un is primitive
(i.e. ord( = m)

J

Proof. Let d = ord¢. Then 1 = e,(P, Q)¢ = en(P, dQ).
VR € E[m], en(R, dQ) = en(P, dQ)>en(Q, o)d,@ -1
SodQ =00 = m|d.
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Properties of Weil pairing
Q@ E[m = Cr® Cp = E[m] has a Z/mZ-basis J
i.e. IP,Qe€ E[m]: VR € E[m],3\o,8 € Z/mZ,R = aP + 5Q

® If (P, Q) is a Z/mZ-basis, then ¢ = en(P, Q) € un is primitive
(i.e. ord( = m) J

Proof. Let d = ord¢. Then 1 = en(P, Q)Y = en(P, dQ).
VR € E[m], en(R, dQ) = en(P, dQ)*en(Q, Q)% = 1.
SodQ =0 = m|d.

® Emc E(K) = umCK )

Proof. Let o € Gal(K/K) since the basis (P, Q) C E(K),
o(P) =P, o(Q) = Q. Hence
(=em(P,Q)=en(cP,cQ) =cen(P,Q) = a(

So ¢ € KGK/K) = K = 1, = (¢) € K*
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Properties of Weil pairing
Q@ E[m = Chr® Cp = E[m] has a Z/mZ-basis J
i.e. IP,Qe€ E[m]: VR € E[m],3\o,8 € Z/mZ,R = aP + 5Q

® If (P, Q) is a Z/mZ-basis, then ¢ = en(P, Q) € un is primitive
(i.e. ord( = m) J

Proof. Let d = ord¢. Then 1 = en(P, Q)Y = en(P, dQ).
VR € E[m], en(R, dQ) = en(P, dQ)*en(Q, Q)% = 1.
SodQ =0 = m|d.

® Emc E(K) = umCK J

Proof. Let o € Gal(K/K) since the basis (P, Q) C E(K),
o(P) =P, 0(Q) = Q. Hence
¢ =em(P,Q)=em(cP,0Q) =cen(P,Q) =a(
So ¢ € KGK/K) = K = 1y = (¢) € K*

0O ifE(F;)=Cr®Ckn = qg=1modn J

Proof. E[n] C E(Fq) = un CFg=n|q—1
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Properties of Weil pairing
Q@ E[m = Chr® Cp = E[m] has a Z/mZ-basis

i.e. 3P,Q € E[m] : VR € E[m],3\«, 3 € Z/mZ,R = aP + Q

® If (P, Q) is a Z/mZ-basis, then ¢ = en(P, Q) € un is primitive
(i.e. ord( = m)

Proof. Let d = ord¢. Then 1 = en(P, Q)Y = en(P, dQ).
VR € E[m], en(R, dQ) = en(P, dQ)*en(Q, Q)% = 1.
SodQ =0 = m|d.

® Emc E(K) = umCK

)

Proof. Let o € Gal(K/K) since the basis (P, Q) C E(K),
o(P) =P, 0(Q) = Q. Hence
¢ =em(P,Q)=em(cP,0Q) =cen(P,Q) =a(
So ¢ € KGK/K) = K = 1y = (¢) € K*

O ifE(F;)=Cr®Ckn = qg=1modn

Proof. E[n] C E(Fq) = un CFg=n|qg—1
O IfE/Q = E[m] Z E(Q) form>3
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Endomorphisms

Definition

A map o : E(K) — E(K) is called an endomorphism if

Elliptic curves over Fq

F. Pappalardi

CIMPA

Reminder from
Yesterday
Points of finite order

The group structure
Weil Pairing

Separability

the degree of
endomorphism

Hasse’s Theorem
Frobenius endomorphism

proof
Legendre Symbols

Further reading

38



Elliptic curves over Fgq

Endomorphisms
F. Pappalardi
Definition
A map a : E(K) — E(K) is called an endomorphism if &
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Endomorphisms
Definition

A map «a : E(K) — E(K) is called an endomorphism if

e o(P+£ Q) = a(P)+e a(Q) (« is a group homomorphism)

[ 3R17R2 € R(X,y) s.t.
a(x,y) = (Ri(x,y), Ra(X, y))

V(x,y) ¢ Ker(«)
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Endomorphisms
Definition

A map «a : E(K) — E(K) is called an endomorphism if

e o(P+£ Q) = a(P)+e a(Q) (« is a group homomorphism)

° E|R17FI’2 S R(X,y) s.t.
a(x,y) = (Ri(x,y), Ra(x,y))

V(x,y) ¢ Ker(«)
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Elliptic curves over Fq

Endomorphisms
F. Pappalardi

Definition
A map a : E(K) — E(K) is called an endomorphism if

e o(P+£ Q) = a(P)+e a(Q) (« is a group homomorphism) s

e IRy, R € R(X,}/) s.t. Reminder from

a(x,y) = (Ri(x,y), Re(x,y))  V(x,y) & Ker(a) s

(K(x, y) is the field of rational functions, v;“elgpa':n‘g‘
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Endomorphisms
Definition
A map o : E(K) — E(K) is called an endomorphism if
e o(P+£ Q) = a(P)+e a(Q) (« is a group homomorphism)

° E|R17R2 S R(X,y) s.t.
a(x,y) = (Ri(x,y), Re(x,y))  V(x,y) & Ker(a)

(K(x,y) is the field of rational functions, a(cc) = oo )
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Endomorphisms

Definition

A map «a : E(K) — E(K) is called an endomorphism if
e o(P+£ Q) = a(P)+e a(Q) (« is a group homomorphism)
° 3R17R2 S R(X,y) s.t.
a(x,y) = (Ri(x,y), Ra(x,y))
(K(x,y) is the field of rational functions, a(c0) = oo )

Exercise (Show that we can always assume)

V(x,y) ¢ Ker(«)

a(x,y) = (r(x), yr2(x)), 3ry, € K(x)

Hint: use y? = x3 + Ax + Band a(—(x,y)) = —a(x, y),
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Endomorphisms
Definition
A map o : E(K) — E(K) is called an endomorphism if
e o(P+£ Q) = a(P)+e a(Q) (« is a group homomorphism)

° 3R17R2 S R(X,y) s.t.
_ a(Xay):(R'l(Xay)vRZ(Xay)) V(va)gKer(a)
(K(x,y) is the field of rational functions, a(c0) = oo )

Exercise (Show that we can always assume)

a(x,y) = (r(x), yr2(x)), 3ry, € K(x) |
Hint: use y? = x3 + Ax + Band a(—(x,y)) = —a(x, y),

Remarks/Examples:

o if ri(x) = p(x)/q(x) with gcd(p, g) = 1 and (xo, o) € E(K)
with g(xo) = 0 = a(Xo, Yo) = o©
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Endomorphisms
Definition
A map o : E(K) — E(K) is called an endomorphism if
e a(P+£ Q) = a(P) +£ a(Q) (a is @ group homomorphism)

° 3R17R2 S R(X,y) s.t.
_ OZ(X,y):(R1(X,y),R2(X,y)) V(va)gKer(Oé)
(K(x,y) is the field of rational functions, a(c0) = oo )

Exercise (Show that we can always assume)

a(x,y) = (r(x), yr2(x)), 3ry, € K(x) |
Hint: use y? = x3 + Ax + Band a(—(x,y)) = —a(x, y),

Remarks/Examples:
o if ri(x) = p(x)/q(x) with gcd(p, g) = 1 and (xo, o) € E(K)
with g(x0) = 0 = a(Xo, Yo) = o0
o [m](x,y) = (“"—m, j—g) is an endomorphism Vm € Z

P

2
Ym
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Endomorphisms
Definition
A map o : E(K) — E(K) is called an endomorphism if
e a(P+£ Q) = a(P) +£ a(Q) (a is @ group homomorphism)
° 3R17R2 S R(X,y) s.t.
a(x,y) = (Ri(x,y), Re(x,y))  V(x,y) & Ker(a)
(K(x, y) is the field of rational functions, a(o0) = o0)

Exercise (Show that we can always assume)

a(x,y) = (r(x), yr2(x)), 3ry, € K(x) )
Hint: use y? = x3 + Ax + Band a(—(x,y)) = —a(x, y),

Remarks/Examples:

o if ri(x) = p(x)/q(x) with gcd(p, g) = 1 and (xo, o) € E(K)
with g(xo0) = 0 = a(xo, ¥o) = o0

o [M](x,y) = (%, Z—g) is an endomorphism Ym € Z

o &q: E(Fq)) = E(Fg)), (x,¥) — (x9,y9) is called

Frobenius Endomorphism
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Endomorphisms (continues)

Theorem
If a # [0] is an endomorphism, then it is surjective.
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Endomorphisms (continues)

Theorem
If a # [0] is an endomorphism, then it is surjective.

Sketch of the proof.

Assume p > 3, a(x, ¥) = (p(x)/q(x), yr2(x) and (a, b) € E(K).

o If p(x) — aq(x) is not constant, let x; be one of its roots.
Choose yj a square root of xg + AXo + B.

Then either a(xo, ¥o) = (&, b) or a(xo, —yo) = (&, b).
e If p(x) — aq(x) is constant,
this happens only for one value of a!

Let (a1, b1) € E(K):
(a1, b1) # (a,£b) and (a1, b1) +£ (a, b) # (a, £b).

Then (a1, b1) = a(Py) and (a1, b1) +£ (a, b) = a(P>)
Finally (a,b) = a(P> — P1)
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Endomorphisms (continues)

Definition

Suppose a.: E — E, (x,y) = (r1(x), yr2(x)) endomorphism.
Write r; (x) = p(x)/q(x) with ged(p(x), g(x)) = 1.
e The degree of « is deg a := max{deg p,deg g}
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Endomorphisms (continues)

Definition

Suppose a.: E — E, (x,y) = (r1(x), yr2(x)) endomorphism.

Write r1(x) = p(x)/q(x) with ged(p(x), g(x)) = 1.
o The degree of « is deg o := max{deg p,deg q}
e o is said separable if (p'(x), q'(x)) # (0,0)

(identically)
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Endomorphisms (continues)

Definition

Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism.

Write r1(x) = p(x)/q(x) with ged(p(x), g(x)) = 1.
e The degree of « is deg o := max{deg p,deg g}
e o is said separable if (p’(x), q'(x)) # (0,0)

(identically)
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Endomorphisms (continues)

Definition

Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism.
Write ri(x) = p(x)/q(x) with gcd(p(x), q(x)) = 1.
e The degree of « is deg o := max{deg p,deg g}
e o is said separable if (p’(x), q'(x)) # (0,0)

Lemma

o dy(x,y) = (x9,y9) is a non separable endomorphism of
degree q

(identically)
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Elliptic curves over Fq

Endomorphisms (continues)
F. Pappalardi

Definition
Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism. i
Write r(x) = p(x)/q(x) with ged(p(x). g(x)) = 1. i

e The degree of « is deg o := max{deg p,deg g} Mominder from

e o is said separable if (p'(x), g'(x)) # (0,0)  (identically) — “=eo
Lemma [ Endomorphisms

endomorphism

Hasse’s Theorem
Frobenius endomorphism

o ®4(x,y) = (x9,y9) is a non separable endomorphism of
degree q

o ﬁ wm 2 proof
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Endomorphisms (continues)

Definition
Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism.
Write ri(x) = p(x)/q(x) with gcd(p(x), q(x)) = 1.

e The degree of « is deg o := max{deg p,deg g}

e o is said separable if (p'(x), §'(x)) # (0,0)  (identically)

Lemma
o O4(x,y) = (x9,y9) is a non separable endomorphism of
degree q
o [M](x,y) = (%, %) has degree m?

e [m] separable iff p t m.
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Endomorphisms (continues)

Definition
Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism.
Write ri(x) = p(x)/q(x) with gcd(p(x), q(x)) = 1.

e The degree of « is deg o := max{deg p,deg g}

e o is said separable if (p'(x), §'(x)) # (0,0)  (identically)

Lemma
e O4(x,y) = (x9,y9) is a non separable endomorphism of
degree q
o [M](x,y) = (%, %) has degree m?

e [m] separable iff pt m.
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Endomorphisms (continues)
Definition
Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism.
Write r; (x) = p(x)/q(x) with ged(p(x), g(x)) = 1.
e The degree of « is deg o := max{deg p,deg g}

e o is said separable if (p'(x), §'(x)) # (0,0)  (identically)
Lemma
o ®4(x,y) = (x9,y9) is a non separable endomorphism of
degree q

o [M](x,y) = (i—%, i—g) has degree m?

e [m] separable iff pt m.

Proof.
First: Use the fact that x — x9 is the identity on I, hence it
fixes the coefficients of the Weierstral3 equation.
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Endomorphisms (continues)

Definition
Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism.
Write ri(x) = p(x)/q(x) with gcd(p(x), q(x)) = 1.
e The degree of « is deg o := max{deg p,deg g}
e o is said separable if (p'(x), §'(x)) # (0,0)  (identically)

Lemma

o ®4(x,y) = (x9,y9) is a non separable endomorphism of
degree q

o [M](x,y) = (i—%, i—g) has degree m?

e [m] separable iff pt m.

Proof.

First: Use the fact that x — x9 is the identity on I, hence it
fixes the coefficients of the Weierstral3 equation.Second:

already done.
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Endomorphisms (continues)
Definition
Suppose a : E — E, (x,y) = (r1(x), yr2(x)) endomorphism.
Write ri(x) = p(x)/q(x) with gcd(p(x), q(x)) = 1.
e The degree of « is deg o := max{deg p,deg g}
e o is said separable if (p'(x), §'(x)) # (0,0)  (identically)

Lemma

o ®4(x,y) = (x9,y9) is a non separable endomorphism of
degree q

o [M](x,y) = (i—%, i—g) has degree m?

e [m] separable iff pt m.

Proof.

First: Use the fact that x — x9 is the identity on I, hence it
fixes the coefficients of the Weierstral3 equation.Second:

already done. Third See [8, Proposition 2.28] O
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Endomorphisms (continues)
Theorem
Let o # 0 be an endomorphism. Then

=dega ifa is separable

Ker
i# Ker(a) < dega otherwise
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Endomorphisms (continues)
Theorem
Let o # 0 be an endomorphism. Then

=dega ifa is separable

Ker
i# Ker(a) < dega otherwise

Proof.
It is same proof as #E[m] = # Ker[m] < 0¢m = m?
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Endomorphisms (continues)
Theorem
Let o # 0 be an endomorphism. Then

=dega ifa is separable

Ker
i# Ker(a) < dega otherwise

Proof.
It is same proof as #E[m] = # Ker[m] < 0¢m = m?
(equality for p t m)
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Endomorphisms (continues)
Theorem
Let o # 0 be an endomorphism. Then

=dega ifa is separable

Ker
i# Ker(a) < dega otherwise

Proof.
It is same proof as #E[m] = # Ker[m] < 8¢, = m?
(equality for p t m)

Definition
Let E/K. The ring of endomorphisms

End(E) := {a: E — E, «is an endomorphism}.

where for all a4, az € End(E),
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Endomorphisms (continues)
Theorem
Let o # 0 be an endomorphism. Then

=dega ifa is separable

Ker
i# Ker(a) < dega otherwise

Proof.
It is same proof as #E[m] = # Ker[m] < 0¢m = m?
(equality for p t m)

Definition
Let E/K. The ring of endomorphisms

End(E) := {a: E — E, «is an endomorphism}.

where for all a1, ap € End(E),
° ((11 + ag)P = ()41(P) aF/E ag(P)
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Endomorphisms (continues)
Theorem
Let o # 0 be an endomorphism. Then

=dega ifa is separable
< dega otherwise

# Ker(a)

Proof.
It is same proof as #E[m] = # Ker[m] < 8¢, = m?
(equality for p t m)

Definition
Let E/K. The ring of endomorphisms

End(E) := {a: E — E, «is an endomorphism}.

where for all a4, az € End(E),
o (a1 + a2)P := a1(P) +£ az(P)
o (a1a2)P = aq(az(P))
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Endomorphisms (continues)
Properties of End(E):

e [0] : P — ocis the zero element
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Endomorphisms (continues)
Properties of End(E):

e [0] : P — ocis the zero element
e [1] : P — Pis the identity element
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Endomorphisms (continues)
Properties of End(E):
e [0] : P — ocis the zero element

e [1]: P Pis the identity element
e Z — End(E), m+— [m]
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Endomorphisms (continues)
Properties of End(E):

[0] : P — o is the zero element

[1] : P~ P is the identity element

Z — End(E), m — [m]

End(E) is not necessarily commutative
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Endomorphisms (continues)
Properties of End(E):

[0] : P — o is the zero element

[1] : P~ P is the identity element

Z — End(E), m — [m]

End(E) is not necessarily commutative

if K =Fq, 5 € End(E). So Z[d4] C End(E)
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Endomorphisms (continues)
Properties of End(E):

[0] : P — o is the zero element

[1] : P~ P is the identity element

Z — End(E), m — [m]

End(E) is not necessarily commutative

if K =TFq, ;5 € End(E). So Z[®,] C End(E)
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Endomorphisms (continues)
Properties of End(E):

[0] : P — o is the zero element

[1] : P~ P is the identity element

Z — End(E), m — [m]

End(E) is not necessarily commutative

if K =TFq, ;5 € End(E). So Z[®,] C End(E)

Recall that « € End(E) is said separable if

(P'(x),q'(x)) # (0,0) where a(x, y) = (p(x)/q(x), yr(x)).
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Endomorphisms (continues)
Properties of End(E):

[0] : P — o is the zero element

[1] : P~ P is the identity element

Z — End(E), m — [m]

End(E) is not necessarily commutative

o if K =TFg, ®q € End(E). So Z[®4] C End(E)

Recall that « € End(E) is said separable if
(P'(x),q'(x)) # (0,0) where a(x, y) = (p(x)/q(x), yr(x)).
Lemma

Letdy: (x,y) — (x9,y9) be the Frobenius endomorphism and
letr,s € Z. Then

réog + s € End(E) is separable < p+1s J
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Endomorphisms (continues)
Properties of End(E):

e [0] : P — ocis the zero element

[1] : P~ P is the identity element

Z — End(E), m — [m]

End(E) is not necessarily commutative

o if K =TFg, ®q € End(E). So Z[®4] C End(E)

Recall that « € End(E) is said separable if
(P'(x),q'(x)) # (0,0) where a(x, y) = (p(x)/q(x), yr(x)).
Lemma

Letdy: (x,y) — (x9,y9) be the Frobenius endomorphism and
letr,s € Z. Then

réog + s € End(E) is separable < p+1s J

Proof.

See [8, Proposition 2.29] O
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Recall that the degree if « is deg « := max{deg p,deg g}
where a(x, y) = (p(x)/q(x), yr(x)).
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Recall that the degree if « is deg « := max{deg p,deg g}
where a(x, y) = (p(x)/q(x), yr(x)).

Lemma

Vr,s € Z andVao, 8 € End(E),
deg(ra + sB) = r’deg a + s?deg 8 + rs(deg(a + 3) — deg a — deg j3)
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Recall that the degree if « is deg « := max{deg p,deg g}
where a(x. y) = (p(x)/q(x). yr(x)).
Lemma

Vr,s € Z andVao, 8 € End(E),
deg(ra + sB) = r’deg a + s?deg 8 + rs(deg(a + 3) — deg a — deg j3)

Proof.
Let m € N with p{ m and fix a basis P, Q of E[m] = Cr, & Cp.
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Recall that the degree if « is deg « := max{deg p,deg g}
where a(x. y) = (p(x)/q(x). yr(x)).
Lemma

Vr,s € Z andVao, 8 € End(E),
deg(ra + sB) = r’deg a + s?deg 8 + rs(deg(a + 3) — deg a — deg j3)

Proof.

Let m € N with p{ m and fix a basis P, Q of E[m] = Cr, & Cp.
Then a(P) = aP + bQ and a(Q) = cP + dQ with

a b\ . oo
om = <c d> with entries in Z/mZ.

J
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Recall that the degree if « is deg « := max{deg p,deg g}
where a(x. y) = (p(x)/q(x). yr(x)).
Lemma

Vr,s € Z andVao, 8 € End(E),
deg(ra + sB) = r’dega + s?deg 8 + rs(deg(a + 3) — deg a — deg j3)

Proof.

Let m € N with p{ m and fix a basis P, Q of E[m] = Cr, & Cp.
Then a(P) = aP + bQ and a(Q) = cP + dQ with

a b\ . .
am = <c d> with entries in Z/mZ.

We claim that deg(«) = det ao, mod m. In fact if ¢ = en(P, Q)
is the Weil pairing (primitive root).

Elliptic curves over Fq

F. Pappalardi

CIMPA

Reminder from
Yesterday
Points of finite order
The group structure

Weil Pairing

Endomorphisms
Separability

Hasse’s Theorem
Frobenius endomorphism
proof

Legendre Symbols

Further reading



Recall that the degree if « is deg « := max{deg p,deg g}
where a(x. y) = (p(x)/q(x). yr(x)).
Lemma

Vr,s € Z andVao, 8 € End(E),
deg(ra + sB) = r’dega + s?deg 8 + rs(deg(a + 3) — deg a — deg j3)

Proof.

Let m € N with p{ m and fix a basis P, Q of E[m] = Cr, & Cp.
Then a(P) = aP + bQ and a(Q) = cP + dQ with

a b\ . .
am = <c d> with entries in Z/mZ.

We claim that deg(«) = det ao, mod m. In fact if ¢ = en(P, Q)
is the Weil pairing (primitive root).
¢%9(») = g (a(P), a(Q)) = em(aP + bQ, cP + dQ) = ¢29-b¢
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Recall that the degree if « is deg o := max{deg p,deg g} Elliptic curves over g
where o(x. ) = (p(x)/q(x). yr(x)).

Lemma

Vr,s € Z andVao, 8 € End(E),

deg(ra + sB) = r’dega + s?deg 8 + rs(deg(a + 3) — deg a — deg j3) cimra

S

Proof. e

Let m € N with pt m and fix a basis P, Q of E[m] = Cp, @ Cp,. ellei

Then a(P) = aP + bQ and o(Q) = cP + dQ with romorpnians
oOm = <2 3) W|th entl’ies in Z/mZ J Hasse’.sTheorem‘

We Cla|m that deg(()l) = det am mOd m. In faCt |f C = em(P, Q) Legendre Symbols

is the Weil pairing (primitive root). Further reading

¢9(®) = ey (a(P), a(Q)) = em(aP + bQ, cP + dQ) = ¢a-te

So deg(«) = ad — bc = det ap(modm). |




Recall that the degree if « is deg « := max{deg p,deg g}
where a(x. y) = (p(x)/q(x). yr(x)).
Lemma

Vr,s € Z andVao, 8 € End(E),
deg(ra + sB) = r’dega + s?deg 8 + rs(deg(a + 3) — deg a — deg j3)

Proof.

Let m € N with p{ m and fix a basis P, Q of E[m] = Cr, & Cp.
Then a(P) = aP + bQ and a(Q) = cP + dQ with

am = <i 3) with entries in Z/mZ.

We claim that deg(«) = det ao, mod m. In fact if ¢ = en(P, Q)
is the Weil pairing (primitive root).

¢%9(») = g (a(P), a(Q)) = em(aP + bQ, cP + dQ) = ¢29-b¢
deg(a) = ad —be = detam(modm). g -\ iation shows
det(ram + 88m) = r? det aum + s> det Bm + rsdet(am + Bm) — detam — det Bm)

So
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Recall that the degree if « is deg o := max{deg p,deg g} Elliptic curves over g
where o(x. ) = (p(x)/q(x). yr(x)).

Lemma
Vr,s € Z andVao, 8 € End(E),

deg(ra + sB) = rPdega + s®deg 8 + rs(deg(c + ) — deg a — deg ) cimra
Yoseriay
Proof. b
Let m € N with p{ m and fix a basis P, Q of E[m] = C, & Cp. Welleing
Then a(P) = aP + bQ and a(Q) = cP + dQ with odomorisms
oOm = <2 3) W|th entl’ies in Z/mZ J Hasse’.sTheorem‘
We Cla|m that deg(()l) = det am mOd m. In faCt |f C = em(P, Q) Legendre Symbols
is the Weil pairing (primitive root). Furiher reading

Cdeg("‘) = en(a(P),a(Q)) = enm(aP + bQ, cP + dQ) = Cad*bc
deg(«) = ad — bc = det ap(modm). ,
9(2) m ) A calculation shows
det(raum + $8m) = r? detam + s* det By + rsdet(am + Bm) — detam — det Bnm)
So deg(ra + sB) = r’deg o + s deg 8 + rsdeg(c + 8) — deg o — deg 8 mod m

So




Recall that the degree if « is deg « := max{deg p,deg g}
where a(x. y) = (p(x)/q(x). yr(x)).
Lemma

Vr,s € Z andVao, 8 € End(E),
deg(ra + sB) = r’dega + s?deg 8 + rs(deg(a + 3) — deg a — deg j3)

Proof.

Let m € N with p{ m and fix a basis P, Q of E[m] = Cr, & Cp.
Then a(P) = aP + bQ and a(Q) = cP + dQ with

a b\ . .
am = <c d> with entries in Z/mZ. J

We claim that deg(«) = det ao, mod m. In fact if ¢ = en(P, Q)
is the Weil pairing (primitive root).
¢%9(») = g (a(P), a(Q)) = em(aP + bQ, cP + dQ) = ¢29-b¢
S N - c.ation shows
det(ram + 88m) = r? det aum + s> det Bm + rsdet(am + Bm) — detam — det Bm)
So deg(ra 4 sB) = rPdeg o + s® deg 8 + rsdeg(a + 8) — deg o — deg 8 mod m
Since it holds for co—-many m’s the above is an equality. O

So
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Elliptic curves over Fq

Theorem (Hasse) F. Pappalardi

Let E be an elliptic curve over the finite field Fy. Then the order

of E(Fy) satisfies ?
CIMPA
|q + 1 - #E(]Fq)| S 2\/6 Reminder from
Yesterday
Points of finite order
5 5 i The group structure
So #E(Fq) € [(v/q — 1), (v/q + 1)7] the Hasse interval Z, Weil Pairing
Endomorphisms
Example (Hasse Intervals) Soparabilty
the degree of
‘21 f? T endomorphism
3 {1.2,3,4.5,6,7}
4 {1,2,3,4,5,6,7,8, 9} Frobenius endomorphism
5 {2,3,4,5,6,7,8,9,10}
7 {3.4.5.6.7.8.,9,10, 11, 12, 13} =
8 {4,5,6,7,8,9,10, 11, 12 13 14} Legendre Symbols
9 {4.5.6,7.8,9,10, 11, 12, 13, 14, 15, 16}
11 {6,7,8,9,10,11,12,13,14,15,16,17,18} Further reading
13 {7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

16 | {9,10,11,12,13,14, 15,16, 17, 18, 19, 20, 21, 22, 23, 25}

17 | {10, 11,12, 13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

19 | {12, 13,14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}

23 | {15,16,17,18, 19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

25 | {16,17,18,19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}

27 | {18,19,20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}

29 | {20,21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}

31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 | {22,23,24,25,26,27,28,29,30,31, 32,33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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The Frobenius endomorphism ¢,

®q: Fq — Fq, x — x9 is a field automorphism |
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Elliptic curves over Fq

The Frobenius endomorphism ¢,
F. Pappalardi

®q: Fq — Fq, x — x9 is a field automorphism |

Given a € Ty,

CIMPA
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The Frobenius endomorphism ¢, Ellitic curves over fiq
F. Pappalardi

®q: Fq — Fq, x — x9 is a field automorphism J

Given o € Fq,
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Elliptic curves over Fq

The Frobenius endomorphism ¢,
F. Pappalardi

®q: Fq — Fq, x — x9 is a field automorphism |

Given a € Ty, Ry
n . no_ CIMPA
a€Fgp & Of(a)=a9 =a J -
eminder from
Yesterday

Fixed points of powers of ¢, are exactly elements of Fgn Poiisof it order
qu : E(Fq) — E(]Fq)a (Xa y) = (anyq)a 00 > 00 J ellaling

Endomorphisms

Separability

Properties of ¢, the degreo of

endomorphism

Hasse’s Theorem

e &, € End(E), it is not separable and has degree g e

o Og(x,y) =(x,y) <= (x,y) € E(Fg) Legendre Symbols
o Ker(®g —1) = E(Fy) FULTETEEEE
o #Ker(®q— 1) =deg(Py — 1) (since 45 — 1 is separable)



The Frobenius endomorphism ¢,

®q: Fq — Fq, x — x9 is a field automorphism J

Given a € Ty,

aclfyp & ¢Z(o<):aqn:a J

Fixed points of powers of ¢, are exactly elements of Fgn

d)q:E(IF‘q)—>E(Fq),(x,y)n—>(xq,yq),00»—>oo J

Properties of ¢,

e &, € End(E), it is not separable and has degree g

o Og(x,y) = (x,y) < (x,y) € E(Fq)

o Ker(®g —1) = E(Fy)

o #Ker(®qg— 1) =deg(Py — 1) (since ¢4 — 1 is separable)

if we can compute deg(®4 — 1), we can compute #E(Fg)
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The Frobenius endomorphism ¢, Fillpic curves over Fq
F. Pappalardi

®q: Fq — Fq, x — x9 is a field automorphism )

Given a € Ty,
a€Fgp & Of(a)= " =a J e
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The Frobenius endomorphism ¢, Fillpic curves over Fq
F. Pappalardi

®q: Fq — Fq, x — x9 is a field automorphism )

Given a € Ty,
a€Fgp & Of(a)= " =a J e
Reminder from
Yesterday
Fixed points of powers of ¢, are exactly elements of Fgn i e
q)q : E(Fq) — E(Fq)v (Xa y) = (anyq)a 00 = 00 J Weil Pairing
Endomorphisms
Properties of ¢, '":"mgp‘:'m
Hasse’s Theorem
e &, € End(E), it is not separable and has degree g :
o qu(X7 y) = (X,y) — (X, y) € E(]Fq) Legendre Symbols
° Ker(d)q = 1) = E(]Fq) Further reading
o #Ker(®qg— 1) =deg(Py — 1) (since ¢4 — 1 is separable)
« if we can compute deg(®4 — 1), we can compute #E(Fy)
o O4(x,y) = (XT,¥7) 80 PH(X,¥) = (X, ¥) & (X, y) € Fep

Ker(®g — 1) = E(Fqr)



Proof of Hasse’s Theorem

Lemma

LetE/Fqandwritea= q+1—#E(Fq) = q+1—deg(dq—1).

ThenVr,s € Z,gcd(q,s) = 1,
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Proof of Hasse’s Theorem

Lemma

LetE/Fqandwritea= q+1—#E(Fq) = q+1—deg(dq—1).

ThenVr,s € Z,gcd(q,s) = 1,
deg(r¢ + s) = r’q +s* —rsa

J
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Proof of Hasse’s Theorem

Lemma

LetE/Fqandwritea= q+1—#E(Fq) = q+1—deg(dq—1).

ThenVr,s € Z, gcd(q, s) = 1,
deg(ré + s) = r2q + s% — rsa J

Proof.

Proof of the Lemma From a previous proposition, we know that
deg(req + s) = r? deg(®q) + s° deg([—1]) — rs(deg(®q — 1) — deg(®q) — deg([—11))
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Proof of Hasse’s Theorem

Lemma

Let E/Fq and writea= q+1—#E(Fq) = g+ 1 —deg(Pq — 1
ThenVr,s € Z,gcd(q,s) =1,

deg(r¢ + s) = r’q+ s®> — rsa )

Proof.

).

Proof of the Lemma From a previous proposition, we know that

deg(rdg + s) = r? deg(®q) + s° deg([—1]) — rs(deg(®q — 1) — deg(®4) — deg([—1]
But
deg(®4) = g, deg([-1]) =1 and deg(®y—1) —g—1=-a

)

O
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Proof of Hasse’s Theorem

Lemma
LetE/Fqandwritea= q+1—#E(Fq) = q+1—deg(dq—1).
ThenVr,s € Z,gcd(q,s) =1,

deg(r¢ + s) = r’q+ s®> — rsa J

Proof.

Proof of the Lemma From a previous proposition, we know that
deg(rdg + s) = r* deg(®q) + s” deg([—1]) — rs(deg(®q — 1) — deg(®q) — deg([—1]))
But
deg(®4) = g, deg([—1]) =1 and deg(®g—1) —g—1=—-a
O

Proof of Hasse’s Theorem.
2 deg(ro
q(3)° —a()+1= o5 >0
on a dense set of rational numbers.
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Proof of Hasse’s Theorem

Lemma
LetE/Fqandwritea= q+1—#E(Fq) = q+1—deg(dq—1).
ThenVr,s € Z,gcd(q,s) =1,

deg(r¢ + s) = r’q+ s®> — rsa J

Proof.

Proof of the Lemma From a previous proposition, we know that
deg(rdg + s) = r* deg(®q) + s” deg([—1]) — rs(deg(®q — 1) — deg(®q) — deg([—1]))
But
deg(®4) = g, deg([—1]) =1 and deg(®g—1) —g—1=—-a
O

Proof of Hasse’s Theorem.
2
9(5)° ~a() 1 1= 39 >

S >
on a dense set of rational numbers.

This implies VX € R, X2 —aX + g > 0.
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Proof of Hasse’s Theorem

Lemma

LetE/Fqandwritea= q+1—#E(Fq) = q+1—deg(dq—1).
ThenVr,s € Z,gcd(q,s) =1,

deg(r¢ + s) = r’q+ s®> — rsa J

Proof.

Proof of the Lemma From a previous proposition, we know that
deg(rdg + s) = r* deg(®q) + s” deg([—1]) — rs(deg(®q — 1) — deg(®q) — deg([—1]))
But
deg(®4) = g, deg([—1]) =1 and deg(®g—1) —g—1=—-a
O

Proof of Hasse’s Theorem.
2
9(5)° ~a() 1 1= 39 >

on a dense set ofsrational numbers. .
This implies VX € R, X2 —aX + g > 0.So

& -49<0 & |a <2,4q"
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Proof of Hasse’s Theorem (continues) Elliptic curves over fq
F. Pappalardi

Ingredients for the proof:
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Proof of Hasse’s Theorem (continues)

Ingredients for the proof:
O E(Fq) =Ker(®g—1)
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Ingredients for the proof:
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Proof of Hasse’s Theorem (continues)

Ingredients for the proof:
O E(Fy) = Ker(®g—1)
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© #Ker(dg—1) =deg(Pg—1)

Elliptic curves over Fgq

F. Pappalardi

CIMPA

Reminder from
Yesterday
Points of finite order
The group structure

Weil Pairing

Endomorphisms
Separability

the degree of
endomorphism

Hasse’s Theorem
Frobenius endomorphism

Legendre Symbols

Further reading
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Elliptic curves over Fq

Proof of Hasse’s Theorem (continues)
F. Pappalardi

Ingredients for the proof:
O E(Fy) = Ker(®g—1) CIMPA
@ ¢, — 1is separable Reminder from

Yesterday

(3) # Ker(cbq — 1) = deg(d)q — 1) Points of finite order

The group structure

Weil Pairing
COI‘OIIary Endomorphisms

Separability
Leta=q+1—#E(Fg). Then e A
Hasse’s Theorem
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Further reading



Proof of Hasse’s Theorem (continues)

Ingredients for the proof:
Q E(Fq) = Ker(®q — 1)
O ¢, —1is separable
© #Ker(dg—1) =deg(Pg—1)

Corollary
Leta=qg+1—#E(Fg). Then

¥ —adg+q=0 |

is an identity of endomorphisms.
® a < Z is the unique integer k such that <l>?7 —kdg+g=0

o Tr((®q)m) mod m ¥m s.t. ged(m.q) =1 |
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Sketch of the Proof of Corollary.

Let m € N s.t. ged(m, q) = 1. Choose a basis for E[m] and

write

(‘Dq)m = (

SN
u v

)
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Sketch of the Proof of Corollary.
Let m € N s.t. ged(m, q) = 1. Choose a basis for E[m] and

write
(®q)m = (j ‘i)

®4 — 1 separable implies

#Ker(®y — 1) =deg(®y — 1) = det((Pg)m — 1))
= det((®g)m) — Tr((Pg)m) + 1(modm).
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Sketch of the Proof of Corollary.
Let m € N s.t. ged(m, q) = 1. Choose a basis for E[m] and

write
(®q)m = (j ‘i)

®4 — 1 separable implies

#Ker(®y — 1) =deg(®y — 1) = det((Pg)m — 1))
= det((®g)m) — Tr((Pg)m) + 1(modm).

Hence
Tr((®g)m) = a(modm)
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Sketch of the Proof of Corollary.
Let m € N s.t. ged(m, q) = 1. Choose a basis for E[m] and

write
(®q)m = (j ‘t/)

®4 — 1 separable implies

#Ker(®y — 1) =deg(®y — 1) = det((Pg)m — 1))
= det((®g)m) — Tr((Pg)m) + 1(modm).

Hence
Tr((®g)m) = a(modm)

By Cayley—Hamilton

(94)2, — a(®g)m + ql = 0(modm)
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Sketch of the Proof of Corollary.
Let m € N s.t. ged(m, q) = 1. Choose a basis for E[m] and

write
(‘Dq)m = (E \t/)

&4 — 1 separable implies

#Ker(®y — 1) =deg(®y — 1) = det((Pg)m — 1))
= det((®g)m) — Tr((Pg)m) + 1(modm).

Hence
Tr((®g)m) = a(modm)

By Cayley—Hamilton
(®q)2 — a(®q)m + gl = 0(modm)
Since this happens for infinitely many m’s,
P2 —ad,+q=0

as endomorphism.
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Sketch of the Proof of Corollary.

Let m € N s.t. ged(m, q) = 1. Choose a basis for E[m] and

write

(‘Dq)m = (

®4 — 1 separable implies

#Ker(®y — 1) =deg(®y — 1) = det((Pg)m — 1))
= det((®g)m) — Tr((Pg)m) + 1(modm).

Hence

By Cayley—Hamilton

(94)2, — a(®g)m + ql = 0(modm)

Since this happens for infinitely many m’s,

as endomorphism.

Tr((®g)m) = a(modm)

P2 —ad,+q=0

SN
u v

)
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Subfield curves (continues)

Definition
Let E/Fq and write E(Fy) =q+1—a, (|al < 2,/q). The
characteristic polynomial of E is

Pe(T)=T?—aT + q € Z[T].

and its roots:

a:%(a—i- a2—40) 52%(3— 32—4Q>

are called characteristic roots of Frobenius (Pg(®4) = 0).

Theorem

Vne N
#EFp)=q"+1—(a"+8").
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Subfield curves (continues) Ellitic curves over fiq
F. Pappalardi
Theorem

VneN#EFqp) =q"+1— (a + 7).
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Subfield curves (continues)

Theorem
Vne N #E(Fqn) =q"+1—(a"+5").

Proof.
Note that
© Resultistrueforn=1,a+ 5 =a
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Subfield curves (continues)

Theorem
Vne N #E(Fqn) =q"+1—(a"+5").

Proof.

Note that
© Resultistrueforn=1,a+8=a
®a"+5"€Z, (apf)"=q"
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Subfield curves (continues)

Theorem
Vne N #E(Fqn) =q"+1—(a"+5").

Proof.
Note that
© Resultistrueforn=1,a+8=a
9 Ozn—l—ﬁn €7, (aﬁ)n: qn
© f(X) = (X"—a") (X"~ ") = X2"—(a"+ ") X"+ q" € Z[X]
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Subfield curves (continues)

Theorem
Vne N#E(Fqp) =q"+1—(a"+3").

Proof.
Note that
© Resultistrueforn=1,a+8=a
9 Ozn—l—ﬁn €7, (aﬁ)n: qn
© 1(X) = (X"—a")(X"—8") = X2"—(a"+ A" X"+ q" € Z[X]
O 1(X) is divisible by X2 — aX + g = (X — a)(X — B)
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Subfield curves (continues)

Theorem
Vne N#E(Fqp) =q"+1—(a"+3").

Proof.
Note that
© Resultistrueforn=1,a+8=a
9 an_i_ﬁn c Z, (aﬁ)n: qn
O f(X) = (X"—a")(X"— ") = X*"—(a"+B")X"+q" € Z[X]
O 1(X) is divisible by X2 — aX + g = (X — a)(X — B)
0 (%9)"[s,, = Pgr: (x,¥) = (xT,y7)
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Subfield curves (continues)

Theorem

Vne N#E(Fgp) =

Proof.
Note that

q"+1

—(a"+ ")

© Resultistrueforn=1,a+8=a
@ "+p"€Z, (af)"=q"

(a"+BM)X"+q" € Z[X]
- B)

9 f( ) _ (Xn_an)(Xn ﬁn) X2n

O® f(X) is divisible by X2 — aX + g = (X — a)(X
@ (®9)"l5,, = ®qn : (X,¥) = (x¥, ¥

O (95)* — (o + Mg+ q" = Q(¢

where f(X) =

QX)(X? — aX + q)

2))(®; — adq+q) =0
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Subfield curves (continues) Fllptic curves over £
F. Pappalardi

Theorem
Vne N#E(Fqp)=q"+1— (" +3").
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Subfield curves (continues)

Theorem

Vne N#E(Fgp) =

Proof.
Note that

q"+1

—(a"+ ")

© Resultistrueforn=1,a+8=a
®a"+5"€Z, (apf)"=7q"

o f(X) =
O f(X) is divisible by X2 — aX +q =
® (94)"ls, = O : (x
O (®5)?

where f(X) =

(X" —am) (X"

Hence ¢g satisfies

X2 -

Y) =
—(a"+ Mo +q" = Q(¢
Q(X)(X® -

ﬂn) X2n
(x7',yT)

aX +q)

(a"+BM)X"+q" € Z[X]
(X —a)(X

((a"+B"))X +q.

- B)

q))(¥5 — abq+q) =
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Subfield curves (continues)

Theorem

Vne N#E(Fgp) =

Proof.
Note that

q"+1

—(a"+ ")

© Resultistrueforn=1,a+8=a
®a"+5"€Z, (apf)"=7q"

O f(X) =
O 1(X) is divisible by X2 — aX + g =
q) \Fqn = Ggn : (x
—(a"+ 4705 + " = Qo
QX) (X2 —

O (¢

O (®5)?
where f(X) =

(X" —am) (X"

Hence ¢g satisfies

So

X2 -

Y) =

ﬂn) X2n
(x7',yT)

aX +q)

(a"+BM)X"+q" € Z[X]
(X —a)(X

((a"+B"M)X +q.

o+ f"=q"+1 - #E(Fq).

- B)

q))(¥5 — abq+q) =
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Subfield curves (continues) Ellitic curves over fiq
F. Pappalardi
Theorem

Vne N#E(Fqp) =q"+1—(a"+3").

P f CIMPA
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O f(X) = (X"—a")(X"=5") = X*"—(a"+ X" +q" € Z[X] i
O 1(X) is divisible by X2 — aX + g = (X — a)(X — B)

endomorphism

Hasse’s Theorem

e (q)q) ‘Fqn — (an . ( ,y) (Xq yq”) Frobenius endomorphism
e ((DZ)Z _ (an_l_Bn)q)g + q _ ( ))(¢ . aq)q + q) Legendre Symbols
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where f(X) = Q(X)(X? — aX +q)
Hence &g satisfies
X2 —((@"+BM)X +q.
So
a"+8"=q"+1—#E[Fq).
Characteristic polynomial of ®4n:



Subfield curves (continues) Ellitic curves over fiq
F. Pappalardi
Theorem

Vne N#E(Fqp) =q"+1—(a"+3").
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endomorphism
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where f(X) = Q(X)(X? — aX +q)
Hence &g satisfies
X2 —((a"+ B")X + q.
So
a +p"=q"+1— #E(Fqn).
Characteristic polynomial of ®gr: X% — (@ + ") X + q" O



Subfield curves (continues)

E(F))=q+1-a = E(Fgu)=q"+1—(a"+ ")
where Pe(T) = T2 —aT +q= (T — a)(T — B) € Z[T]
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Subfield curves (continues)

where Pe(T) = T2 —aT +q= (T — a)(T — B) € Z[T]

Curves /F»

E a | Peg(T) (v, B)
V2Axy=x3+x2+1 | 1 | T2=-T+2 | J(1£V-7)
y2+xy=x3+1 1| T2+ T+2 | }(-1£V=7)
YP+y=x34+x —2 | T242T+2 | —1£i
V2+y=x3+x+1 2 | T2P-2T+2 | 1+i
yYo+y=x° 0 | T2+2 +v/-2
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Subfield curves (continues)

where Pe(T) = T2 —aT +q= (T — a)(T — B) € Z[T]

Curves /F»

E a | Peg(T)

(a,B)

V2P4xy=x34+x2+1| 1 | T?-T+2

Y2+ xy=x3+1 ] | e
y24+y=x34x -2 | T2+2T +2
Y2+y=x®+x+1 2 | T2-2T 42
y2+y=x3 0 | T?+2

(1= V=7)
-1£VT)

3 2

E:y2+xy:x + x5 +1 =

2

100 100
/7 /7
E(Fy100) = 2100 41 — 5 - = 1267650600228229382588845215376
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Subfield curves
where Pg(T) = T? —aT +q= (T — a)(T - 5) € Z[T]
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Subfield curves

E(FQ) = Q+ 1-a= E(Fqn) = ql’l + 1 — ((]’,n + ‘Bn)

where Pe(T) = T2 —aT +q= (T —a)(T — B) € Z[T]

Curves /F»

i a PEI(T) (avﬁ)

1 yv’=x34+x] 0 T°+3 +/-3

2 y? =x 0 T°+3 +/-3

3| y?=x3—x+1| -83[T?2+3T+3 | 3(-3+vV-3)
4] y?’=x®-x-1] 8 [ T2-3T+3| 1(8x£V-3)
5[y2=x3+x2-1] 1 | T°-T+3 | 1(1+£V/-1)
6| y2=x3—x2+1| 1] T°+T+8 | J(-1x£V/-1)
7 yP=x3+x2+1| -2 | T°+2T+3 —1+-2

8|y’ =x3—x-1| 2 | T°-2T +3 1+/-2
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Subfield curves
E(FQ) - Q+ 1 —a = E(Fqn) — qn + 1 _ ((]{ﬂ + ‘Bn)
where Pe(T) = T2 — aT +q = (T - a)(T - 8) € Z[T]

Curves /F»

i Ei a PEI(T) (avﬁ)

1 yv’=x34+x] 0 T°+3 +/-3

2 y2’=x3-x1] 0 T°+3 +/-3

3| y?=x3—x+1| -83[T?2+3T+3 | 3(-3+vV-3)
4] y?’=x®-x-1] 8 [ T2-3T+3| 1(8x£V-3)
5[y2=x3+x2-1] 1 | T°-T+3 | 1(1+£V/-1)
6| y2=x3—x2+1| 1] T°+T+8 | J(-1x£V/-1)
7 yP=x3+x2+1| -2 | T°+2T+3 —1+v/-2

8|y’ =x3—x-1| 2 | T°-2T +3 1+/-2

Lemma
Lets, =a" + B" where a3 = g and a + 8 = a. Then

So=2, ,Sy=a and Sp.1=as,— QSp_1
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Legendre Symbols
Recall the Finite field Legendre symbols: let x € Fy,
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Legendre Symbols Elliptic curves ovcfr Fq
Recall the Finite field Legendre symbols: let x € Fy, BT

+1 if £ = x has a solution t € F,
(ﬁ) =< —1 if £ = x has no solution t € Fq s
0 ifx=0
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Legendre Symbols
Recall the Finite field Legendre symbols: let x € Fy,

+1 if £ = x has a solution t € F,
(%) =< —1 if £ = x has no solution t € Fq
q
0 ifx=0

Theorem
LetE : y? = x® + Ax + B overF,. Then

#EFg) =G+ 1+ X, (mz?—q”B) J
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Elliptic curves over Fq

Legendre Symbols

Recall the Finite field Legendre symbols: let x € Ty, F: Pappatard!

+1 if £ = x has a solution t € F,
(ﬁ) =< —1 if £ = x has no solution t € Fq s
0 ifx=0
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Recall the Finite field Legendre symbols: let x € Fy,
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if ¥ = x has a solution t € F,
if £ = x has no solution t € Fq
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Theorem

LetE : y? = x® + Ax + B overF,. Then

E(Fq) = q+1+ Yy, (

X3 +Ax+B
Fq

)J

Proof.
Note that

XO+AX0+B)
14 (AHpetE

Hence

2 if 3y € Fy s.t. (X0, £40) € E(Fy)

1 if (x,0) € E(Fy)

0 otherwise

#E(Fq) =1+ X er, (1 + (#))
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Last Slide

Corollary

LetE : y? = x® + Ax + B overFq and

E.:y? = X3+ PAx + 1B, p € F; \ (F})? its twist. Then
#E(Fq)=qg+1-a & #E.(Fg)=qg+1+a

and

)

#E(qu) = #Eu(qu)‘

J
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Corollary

LetE : y? = x® + Ax + B overF4 and

E.:y? = X3+ PAx + 1B, p € F; \ (F})? its twist. Then

#E(Fq)=qg+1-a & #E.(Fg)=qg+1+a

J

and
#E(qu) = #EH(FQZ)‘ J
Proof.
X3 + uPAx + 2B
#E(Fq)=q+1+ > (—E——F )
q
x€Fq
S+ A B
g1+ (M) T (HH
Fq xeFq Fq
and (ﬁ) =—1

)
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Further Reading...
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