# Lecture 3

# Elliptic curves over finite fields

The group order

Research School: Algebraic curves over finite fields CIMPA-ICTP-UNESCO-MESR-MINECO-PHILIPPINES University of the Phillipines Diliman, July 25, 2013 Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Further reading

Francesco Pappalardi
Dipartimento di Matematica e Fisica
Università Roma Tre

### The division polynomials

# **Definition (Division Polynomials of** $E: y^2 = x^3 + Ax + B$ (p > 3))

$$\psi_0 = 0, \psi_1 = 1, \psi_2 = 2y$$

$$\psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2$$

$$\psi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3)$$

$$\vdots$$

$$\psi_{2m+1} = \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3 \quad \text{for } m \ge 2$$

$$\psi_{2m} = \left(\frac{\psi_m}{2\nu}\right) \cdot (\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2) \quad \text{for } m \ge 3$$

The polynomial  $\psi_m \in \mathbb{Z}[x,y]$  is the  $m^{\text{th}}$  division polynomial

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



#### -1-----

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of

endomorphism

Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

# The division polynomials

# **Definition (Division Polynomials of** $E: y^2 = x^3 + Ax + B$ (p > 3))

$$\psi_0 = 0, \psi_1 = 1, \psi_2 = 2y$$

$$\psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2$$

$$\psi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3)$$

$$\vdots$$

$$\psi_{2m+1} = \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3 \quad \text{for } m \ge 2$$

$$\psi_{2m} = \left(\frac{\psi_m}{2\nu}\right) \cdot (\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2) \quad \text{for } m \ge 3$$

The polynomial  $\psi_m \in \mathbb{Z}[x,y]$  is the  $m^{\text{th}}$  division polynomial

# Theorem ( $E: Y^2 = X^3 + AX + B$ elliptic curve, $P = (x, y) \in E$ )

$$mP = m(x, y) = \left(\frac{\phi_m(x)}{\psi_m^2(x)}, \frac{\omega_m(x, y)}{\psi_m^3(x, y)}\right),$$
where  $\phi_m = x\psi_m^2 - \psi_{m+1}\psi_{m-1}, \omega_m = \frac{\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2}{4y}$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



#### eminder iror

Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### Points of order m

#### **Definition** (*m***–torsion point**)

Let E/K and let  $\bar{K}$  an algebraic closure of K.

$$E[m] = \{ P \in E(\bar{K}) : mP = \infty \}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

#### Points of finite order

The group structure

Weil Pairing

#### Endomorphisms Separability

the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

#### Points of order m

#### **Definition** (*m***–torsion point**)

Let E/K and let  $\bar{K}$  an algebraic closure of K.

$$E[m] = \{ P \in E(\bar{K}) : mP = \infty \}$$

## **Theorem (Structure of Torsion Points)**

Let E/K and  $m \in \mathbb{N}$ . If  $p = \operatorname{char}(K) \nmid m$ ,

$$E[m] \cong C_m \oplus C_m$$

If  $m = p^r m', p \nmid m'$ ,

$$E[m] \cong C_m \oplus C_{m'}$$

or

$$E[m] \cong C_{m'} \oplus C_{m'}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order
The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### Points of order m

### **Definition** (*m***–torsion point**)

Let E/K and let K an algebraic closure of K.

$$E[m] = \{ P \in E(\bar{K}) : mP = \infty \}$$

## Theorem (Structure of Torsion Points)

Let E/K and  $m \in \mathbb{N}$ . If  $p = \operatorname{char}(K) \nmid m$ ,

$$E[m] \cong C_m \oplus C_m$$

If  $m = p^r m', p \nmid m'$ ,

$$E[m] \cong C_m \oplus C_{m'}$$
 or

 $E[m] \cong C_{m'} \oplus C_{m'}$ 

# Idea of the proof:

Let  $[m]: E \rightarrow E, P \mapsto mP$ . Then

$$\#E[m] = \#\operatorname{Ker}[m] \le \partial \phi_m = m^2$$

equality holds iff  $p \nmid m$ .

### Elliptic curves over Fa

F. Pappalardi



Reminder from Yesterday

#### Points of finite order

The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

#### Remark.

- $E[2m+1] \setminus {\infty} = {(x,y) \in E(\bar{K}) : \psi_{2m+1}(x) = 0}$
- $E[2m] \setminus E[2] = \{(x,y) \in E(\bar{K}) : y^{-1}\psi_{2m}(x) = 0\}$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

#### Points of finite order

The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

#### Remark.

- $E[2m+1] \setminus {\infty} = {(x,y) \in E(\bar{K}) : \psi_{2m+1}(x) = 0}$
- $E[2m] \setminus E[2] = \{(x,y) \in E(\bar{K}) : y^{-1}\psi_{2m}(x) = 0\}$

### **Example**

$$\begin{split} &\psi_4(x) = 2y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4BAx + \left(-A^3 - 8B^2\right)) \\ &\psi_5(x) = 5x^{12} + 62Ax^{10} + 380Bx^9 - 105A^2x^8 + 240BAx^7 \\ &\quad + \left(-300A^3 - 240B^2\right)x^6 - 696BA^2x^5 \\ &\quad + \left(-125A^4 - 1920B^2A\right)x^4 + \left(-80BA^3 - 1600B^3\right)x^3 \\ &\quad + \left(-50A^5 - 240B^2A^2\right)x^2 + \left(-100BA^4 - 640B^3A\right)x \\ &\quad + \left(A^6 - 32B^2A^3 - 256B^4\right) \\ &\psi_6(x) = 2y(6x^{16} + 144Ax^{14} + 1344Bx^{13} - 728A^2x^{12} + \left(-2576A^3 - 5376B^2\right)x^{10} \\ &\quad - 9152BA^2x^9 + \left(-1884A^4 - 39744B^2A\right)x^8 + \left(1536BA^3 - 44544B^3\right)x^7 \\ &\quad + \left(-2576A^5 - 5376B^2A^2\right)x^6 + \left(-6720BA^4 - 32256B^3A\right)x^5 \\ &\quad + \left(-728A^6 - 8064B^2A^3 - 10752B^4\right)x^4 + \left(-3584BA^5 - 25088B^3A^2\right)x^3 \\ &\quad + \left(144A^7 - 3072B^2A^4 - 27648B^4A\right)x^2 \\ &\quad + \left(192BA^6 - 512B^3A^3 - 12288B^5\right)x + \left(6A^8 + 192B^2A^5 + 1024B^4A^2\right)) \end{split}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

# Group Structure of $E(\mathbb{F}_q)$

#### **Exercise**

Use division polynomials in Sage to write a list of all curves E over  $\mathbb{F}_{103}$  such that  $E(\mathbb{F}_{103})\supset E[6]$ . Do the same for curves over  $\mathbb{F}_{5^4}$ .

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order
The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

# Group Structure of $E(\mathbb{F}_q)$

#### **Exercise**

Use division polynomials in Sage to write a list of all curves E over  $\mathbb{F}_{103}$  such that  $E(\mathbb{F}_{103})\supset E[6]$ . Do the same for curves over  $\mathbb{F}_{5^4}$ .

## **Corollary (Corollary of the Theorem of Structure for torsion)**

Let  $E/\mathbb{F}_q$ .  $\exists n, k \in \mathbb{N}$  are such that

$$E(\mathbb{F}_q)\cong C_n\oplus C_{nk}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

# Group Structure of $E(\mathbb{F}_q)$

#### **Exercise**

Use division polynomials in Sage to write a list of all curves E over  $\mathbb{F}_{103}$  such that  $E(\mathbb{F}_{103}) \supset E[6]$ . Do the same for curves over  $\mathbb{F}_{5^4}$ .

# **Corollary of the Theorem of Structure for torsion)**

Let  $E/\mathbb{F}_q$ .  $\exists n, k \in \mathbb{N}$  are such that

$$E(\mathbb{F}_q)\cong C_n\oplus C_{nk}$$

#### **Theorem**

Let  $E/\mathbb{F}_q$  and  $n, k \in \mathbb{N}$  such that  $E(\mathbb{F}_q) \cong C_n \oplus C_{nk}$ . Then  $n \mid q-1$ .

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

 $E[m] \cong C_m \oplus C_m$ 

#### Elliptic curves over $\mathbb{F}_q$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

#### Veil Pairing

# Endomorphisms Separability

# the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{x \in \bar{K} : x^m = 1\}$$

#### Elliptic curves over $\mathbb{F}_{Q}$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

#### **Endomorphisms** Separability

#### the degree of endomorphism

#### Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{ x \in \bar{K} : x^m = 1 \}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

#### Elliptic curves over $\mathbb{F}_q$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

#### Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{x \in \bar{K} : x^m = 1\}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## **Theorem (Existence of Weil Pairing)**

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

#### Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{x \in \bar{K} : x^m = 1\}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## **Theorem (Existence of Weil Pairing)**

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

$$\bullet m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{ x \in \bar{K} : x^m = 1 \}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## Theorem (Existence of Weil Pairing)

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

- $\bullet_m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$
- 2  $e_m(P,R) = 1 \forall R \in E[m] \Rightarrow P = \infty$  (non degeneracy)

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Neil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem Frobenius endomorphism

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{x \in \bar{K} : x^m = 1\}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## Theorem (Existence of Weil Pairing)

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

- $\bullet e_m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$
- 2  $e_m(P,R) = 1 \forall R \in E[m] \Rightarrow P = \infty$  (non degeneracy)
- **3**  $e_m(P,P) = 1$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{x \in \bar{K} : x^m = 1\}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## Theorem (Existence of Weil Pairing)

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

- $\bullet e_m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$
- 2  $e_m(P,R) = 1 \forall R \in E[m] \Rightarrow P = \infty$  (non degeneracy)
- 3  $e_m(P,P) = 1$
- **4**  $e_m(P,Q) = e_m(Q,P)^{-1}$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

#### Neil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{x \in \bar{K} : x^m = 1\}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

# Theorem (Existence of Weil Pairing)

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

- $\bullet_m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$
- 2  $e_m(P,R) = 1 \forall R \in E[m] \Rightarrow P = \infty$  (non degeneracy)
- 3  $e_m(P, P) = 1$
- 4  $e_m(P,Q) = e_m(Q,P)^{-1}$
- **5**  $e_m(\sigma P, \sigma Q) = \sigma e_m(P, Q) \ \forall \sigma \in \operatorname{Gal}(\bar{K}/K)$

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

von i diring

Endomorphisms Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{ x \in \bar{K} : x^m = 1 \}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## Theorem (Existence of Weil Pairing)

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

- $\bullet_m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$
- 2  $e_m(P,R) = 1 \forall R \in E[m] \Rightarrow P = \infty$  (non degeneracy)
- 3  $e_m(P, P) = 1$
- 4  $e_m(P,Q) = e_m(Q,P)^{-1}$
- **5**  $e_m(\sigma P, \sigma Q) = \sigma e_m(P, Q) \ \forall \sigma \in \text{Gal}(\bar{K}/K)$
- **6**  $e_m(\alpha(P), \alpha(Q)) = e_m(P, Q)^{\deg \alpha} \ \forall \alpha \ \text{separable}$  endomorphism

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

#### Neil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{ x \in \bar{K} : x^m = 1 \}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## Theorem (Existence of Weil Pairing)

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

- $\bullet_m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$
- 2  $e_m(P,R) = 1 \forall R \in E[m] \Rightarrow P = \infty$  (non degeneracy)
- 3  $e_m(P, P) = 1$
- 4  $e_m(P,Q) = e_m(Q,P)^{-1}$
- **5**  $e_m(\sigma P, \sigma Q) = \sigma e_m(P, Q) \ \forall \sigma \in \text{Gal}(\bar{K}/K)$
- 6  $e_m(\alpha(P), \alpha(Q)) = e_m(P, Q)^{\deg \alpha} \ \forall \alpha \ separable endomorphism$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

Let E/K and  $m \in \mathbb{N}$  s.t.  $p \nmid m$ . Then

$$E[m] \cong C_m \oplus C_m$$

We set

$$\mu_m := \{x \in \bar{K} : x^m = 1\}$$

 $\mu_m$  is a cyclic group with m elements(since  $p \nmid m$ )

## Theorem (Existence of Weil Pairing)

There exists a pairing  $e_m$ :  $E[m] \times E[m] \to \mu_m$  called Weil Pairing, s.t.  $\forall P, Q \in E[m]$ 

- $\bullet e_m(P +_E Q, R) = e_m(P, R)e_m(Q, R) \text{ (bilinearity)}$
- 2  $e_m(P,R) = 1 \forall R \in E[m] \Rightarrow P = \infty$  (non degeneracy)
- 3  $e_m(P,P) = 1$
- 4  $e_m(P,Q) = e_m(Q,P)^{-1}$
- **5**  $e_m(\sigma P, \sigma Q) = \sigma e_m(P, Q) \ \forall \sigma \in Gal(\bar{K}/K)$
- **6**  $e_m(\alpha(P), \alpha(Q)) = e_m(P, Q)^{\deg \alpha} \ \forall \alpha \ separable endomorphism$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

#### ell Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

i.e.  $\exists P, Q \in E[m] : \forall R \in E[m], \exists ! \alpha, \beta \in \mathbb{Z}/m\mathbb{Z}, R = \alpha P + \beta Q$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

ail Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

•  $E[m] \cong C_m \oplus C_m \Rightarrow E[m]$  has a  $\mathbb{Z}/m\mathbb{Z}$ -basis

i.e.  $\exists P, Q \in E[m] : \forall R \in E[m], \exists ! \alpha, \beta \in \mathbb{Z}/m\mathbb{Z}, R = \alpha P + \beta Q$ 

2 If (P,Q) is a  $\mathbb{Z}/m\mathbb{Z}$ -basis, then  $\zeta = e_m(P,Q) \in \mu_m$  is primitive (i.e. ord  $\zeta = m$ )

**Proof.** Let  $d = \operatorname{ord} \zeta$ . Then  $1 = e_m(P, Q)^d = e_m(P, dQ)$ .  $\forall R \in E[m], e_m(R, dQ) = e_m(P, dQ)^{\alpha} e_m(Q, Q)^{d\beta} = 1$ . So  $dQ = \infty \Rightarrow m \mid d$ .

#### Elliptic curves over $\mathbb{F}_q$

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

l Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem Frobenius endomorphism

Legendre Symbols

proof

1  $E[m] \cong C_m \oplus C_m \Rightarrow E[m]$  has a  $\mathbb{Z}/m\mathbb{Z}$ -basis

i.e.  $\exists P, Q \in E[m] : \forall R \in E[m], \exists ! \alpha, \beta \in \mathbb{Z}/m\mathbb{Z}, R = \alpha P + \beta Q$ 

2 If (P,Q) is a  $\mathbb{Z}/m\mathbb{Z}$ -basis, then  $\zeta = e_m(P,Q) \in \mu_m$  is primitive (i.e. ord  $\zeta = m$ )

**Proof.** Let  $d = \operatorname{ord} \zeta$ . Then  $1 = e_m(P, Q)^d = e_m(P, dQ)$ .  $\forall R \in E[m], e_m(R, dQ) = e_m(P, dQ)^{\alpha} e_m(Q, Q)^{d\beta} = 1$ . So  $dQ = \infty \Rightarrow m \mid d$ .

**Proof.** Let  $\sigma \in \operatorname{Gal}(\bar{K}/K)$  since the basis  $(P,Q) \subset E(K)$ ,  $\sigma(P) = P$ ,  $\sigma(Q) = Q$ . Hence  $\zeta = e_m(P,Q) = e_m(\sigma P, \sigma Q) = \sigma e_m(P,Q) = \sigma \zeta$  So  $\zeta \in \bar{K}^{\operatorname{Gal}(\bar{K}/K)} = K \ \Rightarrow \ \mu_n = \langle \zeta \rangle \subset K^*$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Veil Pairir

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

i.e.  $\exists P, Q \in E[m] : \forall R \in E[m], \exists ! \alpha, \beta \in \mathbb{Z}/m\mathbb{Z}, R = \alpha P + \beta Q$ 

2 If (P,Q) is a  $\mathbb{Z}/m\mathbb{Z}$ -basis, then  $\zeta = e_m(P,Q) \in \mu_m$  is primitive (i.e. ord  $\zeta = m$ )

**Proof.** Let  $d = \operatorname{ord} \zeta$ . Then  $1 = e_m(P, Q)^d = e_m(P, dQ)$ .  $\forall R \in E[m], e_m(R, dQ) = e_m(P, dQ)^{\alpha} e_m(Q, Q)^{d\beta} = 1$ . So  $dQ = \infty \Rightarrow m \mid d$ .

# 

**Proof.** Let  $\sigma \in \operatorname{Gal}(\bar{K}/K)$  since the basis  $(P,Q) \subset E(K)$ ,  $\sigma(P) = P$ ,  $\sigma(Q) = Q$ . Hence  $\zeta = e_m(P,Q) = e_m(\sigma P, \sigma Q) = \sigma e_m(P,Q) = \sigma \zeta$  So  $\zeta \in \bar{K}^{\operatorname{Gal}(\bar{K}/K)} = K \ \Rightarrow \ \mu_n = \langle \zeta \rangle \subset K^*$ 

 $4 \text{ if } E(\mathbb{F}_q) \cong C_n \oplus C_{kn} \Rightarrow q \equiv 1 \bmod n$ 

**Proof.**  $E[n] \subset E(\mathbb{F}_q) \Rightarrow \mu_n \subset \mathbb{F}_q^* \Rightarrow n \mid q-1$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order
The group structure

eil Pairin

Endomorphisms Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

- 1  $E[m] \cong C_m \oplus C_m \Rightarrow E[m]$  has a  $\mathbb{Z}/m\mathbb{Z}$ -basis
- i.e.  $\exists P, Q \in E[m] : \forall R \in E[m], \exists ! \alpha, \beta \in \mathbb{Z}/m\mathbb{Z}, R = \alpha P + \beta Q$
- If (P,Q) is a  $\mathbb{Z}/m\mathbb{Z}$ -basis, then  $\zeta = e_m(P,Q) \in \mu_m$  is primitive (i.e. ord  $\zeta = m$ )

**Proof.** Let  $d = \operatorname{ord} \zeta$ . Then  $1 = e_m(P, Q)^d = e_m(P, dQ)$ .  $\forall R \in E[m], e_m(R, dQ) = e_m(P, dQ)^{\alpha} e_m(Q, Q)^{d\beta} = 1$ . So  $dQ = \infty \Rightarrow m \mid d$ .

# 3 $E[m] \subset E(K) \Rightarrow \mu_m \subset K$

**Proof.** Let  $\sigma \in \operatorname{Gal}(\bar{K}/K)$  since the basis  $(P,Q) \subset E(K)$ ,  $\sigma(P) = P$ ,  $\sigma(Q) = Q$ . Hence  $\zeta = e_m(P,Q) = e_m(\sigma P, \sigma Q) = \sigma e_m(P,Q) = \sigma \zeta$  So  $\zeta \in \bar{K}^{\operatorname{Gal}(\bar{K}/K)} = K \Rightarrow \mu_n = \langle \zeta \rangle \subset K^*$ 

 $4 \text{ if } E(\mathbb{F}_q) \cong C_n \oplus C_{kn} \ \Rightarrow q \equiv 1 \bmod n$ 

**Proof.**  $E[n] \subset E(\mathbb{F}_q) \Rightarrow \mu_n \subset \mathbb{F}_q^* \Rightarrow n \mid q-1$ 

**6** If  $E/\mathbb{Q} \Rightarrow E[m] \not\subseteq E(\mathbb{Q})$  for  $m \geq 3$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

eil Pairin

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### **Definition**

A map  $\alpha : E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

Elliptic curves over  $\mathbb{F}_{Q}$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism

proof Legendre Symbols

#### **Definition**

A map  $\alpha: E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

•  $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Separability
the degree of

endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### **Definition**

A map  $\alpha: E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \overline{K}(x, y) \text{ s.t.}$  $\alpha(x, y) = (R_1(x, y), R_2(x, y)) \quad \forall (x, y) \notin \text{Ker}(\alpha)$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

proof

Hasse's Theorem Frobenius endomorphism

Legendre Symbols

#### **Definition**

A map  $\alpha: E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \overline{K}(x, y)$  s.t.  $\alpha(x, y) = (R_1(x, y), R_2(x, y)) \quad \forall (x, y) \notin \text{Ker}(\alpha)$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### **Definition**

A map  $\alpha: E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \overline{K}(x, y)$  s.t.  $\alpha(x, y) = (R_1(x, y), R_2(x, y)) \quad \forall (x, y) \notin \text{Ker}(\alpha)$

 $(\bar{K}(x,y))$  is the field of rational functions,

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

proof

Hasse's Theorem Frobenius endomorphism

Legendre Symbols

#### **Definition**

A map  $\alpha : E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \overline{K}(x, y)$  s.t.  $\alpha(x, y) = (R_1(x, y), R_2(x, y)) \quad \forall (x, y) \notin \text{Ker}(\alpha)$

 $(\bar{K}(x,y))$  is the field of rational functions,  $\alpha(\infty)=\infty$ )

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### **Definition**

A map  $\alpha : E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \bar{K}(x, y) \text{ s.t.}$  $\alpha(x, y) = (R_1(x, y), R_2(x, y))$

$$\alpha(x,y) = (R_1(x,y), R_2(x,y)) \quad \forall (x,y) \notin \text{Ker}(\alpha)$$

 $(\bar{K}(x,y))$  is the field of *rational functions*,  $\alpha(\infty)=\infty$ )

### Exercise (Show that we can always assume)

$$\alpha(x,y)=(r_1(x),yr_2(x)), \qquad \exists r_1,r_2\in \bar{K}(x)$$

**Hint:** use  $y^2 = x^3 + Ax + B$  and  $\alpha(-(x,y)) = -\alpha(x,y)$ ,

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### **Definition**

A map  $\alpha : E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \bar{K}(x, y) \text{ s.t.}$

$$\alpha(x,y) = (R_1(x,y), R_2(x,y)) \qquad \forall (x,y) \notin \text{Ker}(\alpha)$$

 $(\bar{K}(x,y))$  is the field of *rational functions*,  $\alpha(\infty)=\infty$ )

### Exercise (Show that we can always assume)

$$\alpha(x,y)=(r_1(x),yr_2(x)), \qquad \exists r_1,r_2\in \bar{K}(x)$$

**Hint:** use  $y^2 = x^3 + Ax + B$  and  $\alpha(-(x, y)) = -\alpha(x, y)$ ,

# Remarks/Examples:

• if  $r_1(x) = p(x)/q(x)$  with gcd(p,q) = 1 and  $(x_0, y_0) \in E(\overline{K})$  with  $q(x_0) = 0 \Rightarrow \alpha(x_0, y_0) = \infty$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

### **Endomorphisms**

### **Definition**

A map  $\alpha : E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \overline{K}(x, y)$  s.t.

$$\alpha(x,y) = (R_1(x,y), R_2(x,y)) \qquad \forall (x,y) \notin \text{Ker}(\alpha)$$

 $(\bar{K}(x,y))$  is the field of *rational functions*,  $\alpha(\infty) = \infty$ )

# Exercise (Show that we can always assume)

$$\alpha(x,y)=(r_1(x),yr_2(x)), \qquad \exists r_1,r_2\in \bar{K}(x)$$

**Hint:** use  $y^2 = x^3 + Ax + B$  and  $\alpha(-(x, y)) = -\alpha(x, y)$ ,

# Remarks/Examples:

- if  $r_1(x) = p(x)/q(x)$  with gcd(p,q) = 1 and  $(x_0, y_0) \in E(\overline{K})$  with  $q(x_0) = 0 \Rightarrow \alpha(x_0, y_0) = \infty$
- $[m](x,y) = \left(rac{\phi_m}{\psi_m^2}, rac{\omega_m}{\psi_m^3}
  ight)$  is an endomorphism  $orall m \in \mathbb{Z}$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism

Legendre Symbols

### **Endomorphisms**

### **Definition**

A map  $\alpha : E(\overline{K}) \to E(\overline{K})$  is called an endomorphism if

- $\alpha(P +_E Q) = \alpha(P) +_E \alpha(Q)$  ( $\alpha$  is a group homomorphism)
- $\exists R_1, R_2 \in \bar{K}(x, y)$  s.t.

$$\alpha(x,y) = (R_1(x,y), R_2(x,y)) \qquad \forall (x,y) \notin \text{Ker}(\alpha)$$

 $(\bar{K}(x,y))$  is the field of *rational functions*,  $\alpha(\infty) = \infty$ )

### Exercise (Show that we can always assume)

$$\alpha(x,y)=(r_1(x),yr_2(x)), \qquad \exists r_1,r_2\in \bar{K}(x)$$

**Hint:** use  $y^2 = x^3 + Ax + B$  and  $\alpha(-(x, y)) = -\alpha(x, y)$ ,

# Remarks/Examples:

- if  $r_1(x) = p(x)/q(x)$  with gcd(p,q) = 1 and  $(x_0, y_0) \in E(\overline{K})$  with  $q(x_0) = 0 \Rightarrow \alpha(x_0, y_0) = \infty$
- $[m](x,y) = \left(\frac{\phi_m}{\psi_+^2}, \frac{\omega_m}{\psi_+^3}\right)$  is an endomorphism  $\forall m \in \mathbb{Z}$
- $\Phi_q: E(\bar{\mathbb{F}}_q)) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q,y^q)$  is called *Frobenius Endomorphism*

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

### **Theorem**

If  $\alpha \neq [0]$  is an endomorphism, then it is surjective.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

#### domorphisms

Separability the degree of

endomorphism

Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

#### **Theorem**

If  $\alpha \neq [0]$  is an endomorphism, then it is surjective.

### Sketch of the proof.

Assume p > 3,  $\alpha(x, y) = (p(x)/q(x), yr_2(x))$  and  $(a, b) \in E(\overline{K})$ .

• If p(x) - aq(x) is not constant, let  $x_0$  be one of its roots. Choose  $y_0$  a square root of  $x_0^2 + AX_0 + B$ .

Then either  $\alpha(x_0, y_0) = (a, b)$  or  $\alpha(x_0, -y_0) = (a, b)$ .

• If p(x) - aq(x) is constant,

this happens only for one value of a!

Let  $(a_1, b_1) \in E(\bar{K})$ :

 $(a_1,b_1) \neq (a,\pm b) \text{ and } (a_1,b_1) +_E (a,b) \neq (a,\pm b).$ 

Then  $(a_1, b_1) = \alpha(P_1)$  and  $(a_1, b_1) +_E (a, b) = \alpha(P_2)$ 

Finally  $(a, b) = \alpha(P_2 - P_1)$ 

#### Elliptic curves over $\mathbb{F}_q$

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

• The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

endomorphism

Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

#### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

### Lemma

•  $\Phi_q(x,y) = (x^q,y^q)$  is a non separable endomorphism of degree q

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### **Definition**

Suppose  $\alpha : E \to E, (x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

### Lemma

- $\Phi_q(x,y) = (x^q,y^q)$  is a non separable endomorphism of degree q
- $[m](x,y) = \left(\frac{\phi_m}{\psi_m^2}, \frac{\omega_m}{\psi_m^3}\right)$  has degree  $m^2$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

### Lemma

- $\Phi_q(x,y) = (x^q,y^q)$  is a non separable endomorphism of degree q
- $[m](x,y) = \left(\frac{\phi_m}{\psi_m^2}, \frac{\omega_m}{\psi_m^3}\right)$  has degree  $m^2$
- [m] separable iff p∤ m.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

proof

Hasse's Theorem Frobenius endomorphism

Legendre Symbols

#### **Definition**

Suppose  $\alpha : E \to E, (x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

### Lemma

- $\Phi_q(x,y) = (x^q,y^q)$  is a non separable endomorphism of degree q
- $[m](x,y) = \left(\frac{\phi_m}{\psi_m^2}, \frac{\omega_m}{\psi_m^3}\right)$  has degree  $m^2$
- [m] separable iff p ∤ m.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

### Lemma

- $\Phi_q(x,y) = (x^q,y^q)$  is a non separable endomorphism of degree q
- $[m](x,y) = \left( rac{\phi_m}{\psi_m^2}, rac{\omega_m}{\psi_m^3} 
  ight)$  has degree  $m^2$
- [m] separable iff p ∤ m.

### Proof.

*First:* Use the fact that  $x \mapsto x^q$  is the identity on  $\mathbb{F}_q$  hence it fixes the coefficients of the Weierstraß equation.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

### Lemma

- $\Phi_q(x,y) = (x^q,y^q)$  is a non separable endomorphism of degree q
- $[m](x,y) = \left(\frac{\phi_m}{\psi_m^2}, \frac{\omega_m}{\psi_m^3}\right)$  has degree  $m^2$
- [m] separable iff p ∤ m.

### Proof.

*First:* Use the fact that  $x \mapsto x^q$  is the identity on  $\mathbb{F}_q$  hence it fixes the coefficients of the Weierstraß equation. *Second:* already done.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

### **Definition**

Suppose  $\alpha : E \to E$ ,  $(x, y) = (r_1(x), yr_2(x))$  endomorphism. Write  $r_1(x) = p(x)/q(x)$  with gcd(p(x), q(x)) = 1.

- The **degree** of  $\alpha$  is deg  $\alpha := \max\{\deg p, \deg q\}$
- $\alpha$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  (identically)

### Lemma

- $\Phi_q(x,y) = (x^q,y^q)$  is a non separable endomorphism of degree q
- $[m](x,y) = \left(\frac{\phi_m}{\psi_m^2}, \frac{\omega_m}{\psi_n^3}\right)$  has degree  $m^2$
- [m] separable iff p ∤ m.

### Proof.

*First:* Use the fact that  $x \mapsto x^q$  is the identity on  $\mathbb{F}_q$  hence it fixes the coefficients of the Weierstraß equation. *Second:* already done. *Third* See [8, Proposition 2.28]

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

### **Theorem**

Let  $\alpha \neq 0$  be an endomorphism. Then

$$\#\operatorname{Ker}(\alpha) \begin{cases} = \deg \alpha & \text{if } \alpha \text{ is separable} \\ < \deg \alpha & \text{otherwise} \end{cases}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

#### domorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

proof

#### **Theorem**

Let  $\alpha \neq 0$  be an endomorphism. Then

$$\#\operatorname{Ker}(\alpha) \begin{cases} = \deg \alpha & \text{if } \alpha \text{ is separable} \\ < \deg \alpha & \text{otherwise} \end{cases}$$

### Proof.

It is same proof as  $\#E[m] = \# \operatorname{Ker}[m] \le \partial \phi_m = m^2$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

proof

Hasse's Theorem Frobenius endomorphism

Legendre Symbols

#### **Theorem**

Let  $\alpha \neq 0$  be an endomorphism. Then

$$\# \operatorname{Ker}(\alpha) \begin{cases} = \operatorname{deg} \alpha & \text{if } \alpha \text{ is separable} \\ < \operatorname{deg} \alpha & \text{otherwise} \end{cases}$$

### Proof.

It is same proof as 
$$\#E[m] = \#\operatorname{Ker}[m] \le \partial \phi_m = m^2$$
 (equality for  $p \nmid m$ )

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### **Theorem**

Let  $\alpha \neq 0$  be an endomorphism. Then

$$\#\operatorname{Ker}(\alpha) \begin{cases} = \deg \alpha & \text{if } \alpha \text{ is separable} \\ < \deg \alpha & \text{otherwise} \end{cases}$$

### Proof.

It is same proof as  $\#E[m] = \#\operatorname{Ker}[m] \le \partial \phi_m = m^2$  (equality for  $p \nmid m$ )

### **Definition**

Let E/K. The ring of endomorphisms

 $End(E) := \{\alpha : E \to E, \alpha \text{ is an endomorphism}\}.$ 

where for all  $\alpha_1, \alpha_2 \in \text{End}(E)$ ,

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### **Theorem**

Let  $\alpha \neq 0$  be an endomorphism. Then

$$\# \operatorname{Ker}(\alpha) \begin{cases} = \operatorname{deg} \alpha & \text{if } \alpha \text{ is separable} \\ < \operatorname{deg} \alpha & \text{otherwise} \end{cases}$$

### Proof.

It is same proof as  $\#E[m] = \#\operatorname{Ker}[m] \le \partial \phi_m = m^2$  (equality for  $p \nmid m$ )

### **Definition**

Let E/K. The ring of endomorphisms

 $End(E) := \{\alpha : E \to E, \alpha \text{ is an endomorphism}\}.$ 

where for all  $\alpha_1, \alpha_2 \in \text{End}(E)$ ,

•  $(\alpha_1 + \alpha_2)P := \alpha_1(P) +_E \alpha_2(P)$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### **Theorem**

Let  $\alpha \neq 0$  be an endomorphism. Then

$$\# \operatorname{Ker}(\alpha) \begin{cases} = \operatorname{deg} \alpha & \text{if } \alpha \text{ is separable} \\ < \operatorname{deg} \alpha & \text{otherwise} \end{cases}$$

### Proof.

It is same proof as  $\#E[m] = \#\operatorname{Ker}[m] \le \partial \phi_m = m^2$  (equality for  $p \nmid m$ )

### **Definition**

Let E/K. The ring of endomorphisms

$$End(E) := \{\alpha : E \to E, \alpha \text{ is an endomorphism}\}.$$

where for all  $\alpha_1, \alpha_2 \in \text{End}(E)$ ,

- $(\alpha_1 + \alpha_2)P := \alpha_1(P) +_E \alpha_2(P)$
- $(\alpha_1\alpha_2)P = \alpha_1(\alpha_2(P))$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

#### ndomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

# Properties of End(E):

•  $[0]: P \mapsto \infty$  is the zero element

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms

#### Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

# Properties of End(E):

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

### Separability

the degree of

endomorphism

Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

### **Properties of** End(*E*):

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element
- $\mathbb{Z} \hookrightarrow \text{End}(E), m \mapsto [m]$

Elliptic curves over  $\mathbb{F}_{Q}$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

**Endomorphisms** 

Separability the degree of

endomorphism Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

# **Properties of** End(*E*):

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element
- $\mathbb{Z} \hookrightarrow \operatorname{End}(E), m \mapsto [m]$
- End(*E*) is not necessarily commutative

Elliptic curves over  $\mathbb{F}_{Q}$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

**Endomorphisms** 

Separability the degree of

endomorphism Hasse's Theorem Frobenius endomorphism

proof

Legendre Symbols

# **Properties of End(***E***):**

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element
- $\mathbb{Z} \hookrightarrow \text{End}(E), m \mapsto [m]$
- End(E) is not necessarily commutative
- if  $K = \mathbb{F}_q$ ,  $\Phi_q \in \text{End}(E)$ . So  $\mathbb{Z}[\Phi_q] \subset \text{End}(E)$

Elliptic curves over  $\mathbb{F}_{Q}$ 

### F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

**Endomorphisms** 

Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism

proof

Legendre Symbols

# **Properties of End(***E***):**

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element
- $\mathbb{Z} \hookrightarrow \text{End}(E), m \mapsto [m]$
- End(E) is not necessarily commutative
- if  $K = \mathbb{F}_q$ ,  $\Phi_q \in \text{End}(E)$ . So  $\mathbb{Z}[\Phi_q] \subset \text{End}(E)$

Elliptic curves over  $\mathbb{F}_{Q}$ 

### F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

**Endomorphisms** 

Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism

proof

Legendre Symbols

# Properties of End(E):

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element
- $\mathbb{Z} \hookrightarrow \text{End}(E), m \mapsto [m]$
- End(E) is not necessarily commutative
- if  $K = \mathbb{F}_q$ ,  $\Phi_q \in \text{End}(E)$ . So  $\mathbb{Z}[\Phi_q] \subset \text{End}(E)$

Recall that  $\alpha \in \operatorname{End}(E)$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  where  $\alpha(x, y) = (p(x)/q(x), yr(x))$ . Elliptic curves over  $\mathbb{F}_{Q}$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

**Endomorphisms** 

Separability the degree of

endomorphism

Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols

# Properties of End(E):

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element
- $\mathbb{Z} \hookrightarrow \mathsf{End}(E), m \mapsto [m]$
- End(E) is not necessarily commutative
- if  $K = \mathbb{F}_q$ ,  $\Phi_q \in \mathsf{End}(E)$ . So  $\mathbb{Z}[\Phi_q] \subset \mathsf{End}(E)$

Recall that  $\alpha \in \operatorname{End}(E)$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  where  $\alpha(x, y) = (p(x)/q(x), yr(x))$ .

### Lemma

Let  $\Phi_q: (x, y) \mapsto (x^q, y^q)$  be the Frobenius endomorphism and let  $r, s \in \mathbb{Z}$ . Then

$$r\Phi_q + s \in \text{End}(E)$$
 is separable  $\Leftrightarrow p \nmid s$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

#### Separability

the degree of endomorphism

Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

# Properties of End(E):

- $[0]: P \mapsto \infty$  is the zero element
- [1] :  $P \mapsto P$  is the identity element
- $\mathbb{Z} \hookrightarrow \mathsf{End}(E), m \mapsto [m]$
- End(E) is not necessarily commutative
- if  $K = \mathbb{F}_q$ ,  $\Phi_q \in \operatorname{End}(E)$ . So  $\mathbb{Z}[\Phi_q] \subset \operatorname{End}(E)$

Recall that  $\alpha \in \text{End}(E)$  is said **separable** if  $(p'(x), q'(x)) \neq (0, 0)$  where  $\alpha(x, y) = (p(x)/q(x), yr(x))$ .

### Lemma

Let  $\Phi_q : (x, y) \mapsto (x^q, y^q)$  be the Frobenius endomorphism and let  $r, s \in \mathbb{Z}$ . Then

 $r\Phi_q + s \in \text{End}(E)$  is separable  $\Leftrightarrow p \nmid s$ 

### Proof.

See [8, Proposition 2.29]

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

### Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### Lemma

$$\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \text{End}(E),$$
  
 $\deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### Lemma

$$\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \mathsf{End}(E), \\ \deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$$

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ .

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms Separability the degree of

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### Lemma

 $\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \mathsf{End}(E), \\ \mathsf{deg}(r\alpha + s\beta) = r^2 \, \mathsf{deg} \, \alpha + s^2 \, \mathsf{deg} \, \beta + rs(\mathsf{deg}(\alpha + \beta) - \mathsf{deg} \, \alpha - \mathsf{deg} \, \beta)$ 

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ . Then  $\alpha(P) = aP + bQ$  and  $\alpha(Q) = cP + dQ$  with

$$\alpha_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with entries in  $\mathbb{Z}/m\mathbb{Z}$ .

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### Lemma

$$\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \text{End}(E),$$
  
 $\deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$ 

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ . Then  $\alpha(P) = aP + bQ$  and  $\alpha(Q) = cP + dQ$  with

$$\alpha_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with entries in  $\mathbb{Z}/m\mathbb{Z}$ .

We claim that  $deg(\alpha) \equiv det \alpha_m \mod m$ . In fact if  $\zeta = e_m(P, Q)$  is the Weil pairing (primitive root).

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of

endomorphism
Hasse's Theorem

Frobenius endomorphism proof

Legendre Symbols

#### Lemma

 $\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \text{End}(E),$  $\deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$ 

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ . Then  $\alpha(P) = aP + bQ$  and  $\alpha(Q) = cP + dQ$  with

$$\alpha_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with entries in  $\mathbb{Z}/m\mathbb{Z}$ .

We claim that  $deg(\alpha) \equiv det \alpha_m \mod m$ . In fact if  $\zeta = e_m(P, Q)$  is the Weil pairing (primitive root).

$$\zeta^{\deg(\alpha)} = e_m(\alpha(P), \alpha(Q)) = e_m(aP + bQ, cP + dQ) = \zeta^{ad-bc}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing Endomorphisms

Separability
the degree of

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

#### Lemma

 $\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \mathsf{End}(E),$   $\deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$ 

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ . Then  $\alpha(P) = aP + bQ$  and  $\alpha(Q) = cP + dQ$  with

$$\alpha_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with entries in  $\mathbb{Z}/m\mathbb{Z}$ .

We claim that  $deg(\alpha) \equiv det \alpha_m \mod m$ . In fact if  $\zeta = e_m(P, Q)$  is the Weil pairing (primitive root).

$$\zeta^{\deg(\alpha)} = e_m(\alpha(P), \alpha(Q)) = e_m(aP + bQ, cP + dQ) = \zeta^{ad-bc}$$

 $deg(\alpha) \equiv ad - bc = \det \alpha_m(\bmod m).$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing Endomorphisms

Separability
the degree of

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Recall that the **degree** if  $\alpha$  is  $\deg \alpha := \max\{\deg p, \deg q\}$  where  $\alpha(x, y) = (p(x)/q(x), yr(x))$ .

#### Lemma

 $\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \text{End}(E),$  $\deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$ 

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ . Then  $\alpha(P) = aP + bQ$  and  $\alpha(Q) = cP + dQ$  with

$$\alpha_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with entries in  $\mathbb{Z}/m\mathbb{Z}$ .

We claim that  $deg(\alpha) \equiv det \alpha_m \mod m$ . In fact if  $\zeta = e_m(P, Q)$  is the Weil pairing (primitive root).

$$\zeta^{\deg(\alpha)} = e_m(\alpha(P), \alpha(Q)) = e_m(aP + bQ, cP + dQ) = \zeta^{ad-bc}$$

So 
$$deg(\alpha) \equiv ad - bc = det \alpha_m (mod m)$$
. A calculation shows

 $\det(r\alpha_m + s\beta_m) = r^2 \det \alpha_m + s^2 \det \beta_m + rs \det(\alpha_m + \beta_m) - \det \alpha_m - \det \beta_m)$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing Endomorphisms

Separability
the degree of

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

Recall that the **degree** if  $\alpha$  is  $\deg \alpha := \max\{\deg p, \deg q\}$  where  $\alpha(x, y) = (p(x)/q(x), yr(x))$ .

#### Lemma

 $\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \operatorname{End}(E),$   $\deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$ 

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ . Then  $\alpha(P) = aP + bQ$  and  $\alpha(Q) = cP + dQ$  with

$$\alpha_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with entries in  $\mathbb{Z}/m\mathbb{Z}$ .

We claim that  $deg(\alpha) \equiv det \alpha_m \mod m$ . In fact if  $\zeta = e_m(P, Q)$  is the Weil pairing (primitive root).

$$\zeta^{\deg(\alpha)} = e_m(\alpha(P), \alpha(Q)) = e_m(aP + bQ, cP + dQ) = \zeta^{ad-bc}$$

So 
$$deg(\alpha) \equiv ad - bc = det \alpha_m (mod m)$$
. A calculation shows

$$\det(r\alpha_m + s\beta_m) = r^2 \det \alpha_m + s^2 \det \beta_m + rs \det(\alpha_m + \beta_m) - \det \alpha_m - \det \beta_m)$$
So 
$$\deg(r\alpha + s\beta) \equiv r^2 \deg \alpha + s^2 \deg \beta + rs \deg(\alpha + \beta) - \deg \alpha - \deg \beta \mod m$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing Endomorphisms

Separability
the degree of

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

Recall that the **degree** if  $\alpha$  is  $\deg \alpha := \max\{\deg p, \deg q\}$  where  $\alpha(x, y) = (p(x)/q(x), yr(x))$ .

### Lemma

 $\forall r, s \in \mathbb{Z} \text{ and } \forall \alpha, \beta \in \text{End}(E),$  $\deg(r\alpha + s\beta) = r^2 \deg \alpha + s^2 \deg \beta + rs(\deg(\alpha + \beta) - \deg \alpha - \deg \beta)$ 

### Proof.

Let  $m \in \mathbb{N}$  with  $p \nmid m$  and fix a basis P, Q of  $E[m] \cong C_m \oplus C_m$ . Then  $\alpha(P) = aP + bQ$  and  $\alpha(Q) = cP + dQ$  with

$$\alpha_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with entries in  $\mathbb{Z}/m\mathbb{Z}$ .

We claim that  $deg(\alpha) \equiv det \alpha_m \mod m$ . In fact if  $\zeta = e_m(P, Q)$  is the Weil pairing (primitive root).

$$\zeta^{\deg(\alpha)} = e_m(\alpha(P), \alpha(Q)) = e_m(aP + bQ, cP + dQ) = \zeta^{ad-bc}$$

So 
$$deg(\alpha) \equiv ad - bc = det \alpha_m(mod m)$$
. A calculation shows

 $\det(r\alpha_m + s\beta_m) = r^2 \det \alpha_m + s^2 \det \beta_m + rs \det(\alpha_m + \beta_m) - \det \alpha_m - \det \beta_m)$ So  $\deg(r\alpha + s\beta) \equiv r^2 \deg \alpha + s^2 \deg \beta + rs \deg(\alpha + \beta) - \deg \alpha - \deg \beta \mod m$ Since it holds for  $\infty$ -many m's the above is an equality.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing Endomorphisms

Separability
the degree of

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

### Theorem (Hasse)

Let E be an elliptic curve over the finite field  $\mathbb{F}_q$ . Then the order of  $E(\mathbb{F}_q)$  satisfies

$$|q+1-\#E(\mathbb{F}_q)|\leq 2\sqrt{q}.$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

proof

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

### Theorem (Hasse)

Let E be an elliptic curve over the finite field  $\mathbb{F}_q$ . Then the order of  $E(\mathbb{F}_q)$  satisfies

$$|q+1-\#E(\mathbb{F}_q)|\leq 2\sqrt{q}.$$

So  $\#E(\mathbb{F}_q) \in [(\sqrt{q}-1)^2, (\sqrt{q}+1)^2]$  the Hasse interval  $\mathcal{I}_q$ 

# **Example (Hasse Intervals)**

```
{1, 2, 3, 4, 5}
3
         1, 2, 3, 4, 5, 6, 7}
        {1, 2, 3, 4, 5, 6, 7, 8, 9}
         2, 3, 4, 5, 6, 7, 8, 9, 10}
         [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
        {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
        {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11
         [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
13
        {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16
        {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17
        {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
        {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
19
23
        {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25
        {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27
        {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29
         20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
        {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32
         22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44
```

#### Elliptic curves over $\mathbb{F}_a$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

### Frobenius endomorphism

proof

Legendre Symbols

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem

Frobenius endomorphism

proof

Legendre Symbols

 $\Phi_q: \bar{\mathbb{F}}_q \to \bar{\mathbb{F}}_q, x \mapsto x^q$  is a field automorphism

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

#### Hasse's Theorem

#### Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Elliptic curves over  $\mathbb{F}_q$ 

### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

### Hasse's Theorem

#### Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Elliptic curves over  $\mathbb{F}_q$ 

### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

### Hasse's Theorem

#### Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

### Elliptic curves over $\mathbb{F}_q$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

### Hasse's Theorem

#### Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

Elliptic curves over  $\mathbb{F}_q$ 

### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

### Hasse's Theorem

#### Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \overline{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

# Properties of $\Phi_q$

•  $\Phi_q \in \text{End}(E)$ , it is not separable and has degree q

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

# Endomorphisms Separability

the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x, y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

### Properties of $\Phi_q$

- $\Phi_q \in \text{End}(E)$ , it is not separable and has degree q
- $\Phi_q(x,y) = (x,y) \iff (x,y) \in E(\mathbb{F}_q)$

#### Elliptic curves over $\mathbb{F}_q$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

#### Endomorphisms Separability

the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \overline{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

### Properties of $\Phi_a$

- Φ<sub>q</sub> ∈ End(E), it is not separable and has degree q
- $\Phi_q(x,y) = (x,y) \iff (x,y) \in E(\mathbb{F}_q)$
- $\operatorname{Ker}(\Phi_q 1) = E(\mathbb{F}_q)$

#### Elliptic curves over $\mathbb{F}_q$

### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms Separability

the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

## Properties of $\Phi_q$

- $\Phi_q \in \text{End}(E)$ , it is not separable and has degree q
- $\Phi_q(x,y) = (x,y) \iff (x,y) \in E(\mathbb{F}_q)$
- $\operatorname{Ker}(\Phi_q 1) = E(\mathbb{F}_q)$
- $\# \operatorname{Ker}(\Phi_q 1) = \operatorname{deg}(\Phi_q 1)$  (since  $\Phi_q 1$  is separable)

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \Leftrightarrow \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

### Properties of $\Phi_q$

- $\Phi_q \in \text{End}(E)$ , it is not separable and has degree q
- $\Phi_q(x,y) = (x,y) \iff (x,y) \in E(\mathbb{F}_q)$
- $\operatorname{Ker}(\Phi_q 1) = E(\mathbb{F}_q)$
- $\# \operatorname{Ker}(\Phi_q 1) = \operatorname{deg}(\Phi_q 1)$  (since  $\Phi_q 1$  is separable)
- if we can compute  $\deg(\Phi_q 1)$ , we can compute  $\#E(\mathbb{F}_q)$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \Leftrightarrow \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

### Properties of $\Phi_q$

- $\Phi_q \in \text{End}(E)$ , it is not separable and has degree q
- $\Phi_q(x,y) = (x,y) \iff (x,y) \in E(\mathbb{F}_q)$
- $\operatorname{Ker}(\Phi_q 1) = E(\mathbb{F}_q)$
- $\# \operatorname{Ker}(\Phi_q 1) = \operatorname{deg}(\Phi_q 1)$  (since  $\Phi_q 1$  is separable)
- if we can compute  $\deg(\Phi_q 1)$ , we can compute  $\#E(\mathbb{F}_q)$
- $\Phi_q^n(x,y)=(x^{q^n},y^{q^n})$  so  $\Phi_q^n(x,y)=(x,y)\Leftrightarrow (x,y)\in \mathbb{F}_{q^n}$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

$$\Phi_q: ar{\mathbb{F}}_q o ar{\mathbb{F}}_q, x \mapsto x^q$$
 is a field automorphism

Given  $\alpha \in \bar{\mathbb{F}}_q$ ,

$$\alpha \in \mathbb{F}_{q^n} \iff \Phi_q^n(\alpha) = \alpha^{q^n} = \alpha$$

Fixed points of powers of  $\Phi_q$  are exactly elements of  $\mathbb{F}_{q^n}$ 

$$\Phi_q: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q), (x,y) \mapsto (x^q,y^q), \infty \mapsto \infty$$

### Properties of $\Phi_q$

- $\Phi_q \in \text{End}(E)$ , it is not separable and has degree q
- $\Phi_q(x,y) = (x,y) \iff (x,y) \in E(\mathbb{F}_q)$
- $\operatorname{Ker}(\Phi_q 1) = E(\mathbb{F}_q)$
- $\# \operatorname{Ker}(\Phi_q 1) = \operatorname{deg}(\Phi_q 1)$  (since  $\Phi_q 1$  is separable)
- if we can compute  $\deg(\Phi_q 1)$ , we can compute  $\#E(\mathbb{F}_q)$
- $\Phi_q^n(x,y)=(x^{q^n},y^{q^n})$  so  $\Phi_q^n(x,y)=(x,y)\Leftrightarrow (x,y)\in \mathbb{F}_{q^n}$
- $\operatorname{Ker}(\Phi_q^n 1) = E(\mathbb{F}_{q^n})$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

### Lemma

Let  $E/\mathbb{F}_q$  and write  $a=q+1-\#E(\mathbb{F}_q)=q+1-\deg(\Phi_q-1)$ . Then  $\forall r,s\in\mathbb{Z},\gcd(q,s)=1$ , Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

### Lemma

Let  $E/\mathbb{F}_q$  and write  $a=q+1-\#E(\mathbb{F}_q)=q+1-\deg(\Phi_q-1)$ . Then  $\forall r,s\in\mathbb{Z}$ ,  $\gcd(q,s)=1$ ,

$$\deg(r\phi+s)=r^2q+s^2-rsa$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### Lemma

Let  $E/\mathbb{F}_q$  and write  $a=q+1-\#E(\mathbb{F}_q)=q+1-\deg(\Phi_q-1)$ . Then  $\forall r,s\in\mathbb{Z}$ ,  $\gcd(q,s)=1$ ,

$$\deg(r\phi+s)=r^2q+s^2-rsa$$

### Proof.

Proof of the Lemma From a previous proposition, we know that  $deg(r\Phi_a + s) = r^2 deg(\Phi_a) + s^2 deg([-1]) - rs(deg(\Phi_a - 1) - deg(\Phi_a) - deg([-1]))$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### Lemma

Let  $E/\mathbb{F}_q$  and write  $a = q+1-\#E(\mathbb{F}_q) = q+1-\deg(\Phi_q-1)$ . Then  $\forall r, s \in \mathbb{Z}$ ,  $\gcd(q, s) = 1$ .

$$\deg(r\phi+s)=r^2q+s^2-rsa$$

### Proof.

Proof of the Lemma From a previous proposition, we know that  $deg(r\Phi_a + s) = r^2 deg(\Phi_a) + s^2 deg([-1]) - rs(deg(\Phi_a - 1) - deg(\Phi_a) - deg([-1]))$ 

But

 $deg(\Phi_q) = q, deg([-1]) = 1$  and  $deg(\Phi_q - 1) - q - 1 = -a$ 

Legendre Symbols

# F. Pappalardi



Elliptic curves over Fa

# CIMPA

Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

**Endomorphisms** Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism proof

### Lemma

Let  $E/\mathbb{F}_q$  and write  $a=q+1-\#E(\mathbb{F}_q)=q+1-\deg(\Phi_q-1)$ . Then  $\forall r,s\in\mathbb{Z}$ ,  $\gcd(q,s)=1$ ,

$$\deg(r\phi+s)=r^2q+s^2-rsa$$

### Proof.

Proof of the Lemma From a previous proposition, we know that  $\deg(r\Phi_q + s) = r^2 \deg(\Phi_q) + s^2 \deg([-1]) - rs(\deg(\Phi_q - 1) - \deg(\Phi_q) - \deg([-1]))$ 

But

$$\deg(\Phi_q) = q, \deg([-1]) = 1 \text{ and } \deg(\Phi_q - 1) - q - 1 = -a$$

### **Proof of Hasse's Theorem.**

$$q\left(\frac{r}{s}\right)^2 - a\left(\frac{r}{s}\right) + 1 = \frac{\deg(r\Phi_q + s)}{s^2} \ge 0$$

on a dense set of rational numbers.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

#### Lemma

Let  $E/\mathbb{F}_q$  and write  $a=q+1-\#E(\mathbb{F}_q)=q+1-\deg(\Phi_q-1)$ . Then  $\forall r,s\in\mathbb{Z}$ ,  $\gcd(q,s)=1$ ,

$$\deg(r\phi+s)=r^2q+s^2-rsa$$

### Proof.

Proof of the Lemma From a previous proposition, we know that  $\deg(r\Phi_q + s) = r^2 \deg(\Phi_q) + s^2 \deg([-1]) - rs(\deg(\Phi_q - 1) - \deg(\Phi_q) - \deg([-1]))$  But

 $\deg(\Phi_q) = q$ ,  $\deg([-1]) = 1$  and  $\deg(\Phi_q - 1) - q - 1 = -a$ 

# **Proof of Hasse's Theorem.**

 $q\left(\frac{r}{s}\right)^2 - a\left(\frac{r}{s}\right) + 1 = \frac{\deg(r\Phi_q + s)}{s^2} \ge 0$ 

on a dense set of rational numbers.

This implies  $\forall X \in \mathbb{R}, \ X^2 - aX + q \ge 0.$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

Logonaro Oymbo.

### Lemma

Let  $E/\mathbb{F}_q$  and write  $a=q+1-\#E(\mathbb{F}_q)=q+1-\deg(\Phi_q-1)$ . Then  $\forall r,s\in\mathbb{Z}$ ,  $\gcd(q,s)=1$ ,

$$\deg(r\phi+s)=r^2q+s^2-rsa$$

### Proof.

Proof of the Lemma From a previous proposition, we know that  $\deg(r\Phi_q + s) = r^2 \deg(\Phi_q) + s^2 \deg([-1]) - rs(\deg(\Phi_q - 1) - \deg(\Phi_q) - \deg([-1]))$ But

 $\deg(\Phi_q)=q, \deg([-1])=1$  and  $\deg(\Phi_q-1)-q-1=-a$ 

### **Proof of Hasse's Theorem.**

$$q\left(\frac{r}{s}\right)^2 - a\left(\frac{r}{s}\right) + 1 = \frac{\deg(r\Phi_q + s)}{s^2} \ge 0$$

on a dense set of rational numbers.

This implies 
$$\forall X \in \mathbb{R}, \ X^2 - aX + q \ge 0$$
.So  $a^2 - 4q \le 0 \Leftrightarrow |a| \le 2\sqrt{q}!!$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

### Legendre Symbols

proof

Legendre Symbols

Ingredients for the proof:

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

# Ingredients for the proof:

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

### Ingredients for the proof:

- $\bullet E(\mathbb{F}_q) = \operatorname{Ker}(\Phi_q 1)$
- **2**  $\Phi_q 1$  is separable

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

#### proof

Legendre Symbols

### Ingredients for the proof:

- $\bullet E(\mathbb{F}_q) = \operatorname{Ker}(\Phi_q 1)$
- $\bullet$  q-1 is separable

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

#### proof

Legendre Symbols

### Ingredients for the proof:

- $\bullet E(\mathbb{F}_q) = \operatorname{Ker}(\Phi_q 1)$
- $\bullet$  q-1 is separable

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

# Ingredients for the proof:

- $\bullet E(\mathbb{F}_q) = \operatorname{Ker}(\Phi_q 1)$
- $\bullet_q$  1 is separable
- 3  $\#\operatorname{Ker}(\Phi_q-1)=\operatorname{deg}(\Phi_q-1)$

### Corollary

Let 
$$a = q + 1 - \#E(\mathbb{F}_q)$$
. Then

$$\Phi_q^2 - a\Phi_q + q = 0$$

is an identity of endomorphisms.

# Elliptic curves over $\mathbb{F}_q$

### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

# Endomorphisms Separability the degree of

endomorphism

Hasse's Theorem

Frobenius endomorphism

#### proof

Legendre Symbols

# Ingredients for the proof:

- $\bullet E(\mathbb{F}_q) = \operatorname{Ker}(\Phi_q 1)$
- $\bullet$  q-1 is separable
- 3  $\#\operatorname{Ker}(\Phi_q-1)=\operatorname{deg}(\Phi_q-1)$

### Corollary

Let 
$$a = q + 1 - \#E(\mathbb{F}_q)$$
. Then

 $\Phi_q^2 - a\Phi_q + q = 0$ 

is an identity of endomorphisms.

**2**  $a \in \mathbb{Z}$  is the unique integer k such that  $\Phi_q^2 - k\Phi_q + q = 0$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

# Ingredients for the proof:

- $\bullet E(\mathbb{F}_q) = \operatorname{Ker}(\Phi_q 1)$
- 2  $\Phi_q 1$  is separable

### Corollary

Let 
$$a = q + 1 - \#E(\mathbb{F}_q)$$
. Then

 $\Phi_q^2 - a\Phi_q + q = 0$ 

is an identity of endomorphisms.

- 2  $a \in \mathbb{Z}$  is the unique integer k such that  $\Phi_q^2 k\Phi_q + q = 0$
- $a \equiv \operatorname{Tr}((\Phi_q)_m) \bmod m \ \forall m \ s.t. \ \gcd(m,q) = 1$

### Elliptic curves over $\mathbb{F}_q$

### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

# Endomorphisms Separability the degree of

endomorphism

Hasse's Theorem

# Frobenius endomorphism proof

Legendre Symbols

## Sketch of the Proof of Corollary.

Let  $m \in \mathbb{N}$  s.t. gcd(m, q) = 1. Choose a basis for E[m] and write

$$(\Phi_q)_m = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$$

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

#### proof

Legendre Symbols

# Sketch of the Proof of Corollary.

Let  $m \in \mathbb{N}$  s.t. gcd(m, q) = 1. Choose a basis for E[m] and write

$$(\Phi_q)_m = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$$

 $\Phi_q - 1$  separable implies

$$\begin{split} \#\operatorname{Ker}(\Phi_q-1) &= \operatorname{deg}(\Phi_q-1) \equiv \operatorname{det}((\Phi_q)_m-I)) \\ &= \operatorname{det}((\Phi_q)_m) - \operatorname{Tr}((\Phi_q)_m) + 1(\operatorname{mod} m). \end{split}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

endomorphism

Hasse's Theorem

Frobenius endomorphism

proof

the degree of

Legendre Symbols

# Sketch of the Proof of Corollary.

Let  $m \in \mathbb{N}$  s.t. gcd(m, q) = 1. Choose a basis for E[m] and write

$$(\Phi_q)_m = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$$

 $\Phi_q - 1$  separable implies

$$\begin{split} \#\operatorname{Ker}(\Phi_q-1) &= \operatorname{deg}(\Phi_q-1) \equiv \operatorname{det}((\Phi_q)_m-I)) \\ &= \operatorname{det}((\Phi_q)_m) - \operatorname{Tr}((\Phi_q)_m) + 1(\operatorname{mod} m). \end{split}$$

Hence

$$\operatorname{Tr}((\Phi_q)_m) \equiv a(\bmod m)$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

# Sketch of the Proof of Corollary.

Let  $m \in \mathbb{N}$  s.t. gcd(m, q) = 1. Choose a basis for E[m] and write

$$(\Phi_q)_m = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$$

 $\Phi_q - 1$  separable implies

$$\begin{split} \#\operatorname{Ker}(\Phi_q-1) &= \operatorname{deg}(\Phi_q-1) \equiv \operatorname{det}((\Phi_q)_m-I)) \\ &= \operatorname{det}((\Phi_q)_m) - \operatorname{Tr}((\Phi_q)_m) + 1(\operatorname{mod} m). \end{split}$$

Hence

$$\operatorname{Tr}((\Phi_q)_m) \equiv a(\bmod m)$$

By Cayley-Hamilton

$$(\Phi_q)_m^2 - a(\Phi_q)_m + qI \equiv 0 \pmod{m}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

# Sketch of the Proof of Corollary.

Let  $m \in \mathbb{N}$  s.t. gcd(m, q) = 1. Choose a basis for E[m] and write

$$(\Phi_q)_m = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$$

 $\Phi_q - 1$  separable implies

$$\begin{split} \#\operatorname{Ker}(\Phi_q-1) &= \operatorname{deg}(\Phi_q-1) \equiv \operatorname{det}((\Phi_q)_m-I)) \\ &= \operatorname{det}((\Phi_q)_m) - \operatorname{Tr}((\Phi_q)_m) + 1(\operatorname{mod} m). \end{split}$$

Hence

$$\operatorname{Tr}((\Phi_q)_m) \equiv a(\operatorname{\mathsf{mod}} m)$$

By Cayley-Hamilton

$$(\Phi_q)_m^2 - a(\Phi_q)_m + qI \equiv 0 (\bmod m)$$

Since this happens for infinitely many m's,

$$\Phi_q^2 - a\Phi_q + q = 0$$

as endomorphism.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

NOOI

Legendre Symbols

## Sketch of the Proof of Corollary.

Let  $m \in \mathbb{N}$  s.t. gcd(m, q) = 1. Choose a basis for E[m] and write

$$(\Phi_q)_m = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$$

 $\Phi_q - 1$  separable implies

$$\begin{split} \#\operatorname{Ker}(\Phi_q-1) &= \operatorname{deg}(\Phi_q-1) \equiv \operatorname{det}((\Phi_q)_m-I)) \\ &= \operatorname{det}((\Phi_q)_m) - \operatorname{Tr}((\Phi_q)_m) + 1(\operatorname{mod} m). \end{split}$$

Hence

$$\operatorname{Tr}((\Phi_q)_m) \equiv a(\bmod m)$$

By Cayley-Hamilton

$$(\Phi_q)_m^2 - a(\Phi_q)_m + qI \equiv 0 (\bmod m)$$

Since this happens for infinitely many m's,

$$\Phi_q^2 - a\Phi_q + q = 0$$

as endomorphism.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

NOOI

Legendre Symbols

## Definition

Let  $E/\mathbb{F}_q$  and write  $E(\mathbb{F}_q)=q+1-a$ ,  $(|a|\leq 2\sqrt{q})$ . The *characteristic* polynomial of E is

$$P_E(T) = T^2 - aT + q \in \mathbb{Z}[T].$$

and its roots:

$$\alpha = \frac{1}{2} \left( a + \sqrt{a^2 - 4q} \right)$$
  $\beta = \frac{1}{2} \left( a - \sqrt{a^2 - 4q} \right)$ 

are called *characteristic roots of Frobenius* ( $P_E(\Phi_q) = 0$ ).

### **Theorem**

 $\forall n \in \mathbb{N}$ 

$$\#E(\mathbb{F}_{q^n})=q^n+1-(\alpha^n+\beta^n).$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

Note that

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

## Note that

**1** Result is true for n = 1,  $\alpha + \beta = a$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order

The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

#### proof

Legendre Symbols

### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

## Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

### **Theorem**

$$\forall n \in \mathbb{N} \ \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

## Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- **3**  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

#### proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

## Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- **3**  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

#### proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- **3**  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$
- **5**  $(\Phi_q)^n|_{\bar{\mathbb{F}}_{q^n}} = \Phi_{q^n} : (x, y) \mapsto (x^{q^n}, y^{q^n})$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

## Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- 3  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$
- **5**  $(\Phi_q)^n|_{\bar{\mathbb{F}}_{q^n}} = \Phi_{q^n} : (x, y) \mapsto (x^{q^n}, y^{q^n})$
- **6**  $(\Phi_a^n)^2 (\alpha^n + \beta^n)\Phi_a^n + q^n = Q(\Phi_a)(\Phi_a^2 a\Phi_a + q) = 0$ where  $f(X) = Q(X)(X^2 - aX + a)$

Elliptic curves over  $\mathbb{F}_{Q}$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

**Endomorphisms** Separability the degree of endomorphism

Hasse's Theorem Frobenius endomorphism

proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- **3**  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$
- **5**  $(\Phi_q)^n|_{\bar{\mathbb{F}}_{q^n}} = \Phi_{q^n} : (x, y) \mapsto (x^{q^n}, y^{q^n})$
- 6  $(\Phi_q^n)^2 (\alpha^n + \beta^n)\Phi_q^n + q^n = Q(\Phi_q))(\Phi_q^2 a\Phi_q + q) = 0$ where  $f(X) = Q(X)(X^2 - aX + q)$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- **3**  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$
- **5**  $(\Phi_q)^n|_{\bar{\mathbb{F}}_{q^n}} = \Phi_{q^n} : (x,y) \mapsto (x^{q^n}, y^{q^n})$
- 6  $(\Phi_q^n)^2 (\alpha^n + \beta^n)\Phi_q^n + q^n = Q(\Phi_q))(\Phi_q^2 a\Phi_q + q) = 0$ where  $f(X) = Q(X)(X^2 - aX + q)$

Hence  $\Phi_a^n$  satisfies

$$X^2-((\alpha^n+\beta^n))X+q.$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

Note that

- 1 Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- 3  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$
- **5**  $(\Phi_q)^n|_{\bar{\mathbb{F}}_{q^n}} = \Phi_{q^n} : (x, y) \mapsto (x^{q^n}, y^{q^n})$
- 6  $(\Phi_q^n)^2 (\alpha^n + \beta^n)\Phi_q^n + q^n = Q(\Phi_q))(\Phi_q^2 a\Phi_q + q) = 0$ where  $f(X) = Q(X)(X^2 - aX + q)$

Hence  $\Phi_a^n$  satisfies

$$X^2-((\alpha^n+\beta^n))X+q.$$

So

$$\alpha^n + \beta^n = q^n + 1 - \#E(\mathbb{F}_{q^n}).$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

## proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

Note that

- **1** Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- **3**  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$
- **5**  $(\Phi_q)^n|_{\bar{\mathbb{F}}_{q^n}} = \Phi_{q^n} : (x, y) \mapsto (x^{q^n}, y^{q^n})$
- **6**  $(\Phi_q^n)^2 (\alpha^n + \beta^n)\Phi_q^n + q^n = Q(\Phi_q))(\Phi_q^2 a\Phi_q + q) = 0$  where  $f(X) = Q(X)(X^2 aX + q)$

Hence  $\Phi_a^n$  satisfies

$$X^2-((\alpha^n+\beta^n))X+q.$$

So

$$\alpha^n + \beta^n = q^n + 1 - \#E(\mathbb{F}_{q^n}).$$

Characteristic polynomial of  $\Phi_{q^n}$ :

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

#### **Theorem**

$$\forall n \in \mathbb{N} \# E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

## Proof.

Note that

- **1** Result is true for n = 1,  $\alpha + \beta = a$
- $\alpha^n + \beta^n \in \mathbb{Z}, (\alpha\beta)^n = q^n$
- **3**  $f(X) = (X^n \alpha^n)(X^n \beta^n) = X^{2n} (\alpha^n + \beta^n)X^n + q^n \in \mathbb{Z}[X]$
- 4 f(X) is divisible by  $X^2 aX + q = (X \alpha)(X \beta)$
- **5**  $(\Phi_q)^n|_{\bar{\mathbb{F}}_{q^n}} = \Phi_{q^n} : (x, y) \mapsto (x^{q^n}, y^{q^n})$
- **6**  $(\Phi_q^n)^2 (\alpha^n + \beta^n)\Phi_q^n + q^n = Q(\Phi_q))(\Phi_q^2 a\Phi_q + q) = 0$  where  $f(X) = Q(X)(X^2 aX + q)$

Hence  $\Phi_a^n$  satisfies

$$X^2-((\alpha^n+\beta^n))X+q.$$

So

$$\alpha^n + \beta^n = q^n + 1 - \#E(\mathbb{F}_{q^n}).$$

Characteristic polynomial of  $\Phi_{q^n}$ :  $X^2 - (\alpha^n + \beta^n)X + q^n$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem
Frobenius endomorphism

#### prooi

Legendre Symbols

#### Elliptic curves over $\mathbb{F}_q$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

# Hasse's Theorem Frobenius endomorphism

#### proof

#### Legendre Symbols

# Curves $/\mathbb{F}_2$

| Е                          | а  | $P_E(T)$       | $(\alpha, \beta)$             |
|----------------------------|----|----------------|-------------------------------|
| $y^2 + xy = x^3 + x^2 + 1$ | 1  | $T^2 - T + 2$  | $\frac{1}{2}(1\pm\sqrt{-7})$  |
| $y^2 + xy = x^3 + 1$       | -1 | $T^2 + T + 2$  | $\frac{1}{2}(-1\pm\sqrt{-7})$ |
| $y^2 + y = x^3 + x$        | -2 | $T^2 + 2T + 2$ | −1 ± <i>i</i>                 |
| $y^2 + y = x^3 + x + 1$    | 2  | $T^2 - 2T + 2$ | 1 ± <i>i</i>                  |
| $y^2 + y = x^3$            | 0  | $T^2 + 2$      | $\pm\sqrt{-2}$                |
|                            |    |                |                               |

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem Frobenius endomorphism

### proof

Legendre Symbols

$$\begin{array}{c} \textbf{\textit{E}}(\mathbb{F}_q) = q+1-a \ \Rightarrow \ \textbf{\textit{E}}(\mathbb{F}_{q^n}) = q^n+1-(\alpha^n+\beta^n) \\ \text{where } P_{\textbf{\textit{E}}}(T) = T^2-aT+q = (T-\alpha)(T-\beta) \in \mathbb{Z}[T] \end{array}$$

# Curves $/\mathbb{F}_2$

| Е                          | а  | $P_E(T)$       | $(\alpha, \beta)$             |
|----------------------------|----|----------------|-------------------------------|
| $y^2 + xy = x^3 + x^2 + 1$ | 1  | $T^2 - T + 2$  | $\frac{1}{2}(1\pm\sqrt{-7})$  |
| $y^2 + xy = x^3 + 1$       | -1 | $T^2 + T + 2$  | $\frac{1}{2}(-1\pm\sqrt{-7})$ |
| $y^2 + y = x^3 + x$        | -2 | $T^2 + 2T + 2$ | −1 ± <i>i</i>                 |
| $y^2 + y = x^3 + x + 1$    | 2  | $T^2 - 2T + 2$ | 1 ± <i>i</i>                  |
| $y^2 + y = x^3$            | 0  | $T^2 + 2$      | $\pm\sqrt{-2}$                |

$$\begin{split} E:y^2+xy&=x^3+x^2+1 \Rightarrow \\ E(\mathbb{F}_{2100})&=2^{100}+1-\left(\frac{1+\sqrt{-7}}{2}\right)^{100}-\left(\frac{1-\sqrt{-7}}{2}\right)^{100} = 1267650600228229382588845215376 \end{split}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing
Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

## **Subfield curves**

$$\begin{split} & \pmb{\mathcal{E}}(\mathbb{F}_q) = q+1-a \ \Rightarrow \ \pmb{\mathcal{E}}(\mathbb{F}_{q^n}) = q^n+1-(\alpha^n+\beta^n) \\ & \text{where } P_{\mathcal{E}}(T) = T^2-aT+q = (T-\alpha)(T-\beta) \in \mathbb{Z}[T] \end{split}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

proof

Legendre Symbols

## **Subfield curves**

$$\begin{split} & \pmb{\mathcal{E}}(\mathbb{F}_q) = q+1-a \ \Rightarrow \ \pmb{\mathcal{E}}(\mathbb{F}_{q^n}) = q^n+1-(\alpha^n+\beta^n) \\ & \text{where } P_{\mathcal{E}}(T) = T^2-aT+q = (T-\alpha)(T-\beta) \in \mathbb{Z}[T] \end{split}$$

# Curves $/\mathbb{F}_2$

| i | E <sub>i</sub>        | а  | $P_{E_i}(T)$   | $(\alpha, \beta)$                |
|---|-----------------------|----|----------------|----------------------------------|
| 1 | $y^2 = x^3 + x$       | 0  | $T^2 + 3$      | $\pm\sqrt{-3}$                   |
| 2 | $y^2 = x^3 - x$       | 0  | $T^2 + 3$      | $\pm\sqrt{-3}$                   |
| 3 | $y^2 = x^3 - x + 1$   | -3 | $T^2 + 3T + 3$ | $\frac{1}{2}(-3 \pm \sqrt{-3})$  |
| 4 | $y^2 = x^3 - x - 1$   | 3  | $T^2 - 3T + 3$ | $\frac{1}{2}(3 \pm \sqrt{-3})$   |
| 5 | $y^2 = x^3 + x^2 - 1$ | 1  | $T^2 - T + 3$  | $\frac{1}{2}(1 \pm \sqrt{-11})$  |
| 6 | $y^2 = x^3 - x^2 + 1$ |    | $T^2 + T + 3$  | $\frac{1}{2}(-1 \pm \sqrt{-11})$ |
| 7 | $y^2 = x^3 + x^2 + 1$ | -2 | $T^2 + 2T + 3$ | $-1 \pm \sqrt{-2}$               |
| 8 | $y^2 = x^3 - x^2 - 1$ | 2  | $T^2 - 2T + 3$ | $1\pm\sqrt{-2}$                  |
|   |                       |    |                |                                  |

Elliptic curves over  $\mathbb{F}_q$ 

#### F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem Frobenius endomorphism

#### proof

Legendre Symbols

## **Subfield curves**

$$E(\mathbb{F}_q) = q+1-a \Rightarrow E(\mathbb{F}_{q^n}) = q^n+1-(\alpha^n+\beta^n)$$
  
where  $P_E(T) = T^2-aT+q = (T-\alpha)(T-\beta) \in \mathbb{Z}[T]$ 

# Curves $/\mathbb{F}_2$

| i | E <sub>i</sub>        |    | $P_{E_i}(T)$   | $(\alpha, \beta)$                |
|---|-----------------------|----|----------------|----------------------------------|
| 1 | $y^2 = x^3 + x$       | 0  | $T^2 + 3$      | $\pm\sqrt{-3}$                   |
| 2 | $y^2 = x^3 - x$       | 0  | $T^2 + 3$      | $\pm\sqrt{-3}$                   |
| 3 | $y^2 = x^3 - x + 1$   | -3 | $T^2 + 3T + 3$ | $\frac{1}{2}(-3 \pm \sqrt{-3})$  |
| 4 | $y^2 = x^3 - x - 1$   | 3  | $T^2 - 3T + 3$ | $\frac{1}{2}(3 \pm \sqrt{-3})$   |
| 5 | $y^2 = x^3 + x^2 - 1$ | 1  | $T^2 - T + 3$  | $\frac{1}{2}(1 \pm \sqrt{-11})$  |
| 6 | $y^2 = x^3 - x^2 + 1$ | -1 | $T^2 + T + 3$  | $\frac{1}{2}(-1 \pm \sqrt{-11})$ |
| 7 | $y^2 = x^3 + x^2 + 1$ | -2 | $T^2 + 2T + 3$ | $-1 \pm \sqrt{-2}$               |
| 8 | $y^2 = x^3 - x^2 - 1$ | 2  | $T^2 - 2T + 3$ | $1\pm\sqrt{-2}$                  |

### Lemma

Let 
$$s_n = \alpha^n + \beta^n$$
 where  $\alpha\beta = q$  and  $\alpha + \beta = a$ . Then

$$s_0 = 2$$
,  $s_1 = a$  and  $s_{n+1} = as_n - qs_{n-1}$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism

#### proof

Legendre Symbols

Recall the *Finite field Legendre symbols*: let  $x \in \mathbb{F}_q$ ,

### Elliptic curves over $\mathbb{F}_q$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

#### Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

# Hasse's Theorem

Frobenius endomorphism proof

#### Legendre Symbols

Recall the *Finite field Legendre symbols*: let  $x \in \mathbb{F}_q$ ,

$$\begin{pmatrix} \frac{x}{\mathbb{F}_q} \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

#### Elliptic curves over $\mathbb{F}_q$

### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

#### Weil Pairing

#### Endomorphisms

Separability the degree of endomorphism

proof

#### Hasse's Theorem Frobenius endomorphism

Legendre Symbols

Recall the *Finite field Legendre symbols*: let  $x \in \mathbb{F}_q$ ,

$$\begin{pmatrix} \frac{x}{\mathbb{F}_q} \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

### **Theorem**

Let 
$$E: y^2 = x^3 + Ax + B$$
 over  $\mathbb{F}_q$ . Then

$$\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left( \frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

Elliptic curves over  $\mathbb{F}_q$ 

### F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of

endomorphism

Hasse's Theorem

Frobenius endomorphism

proof

Legendre Symbols

Recall the Finite field Legendre symbols: let  $x \in \mathbb{F}_q$ ,

$$\begin{pmatrix} \frac{x}{\mathbb{F}_q} \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

### **Theorem**

Let 
$$E: y^2 = x^3 + Ax + B$$
 over  $\mathbb{F}_q$ . Then

$$\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left( \frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

## Proof.

Note that

$$1 + \left(\frac{x_0^3 + Ax_0 + B}{\mathbb{F}_q}\right) = \begin{cases} 2 & \text{if } \exists y_0 \in \mathbb{F}_q^* \text{ s.t. } (x_0, \pm y_0) \in E(\mathbb{F}_q) \\ 1 & \text{if } (x_0, 0) \in E(\mathbb{F}_q) \\ 0 & \text{otherwise} \end{cases}$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms Separability

the degree of endomorphism Hasse's Theorem

Frobenius endomorphism

Legendre Symbols

Recall the *Finite field Legendre symbols*: let  $x \in \mathbb{F}_q$ ,

$$\begin{pmatrix} \frac{x}{\mathbb{F}_q} \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

## **Theorem**

Let 
$$E: y^2 = x^3 + Ax + B$$
 over  $\mathbb{F}_q$ . Then

$$\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left( \frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

# Proof.

Note that

$$1 + \left(\frac{x_0^3 + Ax_0 + B}{\mathbb{F}_q}\right) = \begin{cases} 2 & \text{if } \exists y_0 \in \mathbb{F}_q^* \text{ s.t. } (x_0, \pm y_0) \in E(\mathbb{F}_q) \\ 1 & \text{if } (x_0, 0) \in E(\mathbb{F}_q) \\ 0 & \text{otherwise} \end{cases}$$

Hence

$$\#E(\mathbb{F}_q) = 1 + \sum_{x \in \mathbb{F}_q} \left( 1 + \left( \frac{x^3 + Ax + B}{\mathbb{F}_q} \right) \right)$$

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of

endomorphism

Hasse's Theorem
Frobenius endomorphism

Legendre Symbols

## **Last Slide**

## Corollary

Let 
$$E: y^2 = x^3 + Ax + B$$
 over  $\mathbb{F}_q$  and  $E_{\mu}: y^2 = x^3 + \mu^2 Ax + \mu^3 B$ ,  $\mu \in \mathbb{F}_q^* \setminus (\mathbb{F}_q^*)^2$  its twist. Then

$$\#E(\mathbb{F}_q) = q+1-a \Leftrightarrow \#E_{\mu}(\mathbb{F}_q) = q+1+a$$

and

$$\#E(\mathbb{F}_{q^2})=\#E_{\mu}(\mathbb{F}_{q^2}).$$

#### Elliptic curves over $\mathbb{F}_q$

#### F. Pappalardi



#### Reminder from Yesterday

Points of finite order The group structure

#### Weil Pairing

### Endomorphisms

Separability the degree of endomorphism

proof

#### Hasse's Theorem Frobenius endomorphism

Legendre Symbols

## **Last Slide**

# Corollary

Let  $E: y^2 = x^3 + Ax + B$  over  $\mathbb{F}_q$  and

$$E_{\mu}: y^2 = x^3 + \mu^2 A x + \mu^3 B, \ \mu \in \mathbb{F}_q^* \setminus (\mathbb{F}_q^*)^2$$
 its twist. Then 
$$\#E(\mathbb{F}_q) = q+1-a \Leftrightarrow \#E_{\mu}(\mathbb{F}_q) = q+1+a$$

and

$$\# \mathsf{E}(\mathbb{F}_{q^2}) = \# \mathsf{E}_{\mu}(\mathbb{F}_{q^2}).$$

## Proof.

$$\# \mathcal{E}_{\mu}(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left( \frac{x^3 + \mu^2 A x + \mu^3 B}{\mathbb{F}_q} \right)$$

$$= q + 1 + \left( \frac{\mu}{\mathbb{F}_q} \right) \sum_{x \in \mathbb{F}} \left( \frac{x^3 + A x + B}{\mathbb{F}_q} \right)$$

and  $\left(\frac{\mu}{\mathbb{F}_q}\right) = -1$ 

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday

Points of finite order The group structure

Weil Pairing

Endomorphisms

Separability the degree of endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

Legendre Symbols

# Further Reading...



J. W. S. CASSELS, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991.

JOHN E. CREMONA, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997.

ANTHONY W. KNAPP, Elliptic curves, Mathematical Notes, vol. 40, Princeton University Press, Princeton, NJ, 1992.

NEAL KOBLITZ, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97. Springer-Verlag, New York, 1984.

JOSEPH H. SILVERMAN, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.

JOSEPH H. SILVERMAN AND JOHN TATE, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.

LAWRENCE C. WASHINGTON, Elliptic curves: Number theory and cryptography, 2nd ED. Discrete Mathematics and Its Applications, Chapman & Hall/CRC, 2008.

HORST G. ZIMMER, Computational aspects of the theory of elliptic curves, Number theory and applications (Banff, AB, 1988) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 279–324.

Elliptic curves over  $\mathbb{F}_q$ 

F. Pappalardi



Reminder from Yesterday Points of finite order The group structure

Weil Pairing

Endomorphisms
Separability
the degree of
endomorphism

Hasse's Theorem Frobenius endomorphism proof

Legendre Symbols